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Abstract: Wind turbine towers experience complex dynamic loads during actual operation, and
these loads are difficult to accurately predict in advance, which may lead to inaccurate structural
fatigue and strength assessment during the structural design phase, thereby posing safety risks
to the wind turbine tower. However, online monitoring of wind loads has become possible with
the development of load identification technology. Therefore, an identification method for wind
load exerted on wind turbine towers was developed in this study to estimate the wind loads using
structural strain, which can be used for online monitoring of wind loads. The wind loads exerted
on the wind turbine tower were simplified into six equivalent concentrated forces on the topside of
the tower, and the initial mathematical model for wind load identification was established based
on dynamic load identification theory in the frequency domain, in which many candidate sensor
locations and directions were considered. Then, the initial mathematical model was expressed as
a linear system of equations. A numerical example was used to verify the accuracy and stability
of the initial mathematical model for the wind load identification, and the identification results
indicate that the initial mathematical model combined with the Moore–Penrose inverse algorithm
can provide stable and accurate reconstruction results. However, the initial mathematical model uses
too many sensors, which is not conducive to engineering applications. Therefore, D-optimal and
C-optimal design methods were used to reduce the dimension of the initial mathematical model and
determine the location and direction of strain gauges. The C-optimal design method adopts a direct
optimisation search strategy, while the D-optimal design method adopts an indirect optimisation
search strategy. Then, four numerical examples of wind load identification show that dimensionality
reduction of the mathematical model leads to high accuracy, in which the C-optimal design algorithm
provides more robust identification results. Moreover, the fatigue damage calculated based on the
load identification wind loads closely approximates that derived from finite element simulation
wind load, with a relative error within 6%. Therefore, the load identification method developed in
this study offers a pragmatic solution for the accurate acquisition of the actual wind load of a wind
turbine tower.

Keywords: jacket wind turbine; wind load identification; ill-posed mathematical model; optimal strain
gauge locations and directions; Moore–Penrose pseudo-inverse method; fatigue damage analysis

1. Introduction

Offshore wind turbine towers confront significant challenges in measuring wind loads
due to their intricate designs and the severe operational environments in which they are
situated. The complexity of these structures, coupled with the dynamic nature of marine
conditions, necessitate precise wind load data. Such data is crucial for evaluating the
structural fatigue life of these towers, thereby underscoring the importance of reliable load
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identification methods [1,2]. Recent advancements in this field have led to the bifurcation
of load identification into two principal approaches: time-domain and frequency-domain
identifications, each offering unique perspectives on dynamic load analysis [3,4].

Current research within the domain of frequency-domain load identification has pro-
gressed from the initial efforts of early investigators [5], expanding its scope to include
a variety of engineering structures, such as bridge monitoring [6] and bearing fault diagno-
sis [7]. This broadening scope demonstrates the increasing applicability and significance
of frequency-domain analysis techniques in structural engineering. Frequency-domain
methodologies, which are essential for identifying steady-state or stationary stochastic
loads, require a comprehensive set of measurement data [8,9]. Moreover, the frequency
response function (FRF) matrix, a key component of frequency-domain analysis, tends to
exhibit ill-posed resonance points, presenting substantial challenges for numerical preci-
sion and stability. Conversely, the time-domain approach, which builds on the system’s
dynamic equations, determines the dynamic time history by analysing the complex con-
volution relationship between excitation and response, effectively avoiding errors from
sample truncation, as well as being suitable for identifying non-stationary loads [10,11]. In
recent years, as research into load identification technologies has deepened, a variety of
innovative methods have been explored and developed, including wavelet transform tech-
niques [12,13], data-driven approaches [4,14], and statistical energy analysis methods [15].
These advancements have significantly improved the accuracy of load identification.

Load identification is an inverse problem. Inverse problems are often ill posed, and
regularisation methods have emerged as pivotal for addressing these challenges. Key regu-
larisation techniques include the Tikhonov regularization method (TRM) [16,17], Truncated
Singular Value Decomposition (TSVD) [18], and Damped Singular Value Decomposition
(DSVD) [19], along with a variety of iterative regularisation approaches, such as the Landwe-
ber iteration [20], the Conjugate Gradient iteration [21], and the Least Squares QR (LSQR)
iteration method [10].

An alternative approach to addressing ill-posed problems involves the construction
of mathematical models with reduced ill posedness. Determining the transfer matrix is
the initial step in the identification of stochastic dynamic loads in the frequency domain
and dynamic loads in the time domain based on Green’s function, which lays the ground-
work for formulating the system of linear equations for load identification. This matrix,
serving as the system’s coefficient matrix, significantly influences the solution’s precision.
Optimising the transfer matrix by selecting efficient rows (or columns) for matrix inversion
is crucial for developing a mathematically robust model. The condition number of the
transfer function matrix, indicative of the matrix’s ill posedness, suggests that a lower
condition number corresponds to reduced ill posedness. Gupta et al. developed a D-
optimal design (DOD) algorithm, leveraging a Sequential Exchange Algorithm (SEA) for
strategic sensor positioning and orientation, proven versatile across different structures via
numerical examples [22]. Zhang advanced a C-optimal design (COD) method, utilising
a Sequential Reduction Algorithm (SRA) for precise sensor placement, aimed at mitigating
ill conditioning in mechanical systems [23–27].

Currently, there are relatively few studies on wind load identification for offshore wind
turbines, with existing studies focusing on the damage [28], stresses [29], and structural
response of wind turbine support structures under external excitation [30]. In his study,
Henderson employed a forward analysis approach to calculate the wind loads on offshore
wind turbines [31]. The research introduces a reverse calculation strategy to deduce wind
loads at the top of offshore wind turbine towers by analysing tower structure response data,
offering an effective alternative to direct measurements, particularly under real operational
conditions. This study advances the field of frequency-domain random dynamic load
identification by proposing a novel technique that utilises response point optimisation algo-
rithms and the Moore–Penrose pseudo-inverse method, thereby constructing mathematical
models with inherently lower degrees of ill posedness without relying on traditional regu-
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larisation methods. This approach not only improves load identification accuracy but also
significantly reduces the sensor count required, aligning with practical engineering needs.

This paper is structured as follows: Section 2 lays the theoretical foundation for wind
load identification at turbine tops. Section 3 details the construction of the mathematical
model for wind load identification on turbines. Section 4 introduces the method for creating
models with lower ill posedness via response point optimisation algorithms. Section 5
validates the feasibility of these algorithms through fatigue analysis of turbine tower
structures, utilising the wind load spectrum data derived in Section 4. Section 6 corroborates
the proposed method’s effectiveness and accuracy with additional numerical examples.
Finally, Section 7 summarises the study’s innovations, acknowledges its limitations, and
outlines avenues for future research.

2. Theory of Wind Load Identification for Offshore Wind Turbines
2.1. Frequency-Domain Dynamic Load Identification Theory

Fan blades are continuously exposed to wind loads in offshore jacket wind turbine
structures. We decompose these loads into components in six directions (Fx, Fy, Fz, Mx,
My and Mz) to enhance the precision of identifying wind loads on these structures. The
wind turbine tower structure is treated as a linear time-invariant system, characterised by
a linear relationship between the input (wind load) and the output (structural response).
This input-output relationship is articulated as follows [8].

Syy(ω) = H(ω) · Sxx(ω) · H
(

ω)H (1)

where H(ω) ∈ Cn×m symbolises the FRF matrix that encapsulates the physical interrelation
between the points of excitation under-identification and the points where responses
are measured. ω represent the frequencies. the superscript H represents the conjugate
transpose. Sxx(ω) ∈ Cm×m is the excitation power spectral density (PSD) matrix, and
Syy(ω) ∈ Cn×n is the response PSD matrix.

The relationship between the elements of the response PSD matrix Syy(ω) indicates
that this matrix is a Hermitian matrix. Matrix Syy(ω) can be expressed as follows, based on
the properties of Hermitian matrices [8].

Syy(ω) = ∑r
j=1 λj φj φ

H
j (2)

where λj and φj represent the j-th eigenvalue and eigenvector of the response PSD matrix
Syy(ω), respectively. r denotes the rank of the matrix Syy(ω).

The pseudo-response vector rj is constructed as shown in the following equation,
utilising each order of eigenpair [8].

rj =
√

λj φjeiωt (3)

where eiωt denotes a unit harmonic excitation. The response PSD matrix Syy(ω) can be
transformed as follows [8]:

Syy = ∑r
j=1 rjrH

j (4)

The pseudo-response vector rj constructed in Equation (4) can be regarded as gener-
ated by a pseudo-excitation vector lj [8]:

rj = Hlj (5)

Multiplying both sides of Equation (5) by H+ on the left yields the virtual excitation
vector lj:

lj = H+rj (6)
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where the superscript + denotes the generalised inversion. The excitation PSD matrix
Sxx(ω) can be derived as follows:

Sxx(ω) = ∑r
j=1 ljlH

j (7)

2.2. Ill Posedness of Systems of Linear Equations

Equation (5) is abstracted into an operator equation, Ax = y, to analyse the reasons
for the emergence of the ill-posed problem in the system of linear equations. Assuming the
coefficient matrix is error-free, the operator equation is reformulated due to the inevitable
noise present in data collected by sensors in practical scenarios, as follows [32]:

Ax + err = yδ (8)

where err is the error in the response data.
The singular value decomposition of A is performed as follows [32].

A = USVT = ∑n
i=1 uisivT

i (9)

where U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) are, respectively, filled with orthonor-
mal columns and satisfy UHU = VHV = I, I is the identity matrix. S = diag(s1, s2, . . . , sn)
is a non-negative real diagonal matrix, whose diagonal elements are called singular values
and are arranged in descending order.

If an inverse matrix exists for the coefficient matrix A, the external excitation can be
estimated by substituting Equation (9) into Equation (8) [32]:

xδ = x + ∑n
i=1 s−1

i

(
uT

i · err
)

vi (10)

In Equation (10), it is evident that errors in the identified excitation occur in two
primary domains: (1) smaller singular values result in larger perturbations; and (2) the
presence of noise in the response data contributes to a reduction in the accuracy of the
identified excitation.

For an operator equation Ax = y, the condition number of the coefficient matrix A can
serve as an indicator of the degree of ill-posedness, as follows [8].

cond(A) = ∥A∥ ·
∥∥A−1∥∥ (11)

where ∥A∥ represents the norm of A. Common norms include ∥A∥1 = max
1≤j≤n

∑n
i=1

∣∣aij
∣∣,

∥A∥2 =

√
λmax

(
ATA

)
, and ∥A∥∞ = max

1≤i≤n
∑n

j=1
∣∣aij

∣∣, where λmax

(
ATA

)
denotes the maxi-

mum eigenvalue of ATA. In this study, ∥A∥2 is utilised to calculate the condition number
of matrix A. The larger the condition number, the greater the ill posedness of the linear
system.

Another parameter used to assess the degree of ill posedness in a system of linear
equations is the determinant obtained through the computation of the transfer matrix A,
denoted as Det(A), as presented in Equation (12) [22]:

Det(A) =
∣∣AT × A

∣∣ (12)

where AT is the transpose matrix of the transfer matrix A. The larger Det(A) is, the less ill
conditioned the linear system becomes.

2.3. Methods for Linear Systems

For the system of linear equations Ax = y, if there exists an invertible matrix for A,
then x = A−1y. If there is no invertible matrix for A, then x = A+y. The superscript
‘+’ denotes the Moore–Penrose inverse of the matrix A [33]. The Moore–Penrose pseudo-
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inverse method is applicable to systems of linear equations that exhibit low levels of ill
posedness, whereas systems with severe ill posedness necessitate the use of regularisation
methods. From Equation (10), it is evident that the essence of regularisation methods lies in
manipulating the smaller singular values. Common direct regularisation methods include
TRM and TSVD. Regularisation involves the introduction of a regular operator to mitigate
the impact of small singular values.

The regularisation operator for the TRM [32] is

f (α, si) =
s2

i
α2 + s2

i
(13)

The corresponding regularisation is

xα,δ = ∑n
i=1

si
(
uT

i yδ
)

s2
i + α2

vi (14)

The regular operator for the TSVD method [18] is

f (α, s) =

{
1 s2 ≥ α

0 s2 < α
(15)

The corresponding regularisation is

xα,δ = ∑s2≥α
s−1

i

(
uT

i yδ
)

vi (16)

Both regularisation operators incorporate the regularisation parameter α. The correct
selection of the parameters α is crucial and is typically achieved using the L-curve [10] and
generalised cross-validation (GCV) criteria [34].

This section summarises five solution methods as follows, each of which has certain
limitations and needs to be selected based on the actual situation.

(1) Moore–Penrose pseudo-inverse method;
(2) TRM + L-curve: solving a system of linear equations using the TRM, where the

regularisation parameter is derived by the L-curve criterion;
(3) TRM + GCV: solving a system of linear equations using the TRM, where the regulari-

sation parameter is derived using the GCV criterion;
(4) TSVD + L-curve: solving a system of linear equations using the TSVD method, where

the regularisation parameter is derived using the L-curve criterion;
(5) TSVD + GCV: solving a system of linear equations using the TSVD method, where

the regularisation parameter is derived using the GCV criterion.

3. Mathematical Model for Dynamic Load Identification in the Frequency Domain
3.1. Determination of Sensor Orientation

Torsion at the top of a tower results in the distribution of shear stress along the
radial direction on the tower surface, as understood from material mechanics principles.
Intercepting a micro-element cross-section within the shaft forms a unit body approximated
as a positive hexahedron. The absence of stress on the element’s front and rear faces allows
for its projection onto a plane parallel to these faces, simplifying the representation of
the quadrilateral ABCD, as illustrated in Figure 1. In this configuration, the following
relationships hold [35]:

σx = σy = 0, τxy = τ (17)
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Figure 1. Stress distribution of a cylinder under a bending moment.

In the field of material mechanics, the following relationship is established through
the outcomes of a two-way stress state analysis [35]:

σ1
σ3

}
=

σx + σy

2
+

√
(

σx − σy

2
)2 + τ2

xy (18)

tan2α0 = −
2τxy

σx − σy
→ −∞ (19)

where α0 is the angle between the direction of the principal stress and the x-axis, which is
determined clockwise from the x-axis. σx, σy, and τxy are the transverse, longitudinal, and
shear stress components at a point, respectively.

Equation (19) is calculated: α0 = −45
◦

or −135
◦
.

The analyses show that the structural elements oriented at 45◦ and −45◦ to the axis
endure the maximal tensile and compressive stresses, respectively. Attaching resistive
strain gauges at a 45◦ angle to the inner surface of the tower enhances the precision of the
structure’s response. The orientation of the resistive strain gauge at a response point is
set to 0◦, 45◦, and −45◦ from the axis to enhance the accuracy of structural responses, as
illustrated in Figure 2c.

An offshore jacket wind turbine is composed of a jacket foundation, tower, and turbine
unit. Ideally, it is assumed that the structural response generated by wind loads at the top
of the tower is collected by strain sensors placed on the inner wall of the tower structure,
which does not align with reality. Both wave loads and wind loads acting on the surface
of the tower, as well as wind loads at the tower’s top, contribute to responses within the
tower segment, meaning the structural response captured by actual sensors results from
the combined effects of multiple loads. The influence of wave loads and wind loads acting
on the tower’s surface on the sensor-collected data is analysed below.
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(b) sensor arrangement in the circumferential direction; (c) sensor arrangement on the inner wall
of towers.

3.2. Analysis of the Effects of Wave Loading on Wind Turbine Structures

This investigation centred on a wind turbine in the South China Sea, anchored by
a jacket-frame foundation. This research aimed at the precise identification of wind loads
on this specific turbine, as illustrated in Figure 3. The turbine’s jacket foundation rises to
84.3 m, supported by a 15.6 m pile leg structure embedded in the seabed, while the tower
itself soars to a height of 72 m. The following analysis employs Ansys 2022 R1 to examine
the effects induced by wave loads.

First, a finite element model (FEM) of the wind turbine structure was created, as
depicted in Figure 3. The jacket frame and tower structures were established using shell
units, whereas the wind turbine unit was modelled with mass units on the shaft atop
the tower.

The joint probability distribution of wind and wave conditions for the specified
maritime region is depicted in Figure A1. Analysis of the table reveals the following
probabilities: a 29% likelihood for wind speeds under 8 m/s; 18.3% for wind speeds
exactly at 8 m/s; 18% for wind speeds of 10 m/s; 12.5% for wind speeds of 12 m/s; and
a 22.2% chance for wind speeds exceeding 12 m/s, with a minimal 0.3% probability for
extreme wind speeds surpassing 23 m/s. This study selects wind speeds of 8 m/s, 10 m/s,
and 12 m/s as the primary scenarios, given their highest probabilities within the joint
distribution. With a peak occurrence rate of 5.7% for a 12 m/s wind speed, this study
chooses corresponding wave parameters, featuring a wave height of 1.25 m and a period
of 4.25 s.
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The JONSWAP spectrum [36], a model designed to characterise the energy distribution
of sea waves, is employed. Utilising the chosen wave parameters, this study conducts wave
condition simulations within the Ansys Aqwa environment based on the JONSWAP spec-
trum for the defined maritime area. The calculated wave load was then applied to the FEM
of the entire wind turbine structure, initiating a transient dynamics analysis to determine
the structural response of the entire system under the wave load. The first principal strain
data for the six nodes of the tower structure is shown in Figure 4.

The strain range observed in the tower structure was 10−9–10−7 under wave loading.
It is noted that the structural response to wave loads decreases progressively towards the
upper sections of the tower. The impact of wave loading on the wind turbine tower’s
structural behaviour is considered negligible, due to resistance strain gauges’ limitation in
detecting strains smaller than 10−6.
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curve at Node C; (d) first principal strain versus time curve at Node D; (e) first principal strain versus
time curve at Node E; (f) first principal strain versus time curve at Node F.
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3.3. Effects of Wind Loads on Wind Turbine Tower Structures

The structural response of the tower in practical operation is commonly influenced
by the combined effects of wave loads, wind loads at the tower’s top, and wind loads on
the tower surface. This study simplifies the analysis by assuming the structural response
is primarily due to wind loads at the top. Preliminary analysis indicates that the impact
of wave loads on the structural response is relatively minor, and thus, it is neglected in
further studies. This section focuses on the impact of wind loads on the tower surface on
the structural response, conducting a detailed simulation analysis using Ansys software.

Winds within the atmospheric boundary layer near the Earth’s surface impact struc-
tures in two primary forms: mean winds and fluctuating winds. Mean winds, responsible
for static loads, can lead to wind-induced vibrations, vortex-induced vibrations, and sta-
bility issues under static conditions. Fluctuating winds, on the other hand, are key in
driving dynamic responses, notably in bridges. The velocity of wind within this layer
varies complexly with elevation due to the frictional effects of surface roughness, showing
an increase in mean velocity with altitude. Dynamic factors like surface roughness and
thermal factors such as atmospheric stability, which are often represented by logarithmic or
exponential profiles, intricately affect this vertical distribution of mean wind velocity [37,38].
In the surface layer, which reaches up to 300 m above ground, variations in shear stress
are deemed negligible, simplifying the representation of the wind velocity profile to the
following relationship [39]:

U(z) =
u∗
k

[
ln(

z
z0
) + 5.75

z
zg

]
(20)

where U(z) is the mean wind speed at height z above the ground, u∗ is the friction velocity,
u∗ = 0.775 m/s, k is the Karman constant, k ≈ 0.4, z0 is the ground roughness length, and
z0 = 0.01, zg is the gradient height, it can be considered that the wind velocity assumes
a constant value when the altitude exceeds the gradient height. zg = 0.175u∗/ fc, fc
is the Coriolis constant, fc = 2ωsinΦ, ω is the angular velocity of Earth’s rotation,
ω = 7.27 × 10−5 rad/s, and Φ is the latitude.

The nature of wind inflow is intrinsically time-variant, and spectral methods are preva-
lently utilised to simulate the temporal fluctuations in inflow characteristics. Employing
empirical wind field data sourced from coastal regions in China, the subsequent horizontal
fluctuating wind speed spectrum is proposed for modelling the temporal variations in
wind velocity [40]:

nSu(n)
σ2

u
=

23.41 f(
1 + 30.63 f )5/3 (21)

where Su(n) is the horizontal wind speed power spectrum, n is the frequency, σu is the
horizontal pulsating wind speed root variance, σ2

u = 0.05 + 1.26u2
∗, f = nz/U is the

dimensionless frequency (also known as the Monin similarity coordinate), and U is the
mean wind speed.

The computational domain’s dimensions were meticulously defined for simulations
with Ansys Fluent 2022 R1, as illustrated in Figure 5a, to closely mimic realistic environ-
mental conditions. The domain’s extensive span of 3000 m in length, 1600 m in width, and
1500 m in height, with 500 m upstream and 2500 m downstream, was chosen based on
preliminary tests to ensure minimal boundary effects on the simulation results. Figure 5b–d
showcase the finite volume models, illustrating a comprehensive approach to capturing
the complex fluid dynamics around the turbine. The inlet wind speed, crucial for accurate
load simulation, was determined using Equations (20) and (21). Simulations conducted at
a granular 0.01 s time step over 100 s offered high-resolution insights into the wind load
dynamics. Post-processing involved considering the tower’s top generator set and fan
blades as a mass point to streamline the analysis without compromising accuracy.
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of finite volume grid in the computational domain.

A fundamental assumption of this study is that the tower structure is primarily
influenced by wind loads at the top of the tower. Two sets of transient dynamic analyses
were conducted to verify this hypothesis in Ansys. In the first set, the wind loads in the
six directions extracted in the previous step were applied to the mass point at the top of the
tower, along with the pressure from the wind field applied to the surface of the tower. In
the second set, the wind loads in the six directions were applied solely to the mass point at
the top of the tower.

The tower structure was segmented into four parts: windward, leeward, and two side-
ward surfaces in this study. Nodes 1 to 6 represent the 6 nodes on the windward face
arranged from top to bottom, Nodes 7 to 12 correspond to the sideward face 1 in the same
top-down arrangement, Nodes 13 to 18 for the leeward face, and Nodes 19 to 24 for the
sideward face 2. This research compared two sets of data to assess the simulation of the
tower structure’s response: the first set provides a more comprehensive structural response,
whereas the second offers a simplified version. Given the preference for simplified data
processing methods in practical engineering applications, this study explored the feasibility
of substituting the first set of data with the second. The difference obtained by subtracting
the second set of data from the first was considered noise, and this study further analysed
its proportion relative to the first set. The noise level was assessed using the signal-to-noise
ratio (SNR), which is the ratio of signal power to noise power, measured in decibels (dB).
A higher SNR indicates lesser noise within the signal. The calculated SNR values for the
24 nodes are shown in Table 1, where the second column represents the SNR values for the
structural response in the direction parallel to the axis, the third column for the response at
a 45 angle to the axis, and the fourth column for the response at a −45 angle.

Overall, the SNR values span approximately from 24 dB to 56 dB, with the minimum
SNR value being 24.7581 dB, observed in the direction at a 45◦ angle to the axis at Node 12;
the maximum SNR value reaches 56.9636 dB, noted in the direction parallel to the axis at
Node 16. There is a general tendency for the SNR to increase with elevation, examining the
trend along the height of the tower. This pattern suggests that the structural responses in
the lower regions of the tower are more influenced by wind loads on the tower’s surface,
indicating a higher contribution of surface wind loads to the structural response in these
areas. Conversely, the top regions of the tower are less affected by surface wind loads.
Observing from the perspective of sensor orientation, the SNR values in directions parallel
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to the tower’s axis are higher than those in the other two directions, indicating lower noise
levels and a reduced impact of surface wind loads in the axial direction.

Table 1. Signal-to-noise ratio of six nodes.

Node Number SNR (dB) SNR (dB) SNR (dB)

Node 1 39.0920 38.8284 39.9995
Node 2 52.2057 37.0709 32.1821
Node 3 52.7516 37.7086 33.5127
Node 4 50.9226 36.7145 32.8440
Node 5 50.8579 38.9891 35.6809
Node 6 50.7789 40.1269 37.3964
Node 7 52.4072 41.6726 50.6944
Node 8 52.7076 33.0891 44.4267
Node 9 49.7327 27.8918 40.9444
Node 10 47.3923 27.9521 40.2653
Node 11 44.9178 26.0324 40.7441
Node 12 43.7101 24.7581 40.8920
Node 13 47.6613 38.2679 43.3208
Node 14 55.9286 36.2682 40.8216
Node 15 56.9565 39.3064 42.9643
Node 16 56.9636 39.5892 41.6206
Node 17 56.3502 42.3164 44.4427
Node 18 55.9141 43.9866 46.2169
Node 19 43.6565 39.7544 43.4904
Node 20 37.4465 34.2639 36.1277
Node 21 29.7839 32.0071 31.5327
Node 22 33.4227 34.3829 31.2402
Node 23 33.9734 35.4146 30.3160
Node 24 33.9923 36.1781 29.2770

3.4. Determination of Initial Sensor Position

The analysis clearly demonstrates a reduction in the noise levels within the measured
structural response data as the placement of the sensors ascends towards the tower’s upper,
as initially depicted in Figure 2. The tower, standing at a height of 72 m, required a careful
strategy to minimise the effects of both wave and wind loads on its structural integrity.
Consequently, sensors were methodically arranged at vertical intervals of 3 m, starting
from a height of 24 m up to the tower’s full height of 72 m. At each specified level, the
sensors were uniformly distributed in a circumferential pattern at intervals of 15 degrees,
resulting in a configuration of 24 sensors for each circular layer. This comprehensive setup
resulted in a total of 16 sensor layers, culminating in an extensive network of 1152 sensors.

3.5. Mathematical Modelling and Analysis of the Effects of Load Identification

The process of constructing a wind load identification model for wind turbines is
illustrated through the following steps, using the structure described above as an example.

Step 1: Analyses in Section 3.3 indicate that offshore wind turbines primarily face
aerodynamic blade loads during actual operations. This study adopted GH Bladed 4.3,
renowned for its foundation in blade momentum theory, for the aerodynamic load analysis
of offshore wind turbines, due to the slow calculation speed of Ansys Fluent software. GH
Bladed demands inputs like blade specifications, airfoil details, tower characteristics, gen-
erator set properties, and wind conditions for accurate calculations. The model parameters
of the blades are listed in Table 2.
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Table 2. Geometric parameters of blades.

Distance from Root
(m)

Chord
(m)

Twist
(deg)

Thickness
(%)

Pitch Axis
(%)

Foil Section
Number

0 2.90 20 99.99 50.00 1
10 3.82 12.28 65.85 50.85 1
20 4.29 6.91 36.28 47.75 2
30 3.41 3.57 32.76 43.21 2
40 2.63 1.20 31.19 39.87 2
50 2.06 −0.49 29.67 37.28 3
60 1.61 −1.43 26.83 36.99 3
70 1.17 −0.28 22.27 37.76 4

78.9 0.05 2.54 21.00 49.20 4

The graphs depicting the variations in the lift and drag coefficients with respect to the
angle of attack (AOA) for the four airfoil cross-sections outlined in Table 2 are presented in
Figure 6.
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Figure 6. Airfoil characteristic curve. (a) No. 1 airfoil characteristic curve, Re = 2 × 10; (b) No. 2 
airfoil characteristic curve, Re = 8 × 10; (c) No. 3 airfoil characteristic curve, Re = 8 × 10; (d) No. 
4 airfoil characteristic curve, Re = 6 × 10. 
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The complexity of the airflow around offshore wind turbines necessitates selecting a 
suitable turbulence model. This study used the GH Bladed software, opting for the im-
proved von Karman model’s longitudinal component. Table 4 lists the model’s parame-
ters, specific to the project’s location. 

  

Figure 6. Airfoil characteristic curve. (a) No. 1 airfoil characteristic curve, Re = 2 × 106; (b) No. 2
airfoil characteristic curve, Re = 8 × 106; (c) No. 3 airfoil characteristic curve, Re = 8 × 106; (d) No. 4
airfoil characteristic curve, Re = 6 × 106.

The mass and stiffness parameters of the blades are shown in Table 3.
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Table 3. Mass and stiffness parameters of blades.

Distance from Root
(m)

Centre of
Mass (x’)

(%)

Centre of
Mass (y’)

(%)

Mass Axis
Orientation

(deg)

Radius of
Gyration Ratio

0 0.00 50.01 0.00 1.00
10 −0.09 49.74 19.35 0.83
20 −0.28 47.65 10.28 0.56
30 −0.75 44.75 7.44 0.54
40 −0.79 42.26 4.59 0.50
50 −0.88 40.20 2.34 0.49
60 0.09 40.12 0.61 0.45
70 2.86 40.08 1.29 0.38

78.9 2.53 49.53 3.04 0.20

The complexity of the airflow around offshore wind turbines necessitates selecting
a suitable turbulence model. This study used the GH Bladed software, opting for the im-
proved von Karman model’s longitudinal component. Table 4 lists the model’s parameters,
specific to the project’s location.

Table 4. von Karman spectrum calculation parameters.

Parameter Value

Latitude (deg) 34
Surface roughness 0.01

Average wind speed (m/s) 8
Angular velocity of earth’s rotation (rad/s) 7.292 × 10−5

Height of hub centre of wind turbine (m) 103

The time-course curve for the wind loads was computed following the outlined proce-
dures. This calculation was conducted with an average wind speed of 8 m/s, a duration of
600 s, and a time step of 0.02 s, as illustrated in Figure 7.

Step 2: The wind load components (Fx, Fy, Fz, Mx, My, and Mz) were imposed on
the mass cell utilising Ansys software, initiating transient dynamics calculations on the
structure to extract stress-time data at specific nodes. The stress data parallel to the axial
direction of the tower are denoted as y1(t), y2(t), · · · , y384(t), the data at a −45◦ angle
to the axial direction are represented as y385(t), y386(t), · · · , y768(t), and the data at a 45◦

angle to the axial direction are denoted as y769(t), y770(t), · · · , y1152(t). Autocorrelation
and cross-correlation functions were computed for these datasets, followed by a Fourier
transformation based on the Wiener–Sinchin theorem [41] on the resultant outcomes to
derive the spectral matrix of the response of the structure. For example, the autocorrelation
and cross-correlation functions were calculated for y1(t) and y2(t), and a Fourier transform
was applied to obtain Sy1 , Sy2 , Sy1y2 , and Sy2y1 . Their positions in the response spectrum
matrix Syy were designated as (1,1), (2,2), (1,2), and (2,1), respectively.

Step 3: Harmonic response analyses were conducted using ANSYS software, where
six distinct unit load components were applied individually to the mass unit. The real
and imaginary parts of the micro-strain response generated by the structure at the moni-
toring point locations for each frequency were extracted and amalgamated into complex
numbers. The responses at the monitoring site were denoted as Hy1x1 , Hy2x1 , · · · Hy1152x1

(Fx direction), Hy1x2 , Hy2x2 , · · · Hy1152x2(Fy direction), Hy1x3 , Hy2x3 , · · · Hy1152x3 (Fz direction),
Hy1x4 , Hy2x4 , · · · Hy1152x4 (Mx direction), Hy1x5 , Hy2x5 , · · · Hy1152x5 (My direction), and Hy1x6 ,
Hy2x6 , · · · Hy1152x6 (Mz direction). A frequency response function matrix H, with dimensions
of 1152×6, was constructed by employing the combination rule outlined in Step 2.
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Step 4: Five distinct inverse methods were applied to calculate the wind loads in
Equation (22). Each method offers unique advantages in addressing ill-posed problems
and improving solution stability. A comparative analysis was conducted to identify the
most effective approach for the specific application. The optimal method was selected
based on its overall performance across these criteria, ensuring the most reliable wind
load computation.

Sy1152y1152
= Hy1152x6 × Sxx × Hy1152x6

H (22)
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Figure 7. Time history of aerodynamic load (wind speed = 8 m/s). (a) Time history of concentrated 
force at the top of the tower; (b) time history of concentrated moment at the top of the tower. 
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Figure 7. Time history of aerodynamic load (wind speed = 8 m/s). (a) Time history of concentrated
force at the top of the tower; (b) time history of concentrated moment at the top of the tower.

TRM + L-curve was used to solve Equation (22), and the load identification results are
presented in Figure 8.
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Figure 8. Load identification of the TRM + L-curve. (a) Power spectral density curve of original load
and identified load in Fx direction; (b) power spectral density curve of original load and identified
load in Fy direction; (c) power spectral density curve of original load and identified load in Fz

direction; (d) power spectral density curve of original load and identified load in Mx direction;
(e) power spectral density curve of original load and identified load in My direction; (f) power
spectral density curve of original load and identified load in Mz direction.

The preceding analysis led to the assumption that the wave load had a negligible
effect on the sensor-monitored data from the tower structure. However, the wind load
directly impacting the tower surface influenced the sensor-monitored data, with SNR values
ranging approximately between 30 and 50 dB, approaching 40 dB. Additionally, the sensors
themselves contributed to the overall noise. Gaussian white noise [42] was introduced to
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the structural response data from the finite element calculations, with the SNR set at 30 dB,
to enhance the realism of the simulation experiments. Figure 9 illustrates that the load
spectra were accurately identified in the Fx and Fy directions, yet identification was less
effective in the Fz, Mx, My, and Mz directions. This observation indicates the inefficacy of
the TRM + L-curve method for the given load identification mathematical model.
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TSVD + L-curve was used to solve Equation (22), and the load identification results 
are presented in Figure 10. 
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Figure 9. Load identification of TRM + GCV. (a) Power spectral density curve of original load and
identified load in Fx direction; (b) power spectral density curve of original load and identified load
in Fy direction; (c) power spectral density curve of original load and identified load in Fz direction;
(d) power spectral density curve of original load and identified load in Mx direction; (e) power
spectral density curve of original load and identified load in My direction; (f) power spectral density
curve of original load and identified load in Mz direction.
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TRM + GCV was used to solve Equation (22), and the load identification results are
shown in Figure 9.

TSVD + L-curve was used to solve Equation (22), and the load identification results
are presented in Figure 10.
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TSVD + L-curve was used to solve Equation (22), and the load identification results 
are presented in Figure 10. 
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The identified load spectra in the 𝐹௫ and 𝐹௬ directions were closely aligned with the 
initial wind load spectra, revealing a higher accuracy in load identification. However, in 
the 𝐹௭ direction, there was a noticeable deviation between the identified and initial load 
spectra. In the 𝑀௫, 𝑀௬, and 𝑀௭ directions, the identified load spectra exhibited signifi-
cant disparities from the initial wind load spectra. This disparity was particularly pro-
nounced around 0.5 Hz and 1.0 Hz, corresponding to peaks in the actual wind load spec-
trum. Notably, there was a substantial gap between the identified load and initial wind 
load spectra during these peak frequencies. Overall, the load spectrum identified using 
the TSVD + L-curve solution method lacked accuracy. 

TSVD + GCV was used to solve Equation (22), and the load identification results are 
presented in Figure 11. 

Figure 10. Load identification of TSVD+L-curve. (a) Power spectral density curve of original load and
identified load in Fx direction; (b) power spectral density curve of original load and identified load
in Fy direction; (c) power spectral density curve of original load and identified load in Fz direction;
(d) power spectral density curve of original load and identified load in Mx direction; (e) power
spectral density curve of original load and identified load in My direction; (f) power spectral density
curve of original load and identified load in Mz direction.
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The identified load spectra in the Fx and Fy directions were closely aligned with the
initial wind load spectra, revealing a higher accuracy in load identification. However, in
the Fz direction, there was a noticeable deviation between the identified and initial load
spectra. In the Mx, My, and Mz directions, the identified load spectra exhibited significant
disparities from the initial wind load spectra. This disparity was particularly pronounced
around 0.5 Hz and 1.0 Hz, corresponding to peaks in the actual wind load spectrum.
Notably, there was a substantial gap between the identified load and initial wind load
spectra during these peak frequencies. Overall, the load spectrum identified using the
TSVD + L-curve solution method lacked accuracy.

TSVD + GCV was used to solve Equation (22), and the load identification results are
presented in Figure 11.

In the Fx and Fy directions, the identified load spectra exhibited a strong correspon-
dence, particularly in the 0.5 Hz region, where the initial wind load spectrum peaked.
This resulted in effective overall identification. Conversely, in the Fz direction, there was
a noticeable deviation between the identified load and initial wind load profiles, primarily
observed in the frequency range from 0.5 to 2 Hz, where the power of the load profiles was
comparatively lower. For the Mx and Mz directions, the identified load profiles demon-
strated high overall accuracy, although a slight decrease in accuracy occurred around 0.5 Hz
and 1.0 Hz. However, the My direction generally exhibited poor performance with low
accuracy in the identified load spectrum. In conclusion, the TSVD + GCV solution method
proved unsuitable.

The Moore–Penrose pseudo-inverse method was used to solve Equation (22), and the
load identification results are presented in Figure 12.

In the Fx, Fy, Mx, My, and Mz directions, the identified load spectra closely resembled
the actual load spectra, revealing a high level of accuracy in load identification. However, in
the Fz direction, load identification was less effective, as is evident in the power spectrum in
Figure 12. The power spectrum in the Fz direction had an order of magnitude represented
by 109, significantly differing from the magnitudes observed in the other five directions.
Although the load identification in this direction was suboptimal, its impact on the overall
accuracy was minimal. The Moore–Penrose inverse method exhibited excellent solution
accuracy and noise immunity within the context of this mathematical model.

MAE(X, h) =
1
m∑m

i=1 |h(xi)− yi| (23)

Mean absolute error (MAE) denotes the average of the absolute errors between the
predicted and initial values [43], as shown in Equation (23). A comparative analysis,
utilising Mean absolute error (MAE) as the evaluation criterion and detailed in Table 5, was
conducted to discern the optimal solution method among the five options.

The analysis of data from Table 5 and Figure 12 reveals that in the Fx and Fy directions,
where the original load spectrum peaks were of magnitude 1010, the Moore–Penrose
pseudo-inverse method exhibited identification errors of magnitude 107, which were lower
than the errors from the other four methods. In the Fz direction, with original load spectrum
peaks of magnitude 109, the identification errors of the Moore–Penrose pseudo-inverse
method, of magnitude 107, were comparable to those of the other four methods. For the
Mx direction, where the original load spectrum peaks were of magnitude 1011, the Moore–
Penrose pseudo-inverse method’s identification errors, of magnitude 107, were lower than
those of the other methods. Furthermore, in the My and Mz directions, with original
load spectrum peaks of magnitude 1012, the identification errors of the Moore–Penrose
pseudo-inverse method, of magnitude 109, were significantly lower than those of the other
four methods. Overall, the magnitude of identification errors from the Moore–Penrose
pseudo-inverse method was 2 to 3 orders lower than the magnitude of the original load
spectrum peaks. This finding indicates that the Moore–Penrose pseudo-inverse method
offers enhanced accuracy and stability within the mathematical model developed for
this study.
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Figure 11. Load identification of TSVD + GCV. (a) Power spectral density curve of original load and 
identified load in 𝐹௫ direction; (b) power spectral density curve of original load and identified load 
in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ direction; 
(d) power spectral density curve of original load and identified load in 𝑀௫  direction; (e) power 
spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spectral den-
sity curve of original load and identified load in 𝑀௭ direction. 

In the 𝐹௫  and 𝐹௬  directions, the identified load spectra exhibited a strong corre-
spondence, particularly in the 0.5 Hz region, where the initial wind load spectrum peaked. 
This resulted in effective overall identification. Conversely, in the 𝐹௭ direction, there was 
a noticeable deviation between the identified load and initial wind load profiles, primarily 
observed in the frequency range from 0.5 to 2 Hz, where the power of the load profiles 
was comparatively lower. For the 𝑀௫ and 𝑀௭  directions, the identified load profiles 
demonstrated high overall accuracy, although a slight decrease in accuracy occurred 

Figure 11. Load identification of TSVD + GCV. (a) Power spectral density curve of original load and
identified load in Fx direction; (b) power spectral density curve of original load and identified load
in Fy direction; (c) power spectral density curve of original load and identified load in Fz direction;
(d) power spectral density curve of original load and identified load in Mx direction; (e) power
spectral density curve of original load and identified load in My direction; (f) power spectral density
curve of original load and identified load in Mz direction.
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Figure 12. Load identification of Moore–Penrose. (a) Power spectral density curve of original load 
and identified load in 𝐹௫ direction; (b) Power spectral density curve of original load and identified 
load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ di-
rection; (d) power spectral density curve of original load and identified load in 𝑀௫ direction; (e) 
power spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spectral 
density curve of original load and identified load in 𝑀௭ direction. 

In the 𝐹௫, 𝐹௬, 𝑀௫, 𝑀௬, and 𝑀௭ directions, the identified load spectra closely resem-
bled the actual load spectra, revealing a high level of accuracy in load identification. How-
ever, in the 𝐹௭ direction, load identification was less effective, as is evident in the power 

Figure 12. Load identification of Moore–Penrose. (a) Power spectral density curve of original load and
identified load in Fx direction; (b) Power spectral density curve of original load and identified load
in Fy direction; (c) power spectral density curve of original load and identified load in Fz direction;
(d) power spectral density curve of original load and identified load in Mx direction; (e) power
spectral density curve of original load and identified load in My direction; (f) power spectral density
curve of original load and identified load in Mz direction.
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Table 5. Mean absolute error of five solving methods.

Component TRM +
L-Curve

TRM +
GCV

TSVD+
L-Curve

TSVD +
GCV Moore–Penrose

Fx (N2/Hz) 6.60 × 108 1.23 × 108 6.24 × 108 2.12 × 108 2.68 × 107

Fy (N2/Hz) 4.91 × 107 2.65 × 107 8.58 × 107 2.24 × 107 1.42 × 107

Fz (N2/Hz) 2.09 × 108 6.33 × 107 9.02 × 107 6.46 × 107 8.08 × 107

Mx (
(
N · m)2/Hz ) 8.44 × 109 5.01 × 109 6.27 × 109 2.89 × 109 8.28 × 108

My (
(
N · m)2/Hz )) 3.44 × 1011 2.16 × 1011 2.88 × 1011 2.68 × 1011 9.74 × 109

Mz (
(
N · m)2/Hz )) 4.46 × 1011 1.17 × 1011 2.16 × 1011 1.14 × 1011 6.61 × 109

4. Sensor Arrangement Optimisation Methods

The Moore–Penrose pseudo-inverse method enhances load identification accuracy, yet
optimising sensor arrangements is crucial due to the extensive sensor data in engineering.
This study identified inefficient data points within the linear equation system for removal.
Both COD and DOD methods were used for sensor optimisation. This led to a reduction in
sensors from 1152 to 6. The COD method simplifies matrix conditions measurement, using
a SRA to efficiently filter matrices, as detailed below [44]:

(1) For the variation in the condition number of Hn×m in the initial mathematical model,
as shown in Figure 13, the frequency response function matrix corresponding to the
maximum condition number is selected. For this frequency response function matrix
Hn×m, compute all its remaining matrices to obtain H1

(n−1)×m, H2
(n−1)×m,..., and

Hn
(n−1)×m.

(2) Calculate all remaining condition numbers of the matrix Hn×m, that is, the condition
numbers of H1

(n−1)×m, H2
(n−1)×m,..., and Hn

(n−1)×m.
(3) Select the residual matrix corresponding to the smallest number of residual conditions;

that is, the matrix Hn×m becomes H(n−2)×m, completing the first reduction.
(4) Calculate all remaining condition numbers of the matrix H(n−1)×m, that is, the condi-

tion numbers of H1
(n−2)×m, H2

(n−2)×m, . . ., and Hn
(n−2)×m.

(5) Select the residual matrix corresponding to the smallest residual condition number;
that is, the matrix H(n−1)×m becomes H(n−2)×m, completing the second reduction.

(6) This continues until the matrix Hn×m is reduced to Hp×m. The change in the frequency
response function matrix condition number as the number of reductions increases is
shown in Figure 14. As shown in this figure, the condition number decreased from
more than 500 to approximately 15, showing an obvious change.

(7) Compare matrix Hp×m with matrix Hn×m to determine the final measurement point
location. The final locations of the measurement points are shown in Figure 15b.
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Figure 15. Optimised measurement point position. (a) Optimised sensor placement by the D-optimal
design; (b) optimised sensor placement by the C-optimal design.

The variation of the condition number of the optimised frequency response function
matrix with frequency is illustrated in Figure 16. The maximum condition number of the
matrix optimised by the COD method is 23.32, which represents a significant reduction of
486.26 from the condition number of the unoptimised matrix. This substantial decrease
highlights the COD method’s effectiveness in reducing the condition number of the fre-
quency response function matrix, playing a pivotal role in optimising sensor placements.
The reduced condition number indicates improved numerical stability and potential for
more accurate inversion results, which is crucial for reliable load identification.
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The wind load spectrum identification mathematical model, constructed using the
optimised frequency response function matrix and the corresponding structural response
spectrum matrix, is presented in Equation (24). This model integrates the enhancements
achieved through the COD method, aiming to provide a more robust framework for
accurately determining wind loads based on optimised sensor data.

Sy6y6
= Hy6x6 × Sxx × Hy6x6

H (24)

The Moore–Penrose pseudo-inverse method was used to solve Equation (24), and the
load identification results are presented in Figure 17.

In the Fx, Fy, Mx, My, and Mz directions, the identified load spectrum largely aligns
with the original load spectrum, with a notable exception in the Fz direction, where a devia-
tion from the original spectrum was observed. The overall accuracy of the identified wind
load spectrum remains high, given the lower magnitude of the load spectrum in the Fz
direction compared to the other five directions. This high degree of accuracy underscores
the efficacy of the optimised sensor placement scheme in precisely identifying the wind
load spectrum imposed on the wind turbine tower structure. It also highlights the pivotal
role played by the COD method in optimising the sensor arrangement, ensuring that even
with a reduced number of sensors, critical load components can be accurately captured.

The DOD method enhances the accuracy of the inverse by maximising
∣∣HT

n×m ×Hn×m
∣∣

through a SEA. In the mathematical model presented in this section, Hn×m is a complex
matrix, posing a challenge for traditional DOD in efficiently filtering out row vectors in
Hn×m. Modifying the objective function of DOD to reflect the condition number of the
matrix Hn×m is imperative to address this limitation [25]. The aim is to minimise the
condition number of the matrix Hn×m through a SEA, thereby improving the accuracy of
load identification. The detailed execution process of DOD is outlined below [22].

(1) Select the frequency response function matrix corresponding to the peak of the con-
dition number in Figure 13 and randomly select m rows in this frequency response
function matrix Hn×m to obtain the initial matrix Hm×m and the remaining matrix
H(n−m)×m.

(2) Select a row from the remaining matrix H(n−m)×m and add it to Hm×m to obtain the
expanded matrix H(m+1)×m. There are (n–m) expanded matrices H(m+1)×m in total.

(3) Calculate the condition numbers of all the expanded matrices and obtain the expanded
matrix H(m+1)×m corresponding to the minimum condition number.

(4) Delete one row from the expanded matrix H(m+1)×m to obtain the original dimension
matrix Hm×m. There are (m + 1) original dimension matrices Hm×m in total.

(5) Calculate the condition numbers of all the original dimension matrices Hm×m to
obtain the original dimension matrix Hm×m corresponding to the minimum condition
number.

(6) Steps (2)–(4) are the exchanges of measurement point positions. Repeat steps (2)–(4)
until the number of conditions is no longer reduced, or the number of sequential
exchanges is defined artificially, and the loop is jumped out when the number of runs
is achieved. The entire process is shown in Figure 18.

(7) Compare the final matrix Hm×m with the total matrix Hn×m to determine the location
of the final measurement point. The final location of the measurement point is shown
in Figure 15a.

Figure 19 shows how the condition number of the frequency response function matrix,
optimised using the DOD method, varies with frequency. From the figure, it can be
observed that after optimisation using the DOD method, the maximum condition number
of the frequency response function matrix was reduced to 346.19, which is a decrease of
163.39 from the maximum condition number before optimisation. This indicates that the
DOD method can optimise the frequency response function matrix to a certain extent;
however, the optimisation effect is not as significant as that achieved by the COD method.



J. Mar. Sci. Eng. 2024, 12, 563 25 of 40
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 24 of 40 
 

 

0.5 1.0 1.5 2.0
0.0

1.0

2.0

3.0

4.0

5.0
×1010

PS
D

(N
2 /H

z)

Frequency (Hz)

 Fx(Initial)
 Fx(SNR=30 dB)

 
0.5 1.0 1.5 2.0

0.0

1.3

2.6

3.9

5.2

6.5
×1010

PS
D

(N
2 /H

z)

Frequency (Hz)

 Fy(Initial)
 Fy(SNR=30 dB)

 
(a) (b) 

0.5 1.0 1.5 2.0
0.0

0.4

0.8

1.2

1.6

2.1
×109

PS
D

(N
2 /H

z)

Frequency (Hz)

 Fz(Initial)
 Fz(SNR=30 dB)

 
0.5 1.0 1.5 2.0

0.0

0.5

0.9

1.4

1.8

2.3
×1011

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 Mx(Initial)
 Mx(SNR=30 dB)

 
(c) (d) 

0.5 1.0 1.5 2.0
0.0

0.4

0.8

1.2

1.6

2.1
×1012

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 My(Initial)
 My(SNR=30 dB)

 
0.5 1.0 1.5 2.0

0.0

1.3

2.6

3.9

5.2

6.5
×1012

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 Mz(Initial)
 Mz(SNR=30 dB)

 
(e) (f) 

Figure 17. Load identification for C-optimal design. (a) Power spectral density curve of original load 
and identified load in 𝐹௫ direction; (b) power spectral density curve of original load and identified 
load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ di-
rection; (d) power spectral density curve of original load and identified load in 𝑀௫ direction; (e) 
power spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spectral 
density curve of original load and identified load in 𝑀௭ direction. 

The DOD method enhances the accuracy of the inverse by maximising |𝐇𝐓𝐧×𝐦 ×𝐇𝐧×𝐦|  through a SEA. In the mathematical model presented in this section, 𝐇𝐧×𝐦  is a 
complex matrix, posing a challenge for traditional DOD in efficiently filtering out row 
vectors in 𝐇𝐧×𝐦. Modifying the objective function of DOD to reflect the condition number 
of the matrix 𝐇𝐧×𝐦 is imperative to address this limitation [25]. The aim is to minimise 
the condition number of the matrix 𝐇𝐧×𝐦 through a SEA, thereby improving the accuracy 
of load identification. The detailed execution process of DOD is outlined below [22]. 
(1) Select the frequency response function matrix corresponding to the peak of the con-

dition number in Figure 13 and randomly select m rows in this frequency response 

Figure 17. Load identification for C-optimal design. (a) Power spectral density curve of original load
and identified load in Fx direction; (b) power spectral density curve of original load and identified
load in Fy direction; (c) power spectral density curve of original load and identified load in Fz

direction; (d) power spectral density curve of original load and identified load in Mx direction;
(e) power spectral density curve of original load and identified load in My direction; (f) power
spectral density curve of original load and identified load in Mz direction.
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Figure 19 shows how the condition number of the frequency response function ma-
trix, optimised using the DOD method, varies with frequency. From the figure, it can be 
observed that after optimisation using the DOD method, the maximum condition number 
of the frequency response function matrix was reduced to 346.19, which is a decrease of 
163.39 from the maximum condition number before optimisation. This indicates that the 
DOD method can optimise the frequency response function matrix to a certain extent; 
however, the optimisation effect is not as significant as that achieved by the COD method. 
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Figure 19 shows how the condition number of the frequency response function ma-
trix, optimised using the DOD method, varies with frequency. From the figure, it can be 
observed that after optimisation using the DOD method, the maximum condition number 
of the frequency response function matrix was reduced to 346.19, which is a decrease of 
163.39 from the maximum condition number before optimisation. This indicates that the 
DOD method can optimise the frequency response function matrix to a certain extent; 
however, the optimisation effect is not as significant as that achieved by the COD method. 
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Figure 19. Change in the condition number of the frequency response function matrix after D-opti-
mal design. 

Figure 19. Change in the condition number of the frequency response function matrix after D-
optimal design.

The load identification results for the optimised mathematical model using the DOD
method were obtained using the Moore–Penrose pseudo-inverse method and are presented
in Figure 20.

As illustrated in Figure 20, the DOD method demonstrated satisfactory accuracy in
the directions Fx, Fy, My, and Mz. However, significant discrepancies were observed in the
load spectra identified in the Fz and Mx directions when employing the DOD-optimised
mathematical model, exhibiting errors substantially greater than those encountered with
the COD method. MAE was adopted as the criterion for evaluating load identification
accuracy to facilitate a more rigorous comparison between these two sensor arrangement
optimisation algorithms. Table 6 presents the load identification errors both prior to and
subsequent to the application of the sensor arrangement optimisation algorithm.

The data in Tables 5 and 6 are graphically represented as histograms in Figure 21.
As shown in Table 6 and Figure 21, the load identification errors in the directions of

Fx, Fy, Fz, and Mx increased after optimisation using both the COD and DOD methods.
However, the COD method performed better than the DOD method, and the optimised
load identification errors were still significantly lower than the peak values of the original
load spectra in these four directions. Although the use of the COD method resulted
in a slight decrease in load identification accuracy in the directions of Fx, Fy, Fz, and
Mx, considering the improvement in the identification accuracy in the directions with
the highest magnitudes of the original load spectra peaks, My and Mz, the overall load
identification accuracy remained at the same level as before optimisation. The DOD method
introduced a level of randomness, resulting in different outcomes with each optimisation
iteration. The COD method was selected as the sensor placement optimisation algorithm,
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based on overall performance considerations. Furthermore, the COD method significantly
reduced the number of sensors. The initial sensor placement involved 1152 sensors, while
the optimised arrangement utilised only 6, and the total number of sensors is 0.5% of the
initial number, proving to be very practical for real-world engineering applications.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 26 of 40 
 

 

The load identification results for the optimised mathematical model using the DOD 
method were obtained using the Moore–Penrose pseudo-inverse method and are pre-
sented in Figure 20. 

0.5 1.0 1.5 2.0
0.0

1.0

2.0

3.0

4.0

5.0
×1010

PS
D

(m
2 /H

z)

Frequency (Hz)

 Fx(Initial)
 Fx(SNR=30 dB)

 
0.5 1.0 1.5 2.0

0.0

1.4

2.8

4.2

5.6

7.0
×1010

PS
D

(N
2 /H

z)
Frequency (Hz)

 Fy(Initial)
 Fy(SNR=30 dB)

 
(a) (b) 

0.5 1.0 1.5 2.0
0.0

0.7

1.3

2.0

2.6

3.3
×109

PS
D

(N
2 /H

z)

Frequency (Hz)

 Fz(Initial)
 Fz(SNR=30 dB)

 
0.45 0.90 1.35 1.80

0.0

0.7

1.3

2.0

2.7

3.4
×1011

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 Mx(Initial)
 Mx(SNR=30 dB)

 
(c) (d) 

0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5 ×1012

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 My(Initial)
 My(SNR=30 dB)

 
0.5 1.0 1.5 2.0

0.0

1.3

2.6

3.9

5.2

6.5
×1012

PS
D

((N
·m

)2 /H
z)

Frequency (Hz)

 Mz(Initial)
 Mz(SNR=30 dB)

 
(e) (f) 

Figure 20. Load identification for DOD. (a) Power spectral density curve of original load and iden-
tified load in 𝐹௫ direction; (b) power spectral density curve of original load and identified load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ direction; 
(d) power spectral density curve of original load and identified load in 𝑀௫  direction; (e) power 
spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spectral den-
sity curve of original load and identified load in 𝑀௭ direction. 

As illustrated in Figure 20, the DOD method demonstrated satisfactory accuracy in 
the directions 𝐹௫, 𝐹௬, 𝑀௬, and 𝑀௭. However, significant discrepancies were observed in 
the load spectra identified in the 𝐹௭ and 𝑀௫ directions when employing the DOD-opti-
mised mathematical model, exhibiting errors substantially greater than those encountered 

Figure 20. Load identification for DOD. (a) Power spectral density curve of original load and
identified load in Fx direction; (b) power spectral density curve of original load and identified load
in Fy direction; (c) power spectral density curve of original load and identified load in Fz direction;
(d) power spectral density curve of original load and identified load in Mx direction; (e) power
spectral density curve of original load and identified load in My direction; (f) power spectral density
curve of original load and identified load in Mz direction.
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Table 6. Mean absolute error of load identification.

Component MAE (COD) MAE (DOD) MAE (Initial)

Fx (N2/Hz) 1.01 × 108 1.33 × 108 2.68 × 107

Fy (N2/Hz) 2.69 × 107 7.20 × 107 1.42 × 107

Fz (N2/Hz) 9.84 × 107 2.91 × 108 8.08 × 107

Mx (
(
N · m)2/Hz ) 1.60 × 109 1.62 × 1010 8.28 × 108

My (
(
N · m)2/Hz )) 6.15 × 109 3.27 × 1010 9.74 × 109

Mz (
(
N · m)2/Hz )) 6.60 × 109 1.40 × 1010 6.61 × 109
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Figure 21. Comparison of load identification errors before and after sensor arrangement optimisation.
(a) Comparison of mean absolute error values for load identification in the Fx, Fy, and Fz directions
without sensor optimisation, C-optimal design optimisation, and D-optimal design optimisation.
(b) Comparison of mean absolute error values for load identification in the Mx, My, and Mz directions
without sensor optimisation, C-optimal design optimisation, and D-optimal design optimisation.

5. Frequency-Domain Fatigue Analysis

The stress range solution for fatigue calibration is determined based on the hotspot
stress. According to specification DNV–OS–J101 [45], the hotspot stress for welded pipe
nodes is obtained by extrapolating the first principal stress from the two reference points.
In the plane stress state, the first principal stress is calculated using Equation (18):

The power spectrum density function of the stress under wind loading is typically
broadband. Approximation methods are commonly employed to calculate fatigue damage,
because of the absence of a theoretical solution for the stress range probability density
function in broadband spectra. The following methods are predominantly utilised in the
domain of ship and ocean engineering.
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(1) The narrowband approximation, which employs Equation (25) for damage calculation,
represents a more conservative methodology [46].

DNB = Tv0
C

(
2
√

2λ0)
mΓ

(m
2 + 1

)
(25)

where T is the structural design service life, C and m are S–N curve parameters, v0
is the average trans-zero rate, λ0 is the zeroth-order spectral moment of the power
spectral density function, and Γ(·) is the gamma function.

(2) The bandwidth correction method involves the application of a correction to
Equation (27), as expressed in Equation (26)

DWB = ρWB · DNB (26)

where ρWB is the bandwidth correction factor. The main methods for calculating the
bandwidth correction factor ρWB are the Wirsching–Light [47], Ortiz–Chen [48], and
Lutes–Larson methods [49].

(3) Fatigue damage can be computed using an approximate probability density function
formula, widely acknowledged as the Dirlik formula [50].

The semiempirical model devised by Dirlik incorporates a Rayleigh distribution and
two exponential distributions. The distribution pattern of this model closely approxi-
mates the stress range distribution obtained from rainfall counting. Consequently, this
model accurately calculates the fatigue damage caused by broadband stochastic processes.
A mathematical representation of the Dirlik model is presented in Equations (27) and (28)
with stress ranges following the Dirlik distribution, as shown in Equation (29).

DDirlik =
vp · T

C

∫ ∞

0

[
Sm · pDK

RFC(S)
]
dS (27)

D =
∫ ∞

0

[
Sm · pDK

RFC(S)
]
dS (28)

pDK
RFC(S) =

1(
λ0)

1
2

[
G1

Q
exp(− z

Q
) +

G2z
R2 exp(− z2

2R2 ) + G3zexp(− z2

2
)

]
(29)

Based on the DNV GL standard [51], this study determined the parameters for the
S-N curve used in the Dirlik formula. The fatigue damage values for six monitoring nodes,
as shown in Figure 2, were calculated based on the designed service life of offshore wind
turbines being 25 years, with the results presented in Table 7. The fatigue life calculations
in the second column are based on structural response spectra obtained from finite element
analysis. The structural response spectra were deduced in reverse by applying the load
spectra obtained through the load identification method to Equation (1). The fatigue
damage values for the six nodes were further calculated based on these response spectra, as
shown in the third column of Table 7. A comparison of the data in Table 7 reveals that the
relative error between the fatigue damage values calculated based on the identified load
spectra and those obtained from finite element simulation response spectra is controlled
within 1.5%. This outcome verifies the high accuracy of the identified load spectra, proving
its applicability for fatigue damage assessment in engineering analysis.

Table 7. Comparison of fatigue damage values.

Node Number Fatigue Damage Values Calculated by
Simulation

Fatigue Damage Values Calculated from
Identified Load Spectra

Percentage of
Relative Error

Node A 6.37 × 10−4 6.43 × 10−4 0.9%
Node B 7.17 × 10−4 7.09 × 10−4 1.2%
Node C 1.87 × 10−5 1.86 × 10−5 0.2%
Node D 8.26 × 10−4 8.26 × 10−4 0.1%
Node E 8.63 × 10−4 8.65 × 10−4 0.2%
Node F 1.00 × 10−3 9.95 × 10−4 0.5%
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6. Algorithm Validation

Section 3.2’s analysis establishes that wind speeds in the designated marine area
typically range from 8 m/s to 12 m/s, with extremes up to 24 m/s. This section includes
numerical examples for wind speeds of 10 m/s, 12 m/s, and the extreme 24 m/s to validate
the effectiveness of the proposed model in identifying wind loads atop the jacket wind
turbine tower. The analysis in Section 4 reveals that sensor placements at the upper part of
the tower, which are optimised through an algorithm, aim to minimize interference from
wind loads on structural response measurements as much as possible. The SNR at the
tower top under a 12 m/s wind condition is approximately 50 dB, as noted in Section 3.3.
For all conditions, 30 dB of Gaussian white noise has been added to the structural response
data to replicate actual measurement noise disturbances.

6.1. Identification of Wind Loads at a Wind Speed of 10 m/s

Wind load data at a wind speed of 10 m/s was initially generated using the GH
Bladed software, following the procedures detailed in Sections 3.5 and 4. Subsequently,
a mathematical model for wind load identification was established based on this wind
speed condition. The COD method was employed to perform dimensionality reduction
on the original mathematical model, enhancing the computational efficiency and solution
accuracy. The reduced model was then solved using the Moore–Penrose pseudo-inverse
method. Figure 22 presents a comparative plot of the wind load identification results,
aimed at validating the accuracy and reliability of the proposed method.

The MAE of this load identification is shown in Table 8.
The analysis of Figure 22 and Table 8 reveals that in the directions of Fx and Fy, where

the magnitude of the original load spectrum peaks is approximately 1010, the magnitude
of identified load spectrum errors is about 108, significantly lower than the original peaks,
indicating a high accuracy in load identification for Fx and Fy directions. In contrast, for
the Fz direction, despite the original load spectrum peak being at the magnitude of 109, the
identification error escalated to 108, indicating a reduced accuracy in load identification. For
the directions of Mx, My, and Mz, with the original load spectrum peaks ranging between
1011 to 1013 in magnitude, the identification errors remained at 109, demonstrating high
precision in load identification for these directions. Overall, despite the reduced accuracy
of the Fz direction, the high precision of the My and Mz directions compensates for this
inadequacy, validating the effectiveness of the proposed wind load spectrum identification
method at a wind speed of 10 m/s in a comprehensive manner.

The calculated structural fatigue damage values from Section 5 are shown in Table 9.
The data in Table 9 show that the fatigue damage estimates obtained through the load

identification method closely align with those calculated from structural response spectra
derived from finite element simulation, exhibiting a maximum error of only 3.3%. Such
a level of error is entirely acceptable within the context of engineering applications. This
finding further substantiates the accuracy and reliability of the wind load identification
technique proposed in this study, especially under wind speed conditions of 10 m/s.

Table 8. MAE of load identification.

Component MAE

Fx (N2/Hz) 1.34 × 108

Fy (N2/Hz) 2.99 × 108

Fz (N2/Hz) 1.17 × 108

Mx (
(
N · m)2/Hz ) 2.27 × 109

My (
(
N · m)2/Hz )) 7.31 × 109

Mz (
(
N · m)2/Hz )) 8.03 × 109
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Table 9. Comparison of fatigue damage values.

Node Number Fatigue Damage Values Calculated by
Simulation

Fatigue Damage Values Calculated from
Identified Load Spectra

Percentage of
Relative Error

Node A 2.43 × 10−3 2.51 × 10−3 3.3%
Node B 1.17 × 10−3 1.15 × 10−3 1.8%
Node C 1.17 × 10−5 1.17 × 10−5 0.0%
Node D 1.51 × 10−3 1.51 × 10−3 0.4%
Node E 1.14 × 10−3 1.14 × 10−3 0.1%
Node F 1.60 × 10−3 1.58 × 10−3 1.3%
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Figure 22. Load identification at a wind speed of 10 m/s. (a) Power spectral density curve of original 
load and identified load in 𝐹௫ direction; (b) power spectral density curve of original load and iden-
tified load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ direction; (d) power spectral density curve of original load and identified load in 𝑀௫ direction; 
(e) power spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spec-
tral density curve of original load and identified load in 𝑀௭ direction. 

The MAE of this load identification is shown in Table 8. 
  

Figure 22. Load identification at a wind speed of 10 m/s. (a) Power spectral density curve of
original load and identified load in Fx direction; (b) power spectral density curve of original load and
identified load in Fy direction; (c) power spectral density curve of original load and identified load in
Fz direction; (d) power spectral density curve of original load and identified load in Mx direction;
(e) power spectral density curve of original load and identified load in My direction; (f) power
spectral density curve of original load and identified load in Mz direction.
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6.2. Identification of Wind Loads at a Wind Speed of 12 m/s

This example employed GH Bladed to simulate a wind speed of 12 m/s. A mathe-
matical model was constructed for frequency-domain random load identification, and the
results were analysed accordingly. A comparative plot of the load identification outcomes
is shown in Figure 23.
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Figure 23. Load identification at a wind speed of 12 m/s. (a) Power spectral density curve of original 
load and identified load in 𝐹௫ direction; (b) power spectral density curve of original load and iden-
tified load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ direction; (d) power spectral density curve of original load and identified load in 𝑀௫ direction; 
(e) power spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spec-
tral density curve of original load and identified load in 𝑀௭ direction. 

Table 10 presents the MAE of the load identification. 
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Figure 23. Load identification at a wind speed of 12 m/s. (a) Power spectral density curve of
original load and identified load in Fx direction; (b) power spectral density curve of original load and
identified load in Fy direction; (c) power spectral density curve of original load and identified load in
Fz direction; (d) power spectral density curve of original load and identified load in Mx direction;
(e) power spectral density curve of original load and identified load in My direction; (f) power
spectral density curve of original load and identified load in Mz direction.
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Table 10 presents the MAE of the load identification.

Table 10. Mean absolute error of load identification.

Component MAE

Fx (N2/Hz) 1.41 × 108

Fy (N2/Hz) 3.41 × 108

Fz (N2/Hz) 1.56 × 108

Mx (
(
N · m)2/Hz ) 2.29 × 109

My (
(
N · m)2/Hz )) 1.17 × 1010

Mz (
(
N · m)2/Hz )) 1.10 × 1010

According to Figure 23 and Table 10, in the directions of Fx and Fy, the magnitude of
the peak areas in the original load spectra is approximately 1010, while the magnitude of
the errors in the identified load spectra is about 108, significantly lower than the original
peaks, indicating a high level of accuracy in load identification for these directions. In
contrast, for the Fz direction, with the original load spectrum peak at 109, the identification
error increased to 108, demonstrating a lower accuracy in load identification. For the Mx
direction, the magnitude of the original load spectrum peak is 1011, but the identification
error is only 109, and, combined with Figure 23d, this suggests a moderate accuracy in
load identification for the Mx direction. In the My and Mz directions, the magnitude of the
original load spectrum peaks is 1012, but the identification error is merely 109, indicating
a high accuracy in load identification for these directions. Overall, despite the lesser
accuracy of the Fz direction, the high precision of the My and Mz directions compensates
for this inadequacy, validating the overall effectiveness of the proposed method in wind
load spectrum identification under wind speeds of 12 m/s.

The fatigue damage values calculated from the identified load spectra are presented
in Table 11.

Table 11. Comparison of fatigue damage values.

Node Number Fatigue Damage Values
Calculated by Simulation

Fatigue Damage Values Calculated from
Identified Load Spectra

Percentage of
Relative Error

Node A 3.36 × 10−4 3.39 × 10−4 0.9%
Node B 1.86 × 10−3 1.83 × 10−3 1.8%
Node C 2.66 × 10−5 2.66 × 10−5 0.1%
Node D 2.10 × 10−3 2.10 × 10−3 0.0%
Node E 7.48 × 10−4 7.48 × 10−4 0.0%
Node F 1.61 × 10−3 1.59 × 10−3 1.7%

Table 11 reveals that the fatigue damage values calculated using the identified wind
load spectra are highly accurate, closely aligning with the fatigue damage values computed
based on simulation experiments, with a maximum relative error of 1.8%. This indirectly in-
dicates the high accuracy of the identified load spectra, further substantiating the feasibility
and precision of the wind load spectrum identification method proposed in this study.

6.3. Identification of Wind Loads at a Wind Speed of 24 m/s

The maximum wind speed recorded in the region reaches 24 m/s, as indicated by the
joint probability distribution of wind and waves presented in Figure A1.

Wind load identification at a wind speed of 24 m/s is conducted to test the established
mathematical model’s feasibility and accuracy under extreme conditions. An addition of
25 dB Gaussian white noise to the structure response data is proposed to enhance realism,
given the increased disturbance to sensors under extreme conditions. The other settings are
similar for wind speeds of 8 m/s, 10 m/s, and 12 m/s. The results of the load identification
are presented in Figure 24.
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Figure 24. Load identification at a wind speed of 24 m/s. (a) Power spectral density curve of original 
load and identified load in 𝐹௫ direction; (b) power spectral density curve of original load and iden-
tified load in 𝐹௬ direction; (c) power spectral density curve of original load and identified load in 𝐹௭ direction; (d) power spectral density curve of original load and identified load in 𝑀௫ direction; 
(e) power spectral density curve of original load and identified load in 𝑀௬ direction; (f) power spec-
tral density curve of original load and identified load in 𝑀௭ direction. 

Table 12 presents the MAE of the load identification. 

Table 12. Mean absolute error of load identification. 
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Figure 24. Load identification at a wind speed of 24 m/s. (a) Power spectral density curve of
original load and identified load in Fx direction; (b) power spectral density curve of original load and
identified load in Fy direction; (c) power spectral density curve of original load and identified load in
Fz direction; (d) power spectral density curve of original load and identified load in Mx direction;
(e) power spectral density curve of original load and identified load in My direction; (f) power
spectral density curve of original load and identified load in Mz direction.

Table 12 presents the MAE of the load identification.
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Table 12. Mean absolute error of load identification.

Component MAE

Fx (N2/Hz) 3.40 × 108

Fy (N2/Hz) 1.03 × 109

Fz (N2/Hz) 5.98 × 108

Mx (
(
N · m)2/Hz ) 6.64 × 109

My (
(
N · m)2/Hz )) 3.01 × 1010

Mz (
(
N · m)2/Hz )) 3.45 × 1010

From Figure 24 and Table 12, it is observed that in the directions of Fx and Fy, the
magnitude of the peak areas in the original load spectra is approximately 1011, while
the magnitude of the errors in the identified load spectra ranges between 108 and 109,
significantly lower than the original peaks, indicating high accuracy in load spectrum
identification for these directions. However, in the Fz direction, the identified load spec-
trum significantly deviates from the original load spectrum, with an identification error
magnitude reaching 108, closely approaching the magnitude of the original load spectrum
peaks, suggesting a low accuracy in load identification for this direction. In the directions
of Mx, My, and Mz, the magnitude of the identification errors is 2 to 3 orders of magnitude
lower than that of the original load spectrum peaks, indicating a high accuracy in load
spectrum identification for these directions. Similar to the results analysed for wind speeds
of 8 m/s, 10 m/s, and 12 m/s, the accuracy of load identification in the Fz direction is
relatively lower. However, considering that the magnitude of the load spectrum in the
Fz direction is inherently the lowest, it can be concluded that the identified wind load
spectrum, overall, possesses a commendable level of accuracy.

The fatigue damage values calculated from the identified load spectra are presented
in Table 13.

Table 13. Comparison of fatigue damage values.

Node Number Fatigue Damage Values
Calculated by Simulation

Fatigue Damage Values Calculated from
Identified Load Spectra

Percentage of
Relative Error

Node A 6.23 × 10−5 6.59 × 10−5 5.7%
Node B 2.14 × 10−4 2.26 × 10−4 4.2%
Node C 7.31 × 10−5 7.68 × 10−5 5.1%
Node D 5.68 × 10−4 5.74 × 10−4 1.1%
Node E 4.13 × 10−3 4.29 × 10−3 3.9%
Node F 6.35 × 10−5 6.68 × 10−5 5.2%

According to the data presented in Table 13, the fatigue damage values calculated
using the identified wind load spectra are slightly higher than those obtained through
finite element simulation, with the maximum error reaching 5.7%. In comparison, the
maximum error in fatigue damage calculations under wind speeds of 8 m/s, 10 m/s, and
12 m/s is approximately 2%, indicating a significant increase in error under the condition of
a 24 m/s wind speed. This suggests a reduction in the accuracy of wind load identification
at a wind speed of 24 m/s. However, such an error level remains within the acceptable
range for practical engineering applications. Moreover, the fact that the fatigue damage
values calculated based on the identified wind load spectra are higher than those derived
from finite element simulation data represents a conservative approach, aligning with the
requirements for addressing engineering problems.
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7. Conclusions

The wind load of a wind turbine is usually determined by the statistical parameters of
wind speed in the nearby sea area in the design stage of the offshore wind turbine tower.
However, the pre-estimated load is different from the actual load encountered by the wind
turbine, which leads to uncertainty in the safety of the wind turbine structure. A wind load
identification method was developed in this study to accurately obtain the actual wind load
encountered by the wind turbine, in which the wind loads are estimated with the input
of structural strain response. This is an indirect monitoring method for wind loads. This
study utilises the dynamic load identification theory in frequency to reconstruct the PSD of
equivalent concentrated wind loads. The candidate strain gauge locations and directions
were optimised using DOD and COD algorithms, and then the optimised mathematical
model can be obtained and used for PSD reconstruction. Four numerical examples of wind
load identification were performed, and the following conclusions can be made.

The wind load identified through the initial mathematical model has excellent accuracy,
but a large number of strain gauges is not favourable for practical application. The DOD
and COD algorithms can provide optimal mathematical models for the identification of
wind loads by optimising strain gauge locations and directions, in which the optimal
mathematical model derived from the COD algorithm is better than that derived from
the DOD algorithm with the index of the condition number. The identification accuracy
of the mathematical model derived from the COD algorithm is better than that of the
mathematical model derived from the DOD algorithm. The structural fatigue damage
corresponding to the identified wind loads closely approximates that derived from finite
element simulation wind loads, with a relative error within 6%.

This study has its limitations. It assumes the frequency response function matrix to
be error-free, overlooking potential variations in the system’s frequency response due to
changes in material parameters, a condition that may not hold true in practice. While this
study has been validated at a theoretical level, its application in real-world engineering
projects may require further adjustments and validation. Future research should focus on
addressing the uncertainties of the frequency response function matrix, exploring more flex-
ible and accurate models to adapt to the complexities encountered in practical applications.
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Nomenclature

Fx The force in the X-direction
Fy The force in the Y-direction
Fz The force in the Z-direction
Mx The moment in the X-direction
My The moment in the Y-direction
Mz The moment in the Z-direction
H Frequency response function matrix
H The superscript denotes the conjugate transpose
Sxx Excitation PSD matrix
Syy Response PSD matrix
λ Eigenvalue
φ Eigenvector
r Pseudo-response vector
l Pseudo-excitation vector
eiωt Unit harmonic excitation
+ The superscript denotes generalised inversion
err Error in the response data
U Left singular vector matrix
V Right singular vector matrix
I Identity matrix
S Singular value matrix
∥·∥ Matrix norm
Det(·) Determinant of a matrix
T The superscript denotes transpose
α The regularisation parameter
σx Stress in the X-direction
σy Stress in the Y-direction
τxy Shear stress
σ1 First principal stress
σ3 Third principal stress
α0 Angle between the direction of the principal stress and the x-axis
U Mean wind speed
u∗ Friction velocity
k Karman constant
D Fatigue damage value
λ0 Zeroth-order spectral moment
C Parameters of the S-N curve
m Parameters of the S-N curve
ρWB Bandwidth correction factor
v Average number of cycles per unit time
Φ latitude
Su horizontal wind speed power spectrum
σu horizontal pulsating wind speed root variance
z0 ground roughness length
zg gradient height
fc Coriolis constant
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