Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results
4.1. Bathymetric Data
4.2. Sub-Bottom Profiles
4.3. Side-Scan Sonar Data
4.4. Geomorphological Elements in the Axial Zone
4.4.1. Depositional Features
4.4.2. Erosional Features
4.4.3. Features Related to Submarine Landslides
5. Discussion
5.1. Origin of Geomorphological Elements
5.1.1. Undulating Features
5.1.2. Knickpoints
5.1.3. Furrows and Scours
5.1.4. Landslides
5.2. Sedimentary Processes along the Canyon Axis
5.2.1. Sediment Erosion, Transport, and Re-Deposition
5.2.2. Axial Incision
5.2.3. Sediment Gravity Flows along the Canyon
5.3. Activity of the Canyon during the Holocene
6. Conclusions
- (1)
- The longitudinal profile of the canyon axis exhibits a slightly upward concave shape, while the transacted pattern can be asymmetrical or symmetrical, contrasting with the asymmetrical pattern of the entire canyon.
- (2)
- Some morphological elements were identified in the axial zone, including failure scars, knickpoints, flat terraces, undulating features, small-scare furrows, and MTDs. Landslides predominantly found in the upper canyon were formed after at least 5000 years BP, with associated MTDs often observed at the base of the canyon walls or on the flat terraces. Flat terraces and knickpoints alternate from the canyon head to a water depth of approximately 1300 m, while small-scale erosional furrows are located below a water depth of 1200 m.
- (3)
- The internal configurations of undulating features indicate that they are depositional structures, but further investigations into their origin are needed. Knickpoints exhibit large forms and lower slope gradients, with their formation possibly linked to slope failures at the crests of undulating features. The small-scale erosional furrows may result from gravity flows along the canyon.
- (4)
- The canyon was generally considered inactive during the Holocene, although sporadic processes of sediment erosion, transport, and re-deposition occurred in the axial zone, triggered by occasional landslide events in the upper canyon.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twichell, D.C.; Roberts, D.G. Morphology, distribution and development of submarine canyons on the United States continental slope between Hudson and Baltimore Canyons. Geology 1982, 10, 408–412. [Google Scholar] [CrossRef]
- McAdoo, B.; Orange, D.L.; Screaton, E.; Lee, H.; Kayen, R. Slope basins, headless canyons, and submarine paleo-seismology of the Cascadia accretionary complex. Basin Res. 1997, 9, 313–324. [Google Scholar] [CrossRef]
- Bertoni, C.; Cartwright, J. 3D seismic analysis of slope-confined canyons from the Plio-Pleistocene of the Ebro Continental Margin (Western Mediterranean). Basin Res. 2005, 17, 43–62. [Google Scholar] [CrossRef]
- Harris, P.T.; Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 2011, 285, 69–86. [Google Scholar] [CrossRef]
- Harris, P.T.; MacMillan-Lawler, M.; Rupp, J.; Baker, E.K. Geomorphology of oceans. Mar. Geol. 2014, 352, 4–24. [Google Scholar] [CrossRef]
- Normark, W.R.; Piper, D.J.W.; Romans, B.W.; Covault, J.A.; Dartnell, P.; Sliter, R.W. Submarine canyon and fan systems of the California Continental Borderland. Earth Sci. Urban Ocean. S. Calif. Cont. Borderl. 2009, 454, 141–168. [Google Scholar]
- Allen, S.E.; Durieu de Madron, X. A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci. 2009, 5, 607–620. [Google Scholar] [CrossRef]
- Obelcz, J.; Brothers, D.; Chaytor, J.; Brink, U.; Ross, S.W.; Brooke, S. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin. Deep-Sea Res. II Top. Stud. Oceanogr. 2014, 104, 106–119. [Google Scholar] [CrossRef]
- Popescu, I.; Lericolais, G.; Paninc, N.; Normand, A.; Dinu, C.; Drezen, E.L. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Mar. Geol. 2004, 206, 249–265. [Google Scholar] [CrossRef]
- Baztan, J.; Berne, S.; Olivet, J.L.; Rabineau, M.; Aslanian, D.; Gaudin, M.; Rehault, J.P.; Canals, M. Axial incision: The key to understand submarine canyon evolution (in the western Gulf of Lion). Mar. Pet. Geol. 2005, 22, 805–826. [Google Scholar] [CrossRef]
- Sultan, N.; Gaudin, M.; Berne, S.; Canals, M.; Urgeles, R.; Lafuerza, S. Analysis of slope failure in submarine canyon heads: An example from the Gulf of Lions. J. Geophys. Res. 2007, 112, F01009. [Google Scholar] [CrossRef]
- Puga-Bernabeu, A.; Webster, J.M.; Beaman, R.J.; Guilbaud, V. Variation in canyon morphology on the Great Barrier Reef margin, north-eastern Australia: The influence of slope and barrier reefs. Geomorphology 2013, 191, 35–50. [Google Scholar] [CrossRef]
- Hagen, R.A.; Bergersen, D.D.; Moberly, R.; Colbourn, W.T. Morphology of a large meandering submarine canyon system on the Peru-Chile forearc. Mar. Geol. 1994, 119, 7–38. [Google Scholar] [CrossRef]
- Wynn, R.B.; Stow, D.A.V. Classification and characterization of deep-water sediment waves. Mar. Geol. 2002, 192, 7–22. [Google Scholar] [CrossRef]
- Mitchell, N.C. Morphologies of knickpoints in submarine canyons. GSA Bull. 2006, 118, 589–605. [Google Scholar] [CrossRef]
- Lastras, G.; Canals, M.; Urgeles, R.; Amblas, D.; Ivanov, M.; Droz, L.; Dennielou, B.; Fabrés, J.; Schoolmeester, T.; Akhmetzhanov, A.; et al. A walk down the Cap de Creus canyon, Northwestern Mediterranean Sea: Recent processes inferred from morphology and sediment bedforms. Mar. Geol. 2007, 246, 176–192. [Google Scholar] [CrossRef]
- Paull, C.K.; Caress, D.W.; Ussler, W.; Lundsten, E.; Meiner-Johnson, M. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California. Geosphere 2011, 7, 1077–1101. [Google Scholar] [CrossRef]
- Pszonka, J.; Žecová, K.; Wendorff, M. Oligocene turbidite fans of the Dukla Basin: New age data from the calcareous nannofossils and paleoenvironmental conditions (Cergowa beds, Polish–Slovakian borderland). Geol. Carpathica 2019, 70, 311–324. [Google Scholar] [CrossRef]
- Pszonka, J.; Wendorff, M.; Godlewski, P. Sensitivity of marginal basins in recording global icehouse and regional tectonic controls on sedimentation. Example of the Cergowa Basin, (Oligocene) Outer Carpathians. Sediment. Geol. 2023, 444, 106326. [Google Scholar] [CrossRef]
- Chunang, C.Y.; Yu, H.S. Morphology and canyon forming processes of upper reach of the Penghu submarine canyon off southwestern Taiwan. Terr. Atmos. Ocean. Sci. 2002, 13, 91–108. [Google Scholar] [CrossRef]
- Hsu, S.K.; Yeh, Y.; Doo, W.B.; Tsai, C.H. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Mar. Geophys. Res. 2004, 25, 29–44. [Google Scholar] [CrossRef]
- Zhu, M.; Graham, S.; Pang, X.; McHargue, T. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Mar. Pet. Geol. 2010, 27, 307–319. [Google Scholar] [CrossRef]
- Gong, C.L.; Wang, Y.M.; Zhu, W.L.; Li, W.G.; Xu, Q.; Zhang, J.M. The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Mar. Pet. Geol. 2011, 28, 1690–1702. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, W.; Li, L.; Wen, M. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea. J. Earth Syst. Sci. 2017, 126, 73. [Google Scholar] [CrossRef]
- Li, X.S.; Zhou, Q.J.; Su, T.Y.; Liu, L.J.; Gao, S.; Zhou, S.W. Slope-confined submarine canyons in the Baiyun deep-water area northern South China Sea: Variation in their modern morphology. Mar. Geophys. Res. 2016, 37, 95–112. [Google Scholar] [CrossRef]
- He, Y.; Zhong, G.; Wang, L.; Kuang, Z. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea. Mar. Pet. Geol. 2014, 57, 546–560. [Google Scholar] [CrossRef]
- Qiao, S.; Su, M.; Kuang, Z.; Yang, R.; Liang, J.; Wu, N. Canyon-related undulation structures in the Shenhu area, northern South China Sea. Mar. Geophys. Res. 2015, 36, 243–252. [Google Scholar] [CrossRef]
- Zhou, Q.J.; Li, X.S.; Zhou, H.; Liu, L.J.; Xu, Y.Q.; Gao, S.; Ma, L. Characteristics and genetic analysis of submarine landslides in the northern slope of the South China Sea. Mar. Geophys. Res. 2019, 40, 303–314. [Google Scholar] [CrossRef]
- Gong, C.L.; Wang, Y.M.; Zhu, W.L.; Li, W.G.; Xu, Q. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River mouth Basin, northern South China Sea. AAPG Bull. 2013, 97, 285–308. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhu, W.; Xu, Q.; He, Y.; Tang, W.; Zhuo, H.; Wang, D.; Wu, J.; Li, D. Seismic characteristics and processes of the Plio-Quaternary unidirectional migrating channels and contourites in the northern slope of the South China Sea. Mar. Pet. Geol. 2013, 43, 370–380. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Gao, X.; Zhu, W.; Xu, Q.; Xu, S.; Cao, J.; Wu, J. Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea. Mar. Pet. Geol. 2015, 67, 389–407. [Google Scholar] [CrossRef]
- Paull, C.K.; Caress, D.W.; Lundsten, E. Anatomy of La Jolla Submarine Canyon system; offshore southern California. Mar. Geol. 2013, 335, 16–34. [Google Scholar] [CrossRef]
- Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.; Caress, D.W. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution Autonomous Underwater Vehicle surveys offshore central California. Sedimentology 2013, 60, 935–960. [Google Scholar] [CrossRef]
- Tubau, X.; Paull, C.K.; Lastras, G.; Caress, D.W.; Canals, M.; Lundsten, E.; Anderson, K.; Gwiazda, R.; Amblas, D. Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes. Mar. Geol. 2015, 365, 61–79. [Google Scholar] [CrossRef]
- Loher, M.; Ceramicola, S.; Wintersteller, P.; Meinecke, G.; Sahling, H.; Bohrmann, G. Mud volcanism in a canyon: Morphodynamic evolution of the active Venere mud volcano and its interplay with Squillace Canyon, Central Mediterranean. Geochem. Geophy. Geosy. 2018, 19, 356–378. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Alves, T.; Rebesco, M.; Zhan, W.; Sun, J.; Mitchell, M.; Wu, S. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location. Mar. Geol. 2019, 413, 99–111. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Liu, B.; Liu, L. Mounded seismic units in the modern canyon system in Shenhu area, northern South China Sea: Sediment deformation, depositional structures or the mixed system? Acta Oceanol. Sin. 2022, 41, 107–116. [Google Scholar] [CrossRef]
- Pang, X.; Chen, C.M.; Shi, H.S.; Shu, Y.; Shao, L.; He, M.; Shen, J. Response between relative sea-level Change and the Pearl River Deep-water Fan System in the South China Sea. Earth-Sci. Front. 2005, 12, 167–177. [Google Scholar]
- Gardner, T.W. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material. GSA Bull. 1983, 94, 664–672. [Google Scholar] [CrossRef]
- Howard, A.D.; Seidl, M.A.; Dietrich, W.E. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 1994, 99, 13971–13986. [Google Scholar] [CrossRef]
- Komar, P.D. Hydraulic jumps in turbidity currents. GSA Bull. 1971, 82, 1477–1488. [Google Scholar] [CrossRef]
- Canals, M.; Lastras, G.; Urgeles, R.; Casamor, J.L.; Mienert, J.; Cattaneo, A.; de Batist, M.; Haflidason, H.; Imbo, Y.; Laberg, J.S.; et al. Slope failure dynamics and impacts from seafloor and shallow sub- seafloor geophysical data: Case studies from the COSTA project. Mar. Geol. 2004, 213, 9–72. [Google Scholar] [CrossRef]
- Moscardelli, L.; Wood, L. New classification system for mass transport complexes in offshore Trinidad. Basin Res. 2008, 20, 73–98. [Google Scholar] [CrossRef]
- Baeten, N.J.; Laberg, J.S.; Forwick, M.; Vorren, T.O.; Vanneste, M.; Forsberg, C.F.; Ivanov, M. Morphology and origin of smaller-scale mass movements on the continental slope off northern Norway. Geomorphology 2013, 187, 122–134. [Google Scholar] [CrossRef]
- Zhou, W.; Chiarella, D.; Zhuo, H.; Wang, Y.; Tang, W.; Zou, M.; Xu, Q. Genesis and evolution of large-scale sediment waves in submarine canyons since the Penultimate Glacial Maximum (ca. 140 ka), northern South China Sea margin. Mar. Pet. Geol. 2021, 134, 105381. [Google Scholar] [CrossRef]
- Urgeles, R.; Cattaneo, A.; Puig, P.; Liquete, C.; De Mol, D.; Amblàs, D.; Sultan, N.; Trincardi, F. A review of undulated sediment features on Mediterranean prodeltas: Distinguishing sediment transport structures from sediment deformation. Mar. Geophys. Res. 2011, 32, 49–69. [Google Scholar] [CrossRef]
- Guiastrennec-Faugas, L.; Gillet, H.; Jacinto, R.S.; Dennielou, B.; Hanquiez, V.; Schmidt, S.; Simplet, L.; Rousset, A. Upstream migrating knickpoints and related sedimentary processes in a submarine canyon from a rare 20-year morphobathymetric time-lapse (Capbreton submarine canyon, Bay of Biscay, France). Mar. Geol. 2020, 423, 106143. [Google Scholar] [CrossRef]
- Heijnen, M.S.; Clare, M.A.; Cartigny, M.J.B.; Talling, P.J.; Hage, S.; Lintern, D.G.; Stacey, C.; Parsons, D.R.; Simmons, S.M.; Chen, Y.; et al. Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nat. Commun. 2020, 11, 3129. [Google Scholar] [CrossRef] [PubMed]
- Heiniö, P.; Davies, R.J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta. Mar. Pet. Geol. 2007, 24, 434–449. [Google Scholar] [CrossRef]
- Lee, Y.D.E.; George, R.A. High-resolution geological AUV survey results across a portion of the eastern Sigsbee Escarpment. AAPG Bull. 2004, 88, 747–764. [Google Scholar]
- Flood, R.D. Classification of sedimentary furrows and a model for furrow initiation and evolution. GSA Bull. 1983, 94, 630–639. [Google Scholar] [CrossRef]
- Xu, D.; Bai, Y.; Ji, C.; Williams, J. Experimental study of the density influence on the incipient motion and erosion modes of muds in unidirectional flows: The case of Huangmaohai Estuary. Ocean Dyn. 2015, 65, 187–201. [Google Scholar] [CrossRef]
- Wu, L.; Xiong, X.; Li, X.; Shi, M.; Guo, Y.; Chen, L. Bottom currents observed in and around a submarine valley on the continental slope of the northern South China Sea. J. Ocean. Univ. China (Ocean. Coast. Sea Res.) 2016, 15, 947–957. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Zhao, Q.; Liu, L.; Zhou, S. Occurrence acoustic characteristics and significance of submerged reef on the continental shelf edge and upper slope, South China Sea. Cont. Shelf Res. 2015, 100, 11–24. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, L.; Yan, J.; Ma, X. Grain size characteristics of surface sediments and their transport patterns near the shelf break of the northern South China Sea. Mar. Sci. 2019, 43, 96–105, (In Chinese with English Abstract). [Google Scholar]
- Hampton, M.A.; Lee, H.J.; Locat, J. Submarine landslides. Rev. Geophys. 1996, 34, 33–59. [Google Scholar] [CrossRef]
- Sun, Q.; Alves, T.; Xie, X.; He, J.; Li, W.; Ni, X. Free gas accumulations in basal zones of mass-transport deposits (Pear River Mouth Basin, South China Sea): An important geohazard on continental slope basins. Mar. Pet. Geol. 2017, 81, 17–32. [Google Scholar] [CrossRef]
- Chen, F.; Zhuang, C.; Zhou, Y.; Wu, C.; Lu, H.; Liu, J.; Su, X.; Liu, G. Carbonate cycles and gas hydrate dissociation in Shenhu Area of the South China Sea since MIS12 stage. Geoscience 2015, 29, 145–154. [Google Scholar]
- Pan, M.; Wu, D.; Wu, N.; Liu, L. Characteristics of foraminiferal assemblages since last glacial from Shenhu area of northern South China Sea and implications for paleoceanographic environmental changes. Mar. Geol. Quat. Geol. 2017, 37, 127–138. [Google Scholar]
- Yin, S.; Lin, L.; Pope, E.L.; Li, J.; Ding, W.; Wu, Z.; Ding, W.; Gao, J.; Zhao, D. Continental slope-confined canyons in the Pearl River Mouth Basin in the South China Sea dominated by erosion, 2004–2018. Geomorphology 2019, 344, 60–74. [Google Scholar] [CrossRef]
- Okey, T.A. Sediment flushing observations, earthquake slumping, and benthic community changes in Monterey Canyon head. Cont. Shelf Res. 1997, 17, 877–897. [Google Scholar] [CrossRef]
- Khripounoff, A.; Vangriesheim, A.; Crassous, P.; Etoubleau, J. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea). Mar. Geol. 2009, 263, 1–6. [Google Scholar] [CrossRef]
- Weber, M.E.; Wiedicke, M.H.; Kudrass, H.; H.ubscher, C.; Erlenkeuser, H. Active growth of the Bengal Fan during sea-level rise and highstand. Geology 1997, 25, 315–318. [Google Scholar] [CrossRef]
- Covault, J.A.; Normark, W.R.; Romans, B.W.; Graham, S.A. Highstand fans in the California Borderland: The overlooked deep-water depositional system. Geology 2007, 35, 783–786. [Google Scholar] [CrossRef]
- Mountjoy, J.J.; Micallef, A.; Stevens, C.L.; Stirling, M.W. Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system, New Zealand. Deep-Sea Res. 2014, 104, 120–133. [Google Scholar] [CrossRef]
- Normark, W.R.; Piper, D.J.W.; Sliter, R. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California. Sedimentology 2006, 53, 867–897. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, L.; Huang, B.; Zhou, Q.; Zhang, C. Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data. J. Mar. Sci. Eng. 2024, 12, 599. https://doi.org/10.3390/jmse12040599
Li X, Liu L, Huang B, Zhou Q, Zhang C. Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data. Journal of Marine Science and Engineering. 2024; 12(4):599. https://doi.org/10.3390/jmse12040599
Chicago/Turabian StyleLi, Xishuang, Lejun Liu, Bigui Huang, Qingjie Zhou, and Chengyi Zhang. 2024. "Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data" Journal of Marine Science and Engineering 12, no. 4: 599. https://doi.org/10.3390/jmse12040599
APA StyleLi, X., Liu, L., Huang, B., Zhou, Q., & Zhang, C. (2024). Erosional and Depositional Features along the Axis of a Canyon in the Northern South China Sea and Their Implications: Insights from High-Resolution AUV-Based Geophysical Data. Journal of Marine Science and Engineering, 12(4), 599. https://doi.org/10.3390/jmse12040599