Maximum Impacts of the Initial and Model Parametric Errors on El Niño Predictions
Abstract
:1. Introduction
2. Model and Methodology
2.1. The ICM
2.2. The CNOP Approach and Experimental Design
2.2.1. Mathematical Expression of the CNOP
2.2.2. Designs of the CNOP Experiments
3. The Impact on Season–Dependent Error Growth
3.1. Horizontal Distributions of CNOPs-Type Errors
3.2. Error Evolution
3.3. Mechanism for SPB-Associated Error Evolution
4. The Sensitivity of Predictions to Uncertainties in ICs and MPs
4.1. SST vs. SL
4.2. vs.
4.3. ICs vs. MPs
5. The Impact of Errors in ICs and MPs Due to Prediction Time
6. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in Earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.A.; Blade, I.; Newman, M.; Lanzante, J.R.; Lau, N.C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- Xie, S.P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.Y.; Wittenberg, A.T. Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef]
- Andersen, L.K.; Davis, M.D.P. The effects of the El Niño Southern Oscillation on skin and skin-related diseases: A message from the International Society of Dermatology Climate Change Task Force. Int. J. Dermatol. 2015, 54, 1343–1351. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.Y.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res.-Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO Diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Zebiak, S.E.; Cane, M.A. A Model El-Niño Southern Oscillation. Mon. Weather Rev. 1987, 115, 2262–2278. [Google Scholar] [CrossRef]
- Chen, D.; Zebiak, S.E.; Busalacchi, A.J.; Cane, M.A. An Improved Procedure for El Niño Forecasting: Implications for Predictability. Science 1995, 269, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- McPhaden, M.J.; Busalacchi, A.J.; Cheney, R.; Donguy, J.R.; Gage, K.S.; Halpern, D.; Ji, M.; Julian, P.; Meyers, G.; Mitchum, G.T.; et al. The tropical ocean global atmosphere observing system: A decade of progress. J. Geophys. Res.-Ocean. 1998, 103, 14169–14240. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kug, J.S. Improvement of ENSO Simulation Based on Intermodel Diversity. J. Clim. 2015, 28, 998–1015. [Google Scholar] [CrossRef]
- Zhang, R.H.; Gao, C.; Feng, L.C. Recent ENSO evolution and its real-time prediction challenges. Natl. Sci. Rev. 2022, 9, nwac052. [Google Scholar] [CrossRef]
- Min, Q.Y.; Su, J.Z.; Zhang, R.H.; Rong, X.Y. What hindered the El Niño pattern in 2014? Geophys. Res. Lett. 2015, 42, 6762–6770. [Google Scholar] [CrossRef]
- Zhang, R.H.; Tao, L.J.; Gao, C. An improved simulation of the 2015 El Nio event by optimally correcting the initial conditions and model parameters in an intermediate coupled model. Clim. Dyn. 2018, 51, 269–282. [Google Scholar] [CrossRef]
- Chen, D.; Lian, T. Effects of westerly wind bursts on El Nio: A new perspective. Geophys. Res. Lett. 2014, 41, 3522–3527. [Google Scholar] [CrossRef]
- Ji, C.P.; Mu, M.; Fang, X.H.; Tao, L.J. Improving the Forecasting of El Niño Amplitude Based on an Ensemble Forecast Strategy for Westerly Wind Bursts. J. Clim. 2023, 36, 8675–8694. [Google Scholar] [CrossRef]
- Lorenz, E.N. Climatic predictability in the physical basis of climate and climate modeling. WMO GARP Publ. Ser No 1975, 16, 132–136. [Google Scholar]
- Mu, M.; Duan, W.S.; Chou, J.F. Recent advances in predictability studies in China (1999–2002). Adv. Atmos. Sci. 2004, 21, 437–443. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.; Wang, Q.; Zhang, R. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process. Geoph. 2010, 17, 211–220. [Google Scholar] [CrossRef]
- Xue, Y.; Cane, M.A.; Zebiak, S.E. Predictability of a coupled model of ENSO using singular vector analysis. 1. Optimal growth in seasonal background and ENSO cycles. Mon. Weather Rev. 1997, 125, 2043–2056. [Google Scholar] [CrossRef]
- Tang, Y.M.; Kleeman, R.; Miller, S. ENSO predictability of a fully coupled GCM model using singular vector analysis. J. Clim. 2006, 19, 3361–3377. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.S.; Wang, B. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geoph. 2003, 10, 493–501. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.S.; Tang, Y.M. The predictability of atmospheric and oceanic motions: Retrospect and prospects. Sci. China Earth Sci. 2017, 60, 2001–2012. [Google Scholar] [CrossRef]
- Webster, P.J. The Annual Cycle and the Predictability of the Tropical Coupled Ocean-Atmosphere System. Meteorol. Atmos. Phys. 1995, 56, 33–55. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.S.; Chen, D.K.; Yu, W.D. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Natl. Sci. Rev. 2015, 2, 226–236. [Google Scholar] [CrossRef]
- Duan, W.S.; Huo, Z.H. An Approach to Generating Mutually Independent Initial Perturbations for Ensemble Forecasts: Orthogonal Conditional Nonlinear Optimal Perturbations. J. Atmos. Sci. 2016, 73, 997–1014. [Google Scholar] [CrossRef]
- Duan, W.S.; Zhao, P.; Hu, J.Y.; Xu, H. The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO. J. Meteorol. Res. 2016, 30, 853–866. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, H.; Zhu, J. ENSO ensemble prediction: Initial error perturbations vs. model error perturbations. Chin. Sci. Bull. 2009, 54, 2516–2523. [Google Scholar] [CrossRef]
- Qi, Q.Q.; Duan, W.S.; Zheng, F.; Tang, Y.M. On the “spring predictability barrier” for strong El Nio events as derived from an intermediate coupled model ensemble prediction system. Sci. China Earth Sci. 2017, 60, 1614–1631. [Google Scholar] [CrossRef]
- Liu, Z.Y. A simple model study of ENSO suppression by external periodic forcing. J. Clim. 2002, 15, 1088–1098. [Google Scholar] [CrossRef]
- Macmynowski, D.G.; Tziperman, E. Factors affecting ENSO’s period. J. Atmos. Sci. 2008, 65, 1570–1586. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, R.H. The roles of atmospheric wind and entrained water temperature (T-e) in the second-year cooling of the 2010-12 La Nina event. Clim. Dyn. 2017, 48, 597–617. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zheng, F.; Zhu, J.; Wang, Z.G. A successful real-time forecast of the 2010-11 La Nina event. Sci. Rep. 2013, 3, 1108. [Google Scholar] [CrossRef]
- Duan, W.S.; Zhang, R. Is model parameter error related to a significant spring predictability barrier for El Nio events? Results from a theoretical model. Adv. Atmos. Sci. 2010, 27, 1003–1013. [Google Scholar] [CrossRef]
- Yu, Y.S.; Mu, M.; Duan, W.S. Does Model Parameter Error Cause a Significant “Spring Predictability Barrier” for El Niño Events in the Zebiak-Cane Model? J. Clim. 2012, 25, 1263–1277. [Google Scholar] [CrossRef]
- Wu, X.R.; Han, G.J.; Zhang, S.Q.; Liu, Z.Y. A study of the impact of parameter optimization on ENSO predictability with an intermediate coupled model. Clim. Dyn. 2016, 46, 711–727. [Google Scholar] [CrossRef]
- Tao, L.J.; Gao, C.; Zhang, R.H. Model parameter-related optimal perturbations and their contributions to El Ninño prediction errors. Clim. Dyn. 2019, 52, 1425–1441. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zebiak, S.E.; Kleeman, R.; Keenlyside, N. A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zebiak, S.E.; Kleeman, R.; Keenlyside, N. Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Weather. Rev. 2005, 133, 2777–2802. [Google Scholar] [CrossRef]
- Gao, C.; Wu, X.R.; Zhang, R.H. Testing a four-dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction. Adv. Atmos. Sci. 2016, 33, 875–888. [Google Scholar] [CrossRef]
- Tao, L.J.; Zhang, R.H.; Gao, C. Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci. 2017, 34, 791–803. [Google Scholar] [CrossRef]
- Tao, L.J.; Duan, W.S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather Forecast. 2019, 34, 1321–1342. [Google Scholar] [CrossRef]
- Xu, K.; Huang, R.X.; Wang, W.Q.; Zhu, C.W.; Lu, R.Y. Thermocline Fluctuations in the Equatorial Pacific Related to the Two Types of El Niño Events. J. Clim. 2017, 30, 6611–6627. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric Teleconnections from Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Zheng, F.; Zhu, J.; Zhang, R.H. Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett. 2007, 34, 256–260. [Google Scholar] [CrossRef]
- Duan, W.S.; Hu, J.Y. The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Clim. Dyn. 2016, 46, 3599–3615. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zhang, R.H. An Argo-Derived Background Diffusivity Parameterization for Improved Ocean Simulations in the Tropical Pacific. Geophys. Res. Lett. 2018, 45, 1509–1517. [Google Scholar] [CrossRef]
- Tao, L.J.; Duan, W.S.; Vannitsem, S. Improving forecasts of El Niño diversity: A nonlinear forcing singular vector approach. Clim. Dyn. 2020, 55, 739–754. [Google Scholar] [CrossRef]
Experiments | IC Constraint | ||
---|---|---|---|
SST | SL | ||
IC perturbed experiments | SST | ||
SL | °C |
Experiments | MP Constraint | ||
---|---|---|---|
MP perturbed experiments | |||
Experiments | IC Constraint | MP Constraint | |
---|---|---|---|
IC-MP experiments | IC-MP-1 | ||
IC-MP-2 | |||
IC-MP-3 |
140°~180° E | 180°~140° W | 140°~100° W | |
---|---|---|---|
15° N~5° N | 17.3% | 19.9% | 15.5% |
5° N~5° S | 14.9% | −2.3% | 15.3% |
5° S~15° S | 5.5% | 2.0% | 23.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L. Maximum Impacts of the Initial and Model Parametric Errors on El Niño Predictions. J. Mar. Sci. Eng. 2024, 12, 601. https://doi.org/10.3390/jmse12040601
Tao L. Maximum Impacts of the Initial and Model Parametric Errors on El Niño Predictions. Journal of Marine Science and Engineering. 2024; 12(4):601. https://doi.org/10.3390/jmse12040601
Chicago/Turabian StyleTao, Lingjiang. 2024. "Maximum Impacts of the Initial and Model Parametric Errors on El Niño Predictions" Journal of Marine Science and Engineering 12, no. 4: 601. https://doi.org/10.3390/jmse12040601
APA StyleTao, L. (2024). Maximum Impacts of the Initial and Model Parametric Errors on El Niño Predictions. Journal of Marine Science and Engineering, 12(4), 601. https://doi.org/10.3390/jmse12040601