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Abstract: Currently, deep learning is extensively utilized for ship target detection; however, achieving
accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the
diverse scenes, varied scales, and complex backgrounds of ships in optical remote sensing images, we
introduce a network model named YOLO-RSA. The model consists of a backbone feature extraction
network, a multi-scale feature pyramid, and a rotated detection head. We conduct thorough tests on
the HRSC2016 and DOTA datasets to validate the proposed algorithm. Through ablation experiments,
we assess the impact of each improvement component on the model. In comparative experiments,
the proposed model surpasses other models in terms of Recall, Precision, and MAP on the HRSC2016
dataset. Finally, in generalization experiments, our proposed ship detection model exhibits excellent
detection performance across various scenarios. The method can accurately detect multi-scale ships
in the image and provide a basis for marine ship monitoring and port management.

Keywords: deep learning; multiscale ship detection; remote-sensing image; small ship attention
mechanism; complex scenarios

1. Introduction

Since the 21st century, ocean development has emerged as a universal consensus
among humanity. Leading maritime nations actively seize the initiative, dedicating efforts
to explore the path of maritime development [1]. Ships, serving as pivotal carriers for
ocean resource development and international trade, play an increasingly crucial role in
maritime activities. With the continuous evolution and sophistication of maritime affairs,
ship identification and detection are involved with multiple critical roles internationally,
spanning defense construction, port management, cargo transportation, maritime rescue,
and the suppression of illegal ships across various domains [2–4].

However, in response to the demands for extensive maritime ship monitoring and emer-
gency management, the current ship monitoring systems exhibit certain limitations [5,6].
Firstly, with variations in environmental background, light intensity, sea surface topog-
raphy, and other factors, the significant differences in ship visibility gradually increase.
Secondly, large-scale maritime ship monitoring and emergency management impose higher
requirements on the detection accuracy, stability, and reliability of ship detection sys-
tems [7,8]. Compared to Synthetic Aperture Radar (SAR) and hyperspectral images, optical
remote-sensing images exhibit a higher resolution and lower noise [9–11]. As a result,
during the ship detection process, optical remote-sensing images can more clearly extract
the structural and textural information of ship targets, thereby presenting a richer and
more detailed representation of ship scenes. Consequently, ship detection based on optical
remote-sensing images has attracted widespread attention [12–14].

In the field of ship-object detection, ships in remote-sensing images exhibit a series of
characteristics, including multi-scale, multi-aspect, small-size object, and complex back-
grounds [15,16]. Firstly, ships exhibit characteristics of being multi-scale and multi-aspect
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in images. This necessitates ship detection models to possess robust scale adaptability and
rotatedal invariance. Additionally, ships may manifest relatively small targets, adding to
the difficulty of accurate detection and identification. Furthermore, the maritime environ-
ment may contain numerous other objects, such as buoys and waves, creating complex
visual scenes that interfere with ship recognition. Moreover, complex environmental fac-
tors like sea waves, cloud cover, and changes in illumination can impact the clarity of
ship images. However, corresponding to the aforementioned characteristics, the current
ship detection methods, which are based on deep neural networks, are constrained by
training on singular ship scenes, making it challenging to adapt to the diversity of ship
features [17–19]. Therefore, the design of ship detection models capable of adapting to
different detection scenarios has become a key focus in the current field of ship visual
perception in remote sensing.

Object detection can be classified into two categories: traditional object detection
(pre-2014) and deep learning-based object detection (post-2014) [20]. Ship-object detection
is one application within the domain of object detection.

Firstly, image preprocessing is conducted, encompassing operations such as image
enhancement or color space transformation. Subsequently, feature extraction is performed
on the preprocessed images, wherein these features (typically classified into three major
categories—texture features, shape features, and color features) are determined based on
diverse visual attributes and feature computation methods [21]. Commonly employed
feature detection algorithms include SIFT [22], HOG [23], SURF [12], and DPM [24]. Fol-
lowing this, various target detection methods, such as threshold segmentation [25], edge
detection [26], and region growing [27], are employed to ascertain potential ship targets
within the images. The final step involves ship identification and classification, wherein
various methods are applied to further recognize and classify the detected ship targets,
including the use of predefined ship feature templates or machine learning-based classi-
fiers [28,29]. However, traditional ship detection algorithms typically rely on manually
designed features, exhibit a limited capability for feature extraction, and possess poor
robustness to noise and clutter. These algorithms face challenges in handling scale and
orientation variations. Consequently, they fail to adequately capture the complex shapes,
textures, and background variations associated with ships, resulting in diminished accuracy
and efficiency in ship detection.

In recent years, with the rapid advancement of deep learning, an increasing number
of researchers have begun to incorporate deep learning into the study of ship detection
technology. Deep learning-based object detection methods can be broadly categorized
into two types: two-stage detection and one-stage detection. Representative two-stage
detectors include R-CNN, SSPNet [30], Fast R-CNN [31], Faster R-CNN [32], FPN [33],
Mask RCNN [34], etc. Due to the separation of detection into two stages, two-stage
detectors typically achieve higher accuracy, especially in small object detection and precise
object localization. In contrast, one-stage detectors directly accomplish target detection and
localization within a single feedforward network. They predict the category and location
of the target end-to-end through a single network. Typical one-stage detectors include
SSD [35], RetinaNet [36], CenterNet [37], FCOS [38], YOLO series [39], etc.

Since the inception of R-CNN, scholars have continuously improved general detection
frameworks based on deep learning, progressively applying them to ship target detection.
Matthijs et al. [40] achieved real-time ship detection and tracking systems by enhancing
the SSD model to adapt to extreme variations in ship size and aspect ratio. Bousetouane
et al. [41] leveraged Fast R-CNN for improvement, employing a low-cost weakly supervised
detector based on handcrafted features for ship filtering and candidate box extraction. Kim
et al. [42] proposed a probabilistic ship detection and classification system based on Faster
R-CNN, enhancing ship detection accuracy through Bayesian fusion. Qi et al. [43] improved
the Faster R-CNN target ship detection model through image down sampling, constructing
a hierarchical downsizing network to enhance computational speed. Ye et al. [44] proposed
a multi-scale feature detection network similar to SSD, improving maritime ship detection
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efficiency by adding a density module for feature reuse and incorporating contextual
information. Sebastian et al. [45] introduced an SMD-based benchmark for maritime target
ship detection, evaluating Faster R-CNN and Mask RCNN in addition to confirming the
adaptability of SMD. Dilip et al. [46] explored evaluation metrics for object detection and
proposed using bottom edge proximity as a new metric for maritime target detection. Wang
et al. [47] proposed a maritime ship detection algorithm based on YOLOv3, applying dark
channel dehazing to the original image and using YOLOv3 for real-time detection of the
processed image. Miao et al. [48] improved Resnet-50 by using the Ghost Convolution
module to construct a lightweight backbone. Zhuo et al. [49] based on the YOLOv7
algorithm, designed the SAS-FPN module, combining wireless spatial pyramid pooling and
shuffle attention to enhance detection accuracy and multi-scale object detection capabilities.

The aforementioned methods have improved the accuracy of ship detection through
various enhancements; however, some challenges persist. Optical remote sensing images
exhibit characteristics such as multi-scale, multi-aspect, small-sized targets, and complex
backgrounds when it comes to ship detection. Existing optical remote sensing ship datasets,
however, often feature homogeneous ship scenes, potentially causing models to be biased
towards dominant categories and perform poorly on minority classes, such as small-sized
or specific types of ships. Additionally, a single ship scene may hinder the model’s ability
to accurately detect targets in complex scenarios, leading to instances of both false positives
and false negatives. These challenges need to be considered when designing ship detection
methods that involve multi-scale, multi-aspect, and complex background features.

Addressing the aforementioned challenges and the need for marine ship detection
algorithms, we have developed a high-performance multi-scale ship detection network
named YOLO-RSA that has demonstrated excellent performances across various datasets.
The main contributions of this paper are as follows:

1. To address significant scale variations in the detection of diverse objects in remote
sensing ship images, we introduce a 4-layer multi-scale feature pyramid. Leveraging
this pyramid, we integrate the multi-scale features of remote sensing ships through
multi-level connections, with the goal of augmenting the saliency of features at varying
scales and enhancing detection accuracy.

2. To effectively extract features from small ships in complex backgrounds, we introduce
a mechanism that focuses on small ships to improve the success rate of extraction for
medium and small-sized ships.

3. To improve the ship detection algorithm’s performance in crowded scenes, we in-
troduce a rotated decoupling detection head during the detection stage, employing
rotated bounding boxes instead of horizontal ones for ship extraction. Moreover, we
enhance the angle prediction model by transitioning from direct angle prediction to
predicting sine and cosine values.

4. On the HRSC2016 and DOTA datasets, we compare YOLO-RSA with three existing
detection models in multiple ways, designing ablation experiments as well as Gener-
alizability Experiments to demonstrate the excellent performance of YOLO-RSA.

2. Proposed Methods
2.1. Cross-Level Feature Extraction Network

The overall YOLO-RSA framework consists of three essential modules: the feature
extraction network module, a 5-layer FPN structure, and the rotated box detection module.
The procedure is delineated as follows: Initially, pre-processed optical remote sensing
ship images are input into the feature extraction network module for preliminary feature
extraction. Subsequently, the derived features are channeled into the 5-layer FPN structure
to accomplish the integration of multi-scale features associated with remote sensing ships,
thereby generating spatial and semantic data of heightened refinement. Subsequent to
this, feature maps of varying scales are directed to the rotated box detection network
module for the prediction of rotated detection boxes. The predicted outcomes undergo
iterative optimization through a loss function, and, ultimately, following non-maximum
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suppression, the conclusive detection results are obtained. The main flow of the algorithm
is shown in Figure 1.
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2.2. Model Structure

The detailed model structure is depicted in Figure 2, delineated into three principal
components: the backbone, multi-scale feature pyramid, and rotated detection head. Given
the distinctive attributes observed in optical remote sensing images, where ships manifest
characteristics encompassing multiple scales, orientations, small target sizes, and complex
backgrounds, this study proposes a Feature Pyramid Network incorporating a 4-layer
pyramid structure. Additionally, a Small Ship Attention Mechanism (SA) is introduced to
specifically address small-scale ship targets, augmenting the salient features across various
scales and enhancing the precision of small target ship detection.
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2.2.1. Backbone Network

The primary function of the backbone network is to extract features from the image,
as depicted in Figure 2. It comprises CBS convolutional layers, E-ELAN convolutional
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modules, MP convolutional modules, and SPPCSPC modules. The CBS convolutional
layer’s role is to extract features of various scales from the image, and the E-ELAN convo-
lutional module enhances the network’s learning capabilities by adjusting computation
blocks. It serves as an efficient aggregation network, notable for retaining the original
transition structure during computation block adjustments. The MP-Conv convolutional
module combines the down sampling results of maximum pooling and convolutional
blocks, enlarging the receptive field, reducing computational complexity, and effectively
propagating global information; regarding the SPPCSPC module, its distinctive feature
lies in its ability to use four different scale sizes of maximum pooling, adapting to various
resolutions and better distinguishing objects of different scales. The structures of these
modules are detailed in Figure 3.
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2.2.2. 4-Layer Multi-Scale Feature Pyramid

The multiscale feature pyramid proposed in this paper is an improvement based on
FPN. The FPN network generates three new feature layers through lateral connections and
adjacent upper feature layers, producing richer semantic features. However, optical remote
sensing ship images possess characteristics such as high background complexity, low
contrast, small target sizes, and multiscale variations, which differ from traditional images.
The semantic features of ships extracted by the FPN algorithm may not be comprehensive
enough; therefore, building upon the FPN structure, this paper introduces a 4-layer multi-
scale feature pyramid. By increasing the number of feature layers on the basis of the FPN
network, the salience of features for objects at different scales is enhanced.

Specifically, we choose the four different resolution feature layers conv 3, conv 4,
conv 5, and conv 6 modules of the final output of the backbone network to form the
bottom-up network. As shown in Figure 2, if the image size of the input feature extraction
network is H × W pixels, the pixels of the feature maps of the four convolutional layers are
H/8 × W/8, H/16 × W/16, H/32 × W/32, and H/64 × W/64. Regarding the construction
of the bottom-up network, the input of the feature maps for each layer consists of the output
of the up-sampled feature layer of the top layer of the network after enhancement by the
shuffle attention module [50] and the output of the corresponding feature layer in the
corresponding bottom-up network after 1 × 1 convolution. After this process, we can
obtain the multilevel cross-layer feature fusion of the pyramid network. This not only
achieves the fusion of multi-scale features of remotely sensed ships, but also enables the
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model network to suppress environment-induced interference to detect targets at different
scales, as each feature layer is enhanced by the shuffle attention module.

2.2.3. Small Ship Attention Mechanism

Due to the characteristics of small size and complex backgrounds in optical remote
sensing ship images, conventional ship detection methods are susceptible to interference
when detecting small ships, resulting in both missed detections and false alarms during
the detection process. Additionally, attention mechanisms in small ship detection often
face challenges in the presence of complex backgrounds. To address this issue, this paper
proposes a Small Ship Attention Mechanism.

In this mechanism, the shuffle attention module is introduced into the feature pyramid,
continuously enhancing the network through pyramid fusion. This enables the network
to consider the same tokens in different orders and relationships. The module effectively
suppresses interference caused by the environment, improving the model’s performance
and enhancing the detection of small targets more effectively. Specifically, for a given
feature map X ∈ RH×W×C , the first step of this method involves grouping the input
features into G (we set the value of G to 64 in this paper) groups along the channel
dimension. Each group of features is then split into two branches, Xk1 ∈ RH×W×C/2G

and Xk2 ∈ RH×W×C/2G(k ∈ [1, . . . , G]), along the channel dimension. The Xk1 branch is
used to learn channel attention features and the Xk2 branch is utilized for learning spatial
attention features.

Channel attention focuses on the crucial “what” factor, and the process is described
as follows:

s = Fgp(Xk1) =
1

H × W

H

∑
i=1

W

∑
j=1

Xk1(i, j) (1)

X′
k1 = σ(Fc(s)) · Xk1 = σ(W1s + b1) · Xk1 (2)

where W1 ∈ R1×1×C/2G and b1 ∈ R1×1×C/2G parameters used to scale and shift s.
In contrast to channel attention, spatial attention concentrates on the crucial “where”

factor and serves as a complement to channel attention. In implementation, Group Norm is
initially applied to process Xk2 for obtaining statistical information at the spatial level. The
process is described as follows:

X′
k2 = σ(W2 · GN(Xk2) + b2) · Xk2 (3)

where W2 and b2 are parameters with shape R1×1×C/2G. By introducing the shuffle attention
module into the multiscale feature pyramid, the Small Ship Attention Mechanism enhances
the model’s pixel recognition performance for small ship targets in low-contrast and small-
sized conditions.

2.2.4. Rotated Detection Head

The function of the rotated detection head is to produce a rotated bounding box in
an arbitrary direction. The traditional horizontal detection box is limited for an object
with a big length–width ratio. As can be seen from Figure 4a, due to the feature of the big
length–width ratio of the remote-sensing ship, the horizontal bounding box can bring up
many redundant pixels not belonging to the ship, causing a deviation in the positioning
result. In addition, in crowded scenes, a lot of overlap among the ground true of horizontal
bounding boxes of multiple ships produces a big IOU value, which will cause the ground
true to be filtered out in NMS, cause the correct proposal region to be discarded, and result
in missing detection, which can be clearly seen in Figure 5.



J. Mar. Sci. Eng. 2024, 12, 603 7 of 20

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 20 
 

 

result. In addition, in crowded scenes, a lot of overlap among the ground true of horizon-
tal bounding boxes of multiple ships produces a big IOU value, which will cause the 
ground true to be filtered out in NMS, cause the correct proposal region to be discarded, 
and result in missing detection, which can be clearly seen in Figure 5. 

  
(a) (b) 

Figure 4. The mark of the horizontal bounding box and the rotated bounding box: (a) horizontal 
bounding box; (b) rotated bounding box. 

  
(a) (b) 

Figure 5. The mark of the horizontal bounding box and the rotated bounding box in a crowded 
scene: (a) horizontal bounding box; (b) rotated bounding box. 

Due to the limitations of the horizontal detection box, we use a rotated box detection 
head in the inspection section to inspect the ships. 

This paper’s model incorporates a rotated box detection head during the detection 
phase, producing output that includes confidence scores p, horizontal box regression pa-
rameters u, and rotated box regression parameters v. As shown in Figure 6, the detection 
head can be divided into the following main components: 
• FPN Features: extracted feature layers through the feature extraction network, uti-

lized for subsequent RPN layer and proposal extraction. 
• RPN: This network is used for generating candidate boxes. The tasks involve two 

aspects: firstly, classification, determining if there is a target within all predefined 
anchors; secondly, bounding box regression, refining anchors to obtain more accu-
rate proposals. 

• RoI Pooling: Region of Interest Pooling is employed for collecting proposals gener-
ated by RPN. It extracts feature maps from FPN Features to generate proposal feature 
maps. 

Figure 4. The mark of the horizontal bounding box and the rotated bounding box: (a) horizontal
bounding box; (b) rotated bounding box.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 20 
 

 

result. In addition, in crowded scenes, a lot of overlap among the ground true of horizon-
tal bounding boxes of multiple ships produces a big IOU value, which will cause the 
ground true to be filtered out in NMS, cause the correct proposal region to be discarded, 
and result in missing detection, which can be clearly seen in Figure 5. 

  
(a) (b) 

Figure 4. The mark of the horizontal bounding box and the rotated bounding box: (a) horizontal 
bounding box; (b) rotated bounding box. 

  
(a) (b) 

Figure 5. The mark of the horizontal bounding box and the rotated bounding box in a crowded 
scene: (a) horizontal bounding box; (b) rotated bounding box. 

Due to the limitations of the horizontal detection box, we use a rotated box detection 
head in the inspection section to inspect the ships. 

This paper’s model incorporates a rotated box detection head during the detection 
phase, producing output that includes confidence scores p, horizontal box regression pa-
rameters u, and rotated box regression parameters v. As shown in Figure 6, the detection 
head can be divided into the following main components: 
• FPN Features: extracted feature layers through the feature extraction network, uti-

lized for subsequent RPN layer and proposal extraction. 
• RPN: This network is used for generating candidate boxes. The tasks involve two 

aspects: firstly, classification, determining if there is a target within all predefined 
anchors; secondly, bounding box regression, refining anchors to obtain more accu-
rate proposals. 

• RoI Pooling: Region of Interest Pooling is employed for collecting proposals gener-
ated by RPN. It extracts feature maps from FPN Features to generate proposal feature 
maps. 

Figure 5. The mark of the horizontal bounding box and the rotated bounding box in a crowded scene:
(a) horizontal bounding box; (b) rotated bounding box.

Due to the limitations of the horizontal detection box, we use a rotated box detection
head in the inspection section to inspect the ships.

This paper’s model incorporates a rotated box detection head during the detection
phase, producing output that includes confidence scores p, horizontal box regression
parameters u, and rotated box regression parameters v. As shown in Figure 6, the detection
head can be divided into the following main components:

• FPN Features: extracted feature layers through the feature extraction network, utilized
for subsequent RPN layer and proposal extraction.

• RPN: This network is used for generating candidate boxes. The tasks involve two
aspects: firstly, classification, determining if there is a target within all predefined
anchors; secondly, bounding box regression, refining anchors to obtain more accurate
proposals.

• RoI Pooling: Region of Interest Pooling is employed for collecting proposals generated
by RPN. It extracts feature maps from FPN Features to generate proposal feature maps.

• Fully Connected Layer: Classification and Regression, utilizing proposal feature
maps to compute specific categories. Simultaneously, another round of bounding box
regression is performed to obtain the final precise position of the detection box.

• Three prediction branches: output three parameters, confidence score p, horizontal
box regression parameter u, and rotated box regression parameter v.
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Figure 6. Schematic diagram of Rotated Detection Head.

2.2.5. The Sine–Cosine Angle Prediction Branch

A rotated box is typically represented as (x, y, w, h, θ), with the angle θ presenting
a challenge.

The traditional method of rotated box angle prediction is shown in Figure 7a. If we
generate a red box with the size, as shown in the figure at the red point, and rotate the
box around the red dot, generating an anchor for every fixed angle (which you can choose
yourself), we can see that, when the red box is rotated to the position of the blue box,
it is able to match more closely with ground truth (the green box) and generate a more
appropriate anchor; in the same way, with the corresponding use of the blue region to
generate the proposal angle information θ, the relationship between proposal and ground
truth will be closer than using the horizontal box. Afterwards, by inputting a rotated
proposal with angle θ, a standard pooling result can be returned, which can be connected
to a structure similar to ROI Head to further predict the angle of the target rotated box.
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Traditional angle prediction methods predict angles directly, but in real application
scenarios, the number of ground truth on a graph may be up to dozens (such as dense
ship scenarios), and then this angle prediction method will prove excessively slow, mainly
because you need to generate enough boxes at each position. If you increase the size of the
rotating anchor for speed, the accuracy is bound to drop; thus, this paper introduces a novel
representation method for the rotated box. Rather than directly predicting θ, we choose to
predict the sine and cosine values. Introducing additional corrective degrees of freedom
improves the speed as well as the accuracy of the prediction. As shown in Figure 7b,
when generating two close proposed regions, we receive two angle information, θ1 and
θ2, and we use this angle information as an intermediate variable by setting v′sin = sinθ1,
v′cos = cos θ2. The sine–cosine angle prediction branch initially generates intermediate
result v′ =

(
vx, vy, vw, vh, v′cos, v′sin

)
. Subsequently, a custom layer is employed to refine(

v′cos, v′sin
)

into (vcos, vsin). The custom layer’s specific calculation method is outlined
as follows:

vcos =
v′cos√

(v′cos)
2 +

(
v′sin

)2
(4)

vsin =
v′sin√

(v′cos)
2 +

(
v′sin

)2
(5)

As a result, there is no need to keep repeatedly generating proposals, which can avoid
generating too many boxes that would affect the speed of detection while, at the same time,
making the predictions more accurate.

Figure 8 shows an example of a heatmap for ship detection. The heatmap of the
detection using the conventional angle prediction module is shown in Figure 8b, in which
the positive sampling region of the ship is somewhat different from the real boundary
of the ship. In contrast, the positive sampling region of the heat map of the detection
result using the positive cosine angle prediction module shown in Figure 8c is closer to the
real situation.
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2.2.6. Loss Function

In this work, the model refrains from directly predicting the five degrees of freedom for the
rotated box (x, y, w, h, θ), instead predicting six degrees of freedom (x, y, w, h, sinθ, cosθ).
In combination with the classification loss and regression loss, the expression of the loss
function in the multi-task form of the ship detection network is:

L(p, u, v) = Lcls(p∗, p) + p∗·[λ1·Lreg−H(u∗, u) + λ2·Lreg−R(v∗, v) (6)

In the equation, L represents the loss of the model in the second stage; p∗ and p denote
the true label and predicted confidence of the candidate region, respectively; u∗ and u repre-
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sent the true horizontal box regression parameters and predicted horizontal box regression
parameters of the candidate region; v∗ and v represent the true rotated box regression
parameters and predicted rotated box regression parameters of the candidate region; the
constants λ1 and λ2 serve as balancing factors for the losses in the three categories and are
both set to one in the conducted experiment.; Lcls is the loss function for confidence; and
Lreg−H and Lreg−R are the loss functions for horizontal box regression parameters and
rotated box regression parameters. The function Lcls uses the cross-entropy loss function,
defined as follows:

Lcls(p, p∗) = −logpp∗ (7)

The rotated box regression loss function Lreg−R, defined as follows

Lreg−R(v∗, v) = SmoothL1(v
∗, v) (8)

Of which

SmoothL1(m) =

{
0.5 m2, |m| < 1
|m| − 0.5, |m| ≥ 1

(9)

3. Experiments and Results
3.1. Experimental Platform

The experimental platform is based on the high-performance host with AMD Ryzen
75800 H with Radeon Graphics CPU ((Lenovo Group, Beijing, China), 16 GB DDR4
3200 MHz RAM (Lenovo Group, Beijing, China), NVIDIA GeForce RTX 3060 Laptop
GPU (6 GB, Lenovo Group, Beijing, China), while the operating system is Windows 11.
PyTorch 1.10.1, based on Python 3.9.1, was used as the development language; moreover,
CUDA 11.6 and CUDNN 8.6.0 were adopted to accelerate training on the GPU device.

3.2. Experimental Parameters

The initial learning rate is set to 0.01, the optimization method is Adaptive Moment
Estimation (Adam), the initial learning rate is set to 0.01, and the batch size is set to 10.
The dataset HRSC2016 has a training time of 112 s per epoch and the dataset DOTA has a
training time of 127 s per epoch.

3.3. Datasets

(1) HRSC2016

The HRSC201 dataset, derived from six prominent ports in Google Earth, was released
by Northwestern Polytechnical University in 2016. This dataset utilizes two annotation
formats: Horizontal Bounding Box (HBB) and Oriented Bounding Box (OBB). The image
dimensions span from 300 × 300 to 1500 × 900 pixels. The officially provided training
and test sets, equipped with rotated boxes, comprise 1061 images, encompassing a total of
2976 ship instances. The training set comprises 617 images with 1702 instances, while the
test set includes 444 images with 1274 instances.

(2) DOTA

The DOTA dataset consists of 2806 optical images with dimensions ranging from
800 × 800 to 4000 × 4000 pixels, covering 188,282 instances distributed across 15 cate-
gories [51]. In this study, we specifically leverage images from DOTA annotated with
rotated boxes, concentrating on instances related to ships. The officially provided train-
ing and test sets display notable variations in image sizes, surpassing the dimensions
of 1000 × 1000 pixels. Consequently, we performed appropriate cropping on the official
dataset, resulting in an experimental dataset comprising 1014 images and containing
79,824 instances.

Table 1 presents detailed information about the datasets used in the experiments,
including the number of images, instances of ships, image dimensions, and resolution. Due
to the primary purpose of the DOTA dataset, which is to provide high-resolution aerial
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images for object detection and classification, and not to emphasize precise geographical
coordinates or geodetic accuracy, the dataset does not provide the exact geographical
resolution of the images.

Table 1. Detailed information about the two datasets.

Datasets HRSC2016 DOTA

Image number 1061 1014
Ship number 2976 73,824

Size(pixel) 300 × 300~1500 × 900 800 × 800~1500 × 1500
Resolution(m) 0.4~2 -

- The DOTA dataset does not provide the exact geographical resolution.

3.4. Evaluation Indicators

We use precision (P), recall (R), and average precision (AP) as evaluation metrics for
our proposed model. The better the model, the higher the values of P, R, and AP. MAP is
the mean value of multiple classes of AP, and there is only one class in our dataset, so in
this experiment, the value of MAP is the value of AP.

Precision and recall are calculated as follows:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

where TP is the number of ship targets detected correctly, FP is the number of ship targets
detected incorrectly, and FN is the number of ship targets that were missed. The AP is the
average of the accuracies obtained for IOU at 0.05 intervals between 0.5 and 0.95 and can
be calculated by using both precision and recall, The calculations are as follows:

AP =
∫ 1

0
P(R)dR (12)

mAP =
1
N

N

∑
i=1

AP(i) (13)

3.5. Results
3.5.1. Ablation Experiment

YOLO-RSA is a ship detection model that integrates a multi-scale feature pyramid,
Small Ship Attention Mechanism, and rotated detection head. To evaluate the impact of each
module and improvement component, this study conducted an ablation experiment. The
experimental methodology is outlined below: initially, we employed a model, denoted as
M1, which combines the FPN network with a rotated box detection head directly predicting
angles as the baseline for the ablation experiment. Experiments were conducted using the
HRSC2016 dataset, and by means of comparative analysis, we assessed the contributions
of each module and improvement component to the prediction results. The experimental
findings are summarized in Table 2, where 4-FP signifies a 4-layer Multi-Scale Feature
Pyramid, SA represents a Small Ship Attention Mechanism, and SC corresponds to the
sine–cosine angle prediction branch. M2 and M3 represent the model code names under
different improvement strategies, respectively.
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Table 2. The result of Ablation Experiment.

NO. Improvement Strategy Dataset P R mAP

1 M1

HRSC2016

0.837 0.846 0.839
2 M1 + 4 − FP (M2) 0.874 0.853 0.865
3 M1 + 4 − FP + SA (M3) 0.911 0.897 0.905
4 M1 + 4 − FP + SA + SC (YOLO-RSA) 0.923 0.911 0.917

Table 2 reveals that the 4-layer Multi-Scale Feature Pyramids network exerts a substan-
tial influence on detection outcomes. Precision (P), Recall (R), and Mean Average Precision
(MAP) metrics increased by 3.8%, 0.7%, and 2.6%, respectively. The proposed 4-layer Multi-
Scale Feature Pyramid network in this study generates more intricate semantic features,
augmenting feature saliency for targets at varying scales. Given the multi-scale and intricate
background characteristics of optical remote sensing images, the 4-layer Multi-Scale Feature
Pyramid network exhibits a significant enhancement in detection results. In Experiment 3,
it is observed that incorporating the Small Ship Attention Mechanism elevates the model’s
mAP to 0.945. This suggests that introducing the shuffle attention module mitigates false
negatives for small-scale ships, a consequence of unknown feature extraction in the M1
model algorithm. Lastly, the sine–cosine angle prediction branch has a minimal impact
on detection results. Nevertheless, the slight increase in mAP implies that the sine–cosine
angle prediction branch indeed contributes to more precise predictions of rotated angles.

Figure 9, generated based on the experimental results, illustrates mean average pre-
cision (mAP) curves for the detection results of YOLO-RSA, M1, M2, and M3. We can
see that the mAP curve of YOLO-RSA is significantly superior to the mAP curves of M1,
M2, and M3, while the mAP curves of M1, M2, and M3 are enhanced sequentially, which
indicates that the effect of each improvement component added to the model extraction
effect is positive.
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Additionally, Figure 10a,b depict the bounding box loss of the YOLO-RSA, M1, M2
and M3 models on both the training and validation sets throughout the experiment process.
The graphs clearly show that, in both the training and validation sets, the bounding box loss
of the YOLO-RSA model is consistently lower than the M1, M2, and M3 models, signifying
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the superior accuracy of the detection boxes produced by YOLO-RSA. Meanwhile, the
bounding box loss of M1, M2, and M3 decreases sequentially, indicating that the inclusion of
each improvement component makes the detection box more accurate. Each improvement
component can effectively improve the detection effect.
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3.5.2. Comparison Experiment with Other Models

In order to substantiate the efficacy of the proposed methodology in this study, we
utilized three prevalent ship detection models, specifically R2CNN [52], RRPN [53], and
YOLOv7. Comparative experiments were executed on the HRSC2016 and DOTA datasets,
with a comparative analysis against YOLO-RSA. The outcomes of these comparative
experiments are comprehensively presented in Table 2.

The experimental results indicate that, whether in the HRSC2016 dataset or the DOTA
dataset, YOLO-RSA achieved the highest mAP (91.7% in HRSC and 83.0% in DOTA). This
is attributed to the 4-layer Multi-Scale Feature Pyramids network, which generated rich
semantic features, enhanced the saliency of features for different scale targets, reduced
interference from background environments on detection results, and consequently im-
proved the precision of the model’s detection. Additionally, the Small Ship Attention
Mechanism strengthened the model’s sensitivity to low contrast and small targets in im-
ages of small ships, reducing the probability of false negatives. From Table 3, it is evident
that the detection performance of the four models on the DOTA dataset is inferior to that
on the HRSC2016 dataset. Specifically, R2CNN, RRPN, and YOLOv7 experienced decreases
of 37%, 29.2%, and 15.2%, respectively, in mAP on the DOTA dataset compared to the
HRSC2016 dataset. This is mainly attributed to the DOTA dataset containing numerous
instances of small and medium-sized ships, leading to a higher likelihood of missed detec-
tions and false positives. In contrast, YOLO-RSA exhibited only an 8.7% decrease in mAP
on the DOTA dataset compared to HRSC2016, indicating that the detection performance of
the YOLO-RSA model for small and medium-sized ships surpasses that of other models.
Overall, YOLO-RSA outperforms the other three models in terms of ship detection.
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Table 3. The result of Comparison Experiment.

Model Dataset P R mAP

R2CNN
HRSC2016 0.863 0.849 0.853

DOTA 0.658 0.437 0.483

RRPN
HRSC2016 0.882 0.839 0.864

DOTA 0.588 0.639 0.572

YOLOv7
HRSC2016 0.912 0.864 0.887

DOTA 0.896 0.724 0.735

YOLO-RSA
HRSC2016 0.923 0.911 0.917

DOTA 0.907 0.796 0.830

3.5.3. Generalizability Experiments

Owing to the utilization of the HRSC2016 and DOTA training sets and validation sets
for model training, evaluating the model’s generalizability using optical remote sensing
ship images not encountered during training becomes crucial. Consequently, images with
complex backgrounds from the HRSC2016 and DOTA test sets were selected as the dataset
for generalizability experiments. The test samples encompass ships of different scales
and feature various background and environmental characteristics. Subsequently, we will
compare and analyze the specific experimental results for multiple scenarios in the test
dataset to elucidate the model’s generalizability across different scenarios.

(1) Effectiveness of Ship Detection in Different Scenarios

The detection outcomes in different scenarios are depicted in Figure 11. Ship targets of
different scales are presented in Figure 11I, while interference factors, such as harbors, are
present in the background. It is notable that both Figure 11I(a,b) manifest instances of false
positives, characterized by a noticeable displacement between the detection box and the
actual ship boundary. In contrast, although Figure 11I(c) does not display false positives,
its detection accuracy is inferior when compared to Figure 11I(d). Through a thorough
examination of the detection results presented in the figure, it becomes apparent that
YOLO-RSA effectively improves the precision of ship detection in multi-scale ship scenes.

Detection results in a blurry environmental setting are compared, as depicted in
Figure 11II. For ship scenes in foggy weather conditions, we observe that, due to back-
ground interference, the positions of detection boxes in Figure 11II(a–c) all exhibit dis-
placement from the actual ship boundaries, resulting in significant redundant areas. This
is attributed to the blurred environmental background causing the detection model to
mistakenly identify some ports as ships. In contrast, the detection box in Figure 11II(d)
is much closer to the actual ship boundary. Thus, it can be concluded that, in a blurry
background environment, VOLO-RSA achieves accurate and reliable ship detection.

The detection results in a crowded ship scenario are compared, as shown in Figure 11III.
The arrangement of ships in the figure is highly dense. In both Figure 11III(a,b), there
are varying degrees of false detections of containers and other objects, with instances of
predicted bounding boxes overlapping. In Figure 11III(c), some predicted bounding boxes
exhibit larger redundant areas; however, in Figure 11III(d), the detection boxes closely
align with the actual boundaries of the ships, and therefore, in crowded ship scenarios, the
detection results of VOLO-RSA remain highly accurate and reliable.

A comparison of the detection results for a ship in motion is shown in Figure 11IV,
where in Figure 11IV(a,b) there are instances where the currents generated by the ship in
motion are recognized as ships. In Figure 11IV(c), the predicted bounding box has a larger
redundant region. In contrast, in Figure 11IV(d), the detection boxes are all closer to the
real boundaries of the ship.

The comparison of test results under low lighting conditions is shown in Figure 11V.
It can be observed, that due to the change in radiation amount, the resolution of the ship
image decreases, and the situation of false detection appears in Figure 11V(a,b). At the
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same time, the position of the detection box is offset from the real boundary of the ship,
and there is a large redundancy area. In Figure 11V(c), the predicted boundary box differs
considerably from the true boundary of the ship. In Figure 11V(d), the detection boxes are
relatively close to the real boundary of the ship. Under low light conditions, VOLO-RSA
still has good performance.
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(2) Detection Effectiveness of Small Ship Targets

The detection results of small-sized ship targets are compared, as illustrated in
Figure 12. The figure predominantly features small-scale ship targets with background
interference, such as ports, roads, and houses. In Figure 12I(a), there is a case of misidenti-
fying a house as a ship, while in Figure 12I(b), there is a situation of identifying a port as
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a ship. Additionally, Figure 12I(a–c) all exhibit varying degrees of missed detections. In
contrast, Figure 12I(d) shows neither missed nor false detections.
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If we observe Figure 12II, we can see that the large ships in Figure 12II(a–c) are all
detected, while, for the small ships on the right side of the image, only a fraction of them are
detected in Figure 12II(c), and they are completely ignored in Figure 12II(a,b). In contrast,
all ships in Figure 12II(d) are detected.

Turning to Figure 12III, which is an image of a large ship travelling together with a
small ship, it is clear from Figure 12III(a,b) that we can see that the small ships at the stern
of the large ship have been missed. Both Figure 12III(c,d) correctly identify all the ships in
the image, although, in contrast, Figure 12III(d) shows better detection than Figure 12III(c).

This is followed by Figure 12IV, with only one small ship in the image. In Figure 12IV(a)
there is no correct detection and only one false detection; in Figure 12IV(b) we do not see
any detection box. In Figure 12IV(c), although the small ship is recognized, it also produces
a false detection. In Figure 12IV(d), the target is correctly identified.

Moving on to the last case, the large ship is in close proximity to the small ship. We can
see that in Figure 12V(a–c), all produce missed detections. The detection in Figure 12V(d)
is the best.

In summary, YOLO-RSA demonstrates robust performance in ship images across vari-
ous scenarios, and its detection results exhibit high accuracy and reliability under diverse
conditions (especially for small ship targets), highlighting the method’s strong adaptability.

3.6. Discussion of Experimental Results

In order to verify the effectiveness of the algorithm proposed in this paper, a total of
three experiments are designed in this paper, which are ablation experiment, comparison
experiment and generalizability experiments. In the ablation experiment, we demonstrate
the effectiveness of the various modules of this design by comparing the model test results
under four improvement strategies; in the comparison experiment, we compare YOLO-RSA
with three currently popular ship detection methods. In the dataset HRSC2016, YOLO-
RSA’s model detection mAP is improved by 6.4%, 5.3%, and 3.0% compared to R2CNN,
RRPN, and YOLOv7, respectively. Additionally, in the dataset DOTA, YOLO-RSA’s model
detection mAP is improved by 34.7%, 25.8% and 9.5% compared to R2CNN, RRPN and
YOLOv7, respectively, which indicates that YOLO-RSA has the best detection performance
in both of the above datasets; In the generalizability experiments, we compare the detection
results of YOLO-RSA with three popular algorithms in the HRSC2016 and DOTA test
sets. The results show that YOLO-RSA has good generalizability and applicability, still
performing well compared to R2CNN, RRPN, and YOLOv7 in never-encountered optical
remote sensing ship images, especially in the detection of small target ships.

4. Conclusions

To tackle the ship detection challenge in high-resolution optical remote sensing images,
we introduce a network model named YOLO-RSA that comprises three main components:
a backbone feature extraction network, a multi-scale feature pyramid, and a rotated detec-
tion head. In order to improve the feature saliency of different scale objects and to integrate
the multi-scale features of remote sensing ships, we design a 4-layer multi-scale feature
pyramid and add the shuffle attention module to the bottom-up network to form a small
ship target attention mechanism so as to increase the algorithm’s effectiveness in detecting
the small ship targets. Finally, in the angle prediction branch, we propose a sine–cosine
angle prediction branch that predicts the angle by predicting the sine–cosine value of the
angle, possessing higher accuracy compared to direct angle prediction. YOLO-RSA is
evaluated through experiments with the HRSC2016 and DOTA datasets, and the results
indicate remarkable performance in ship detection. Notably, compared to traditional meth-
ods, YOLO-RSA excels in accurately identifying ships of various scales, particularly small
targets, while maintaining robust detection capabilities in complex environmental back-
grounds. Ablation experiments are conducted to validate the performance enhancement of
each module in YOLO-RSA, benchmarked against the baseline model M1. Comparative ex-
periments showcase YOLO-RSA’s superiority over three popular ship detection algorithms,
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emphasizing its heightened detection accuracy. Moreover, generalizability experiments af-
firm that YOLO-RSA consistently demonstrates outstanding detection performance across
diverse scenarios.

However, there is still room for improvement in our proposed model, and we will
focus on the following aspects in our future work: Firstly, in terms of dataset, the image
dataset trained in this paper is relatively insufficient, so more remote sensing images should
be collected in the subsequent research. Furthermore, the classification of ships can become
more detailed; this paper did not classify the ship dataset, so the subsequent research can
be subdivided into ship image types. Finally, we need to improve the detection speed and
model robustness. Due to the improvement of accuracy, the detection time will increase
accordingly. We must try to reduce the model detection time without affecting the model
accuracy to adapt to different application scenarios, such as large-scale ship monitoring in
the target sea area and so on.
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