Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties
Abstract
:1. Introduction
- Bed sediment type and grain size distribution;
- Water–sediment interface roughness and physical configuration (ripples; heterogeneous scatterers, such as shells, gravel, or seagrass);
- Sediment thickness and layering;
- Sediment plume composition and behavior (particle size distribution, plume shape dynamics and concentration).
2. Materials and Methods
2.1. Experimental Design
2.2. Acoustic Systems
2.3. Equipment Installation in the Delta Flume
2.4. Measurement Operations
2.5. Data Analysis
3. Results
3.1. Echoes from Flume Floor and Walls
3.1.1. SBES
3.1.2. MBES
3.2. Suspended Sediment Plume Echoes in the Water Column
3.2.1. SBES
3.2.2. ABS
3.2.3. MBES
4. Discussion
4.1. Bed and Plume Detection
4.2. Suspended Sediment Plume Concentration, Grain Size and Dynamics
5. Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Hughes Clarke, J.E. Optimal Use of Multibeam Technology in the Study of Shelf Morphodynamics. In Sediments, Morphology and Sedimentary Processes on Continental Shelves; Li, M.Z., Sherwood, C.R., Hill, P.H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 1–28. [Google Scholar]
- Hughes Clarke, J.E. Multibeam Echosounders. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Berlin, Germany, 2018; Chapter 3; pp. 25–41. [Google Scholar]
- Gaida, T.C.; Tengku Ali, T.A.; Snellen, M.; Amiri Simkooei, A.; Van Dijk, T.A.G.P.; Simons, D.G. A multispectral Bayesian classification method for increased acoustic discrimination of seabed sediments using multi-frequency multibeam backscatter data. Geosciences 2018, 8, 455. [Google Scholar] [CrossRef]
- Gaida, T.C.; Van Dijk, T.A.G.P.; Snellen, M.; Vermaas, T.; Mesdag, C.; Simons, D.G. Monitoring underwater nourishments using multibeam bathymetric and backscatter time series. Coast. Eng. 2020, 158, 103666. [Google Scholar] [CrossRef]
- Brown, C.J.; Beaudoin, J.; Brissette, M.; Gazzola, V. Multispectral Multibeam Echo Sounder Backscatter as a Tool for Improved Seafloor Characterization. Geosciences 2019, 9, 126. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G. Development of Seafloor Mapping Strategies Supporting Integrated Marine Management—Application of Seafloor Backscatter by Multibeam Echosounders. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2019. [Google Scholar]
- Bai, Q.; Mestdagh, S.; Snellen, M.; Simons, D.G. Indications of marine benthos occurrence from multi-spectral multi-beam backscatter data: A case study in the North Sea. Front. Earth Sci. 2023, 11, 1140649. [Google Scholar] [CrossRef]
- Schulze, I.; Gogina, M.; Schönke, M.; Zettler, M.L.; Feldens, P. Seasonal change of multifrequency backscatter in three Baltic Sea habitats. Front. Remote Sens. 2022, 3, 956994. [Google Scholar] [CrossRef]
- Colbo, K.; Ross, T.; Brown, C.; Weber, T. A review of oceanographic applications of water column data from multibeam echosounders. Estuar. Coast. Shelf Sci. 2014, 145, 41–56. [Google Scholar] [CrossRef]
- Koslow, J.A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 2009, 66, 966–973. [Google Scholar] [CrossRef]
- Trenkel, V.; Ressler, P.; Jech, M.; Giannoulaki, M.; Taylor, C. Underwater acoustics for ecosystem-based management: State of the science and proposals for ecosystem indicators. Mar. Ecol. Prog. Ser. 2011, 442, 285–301. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Lawson, G.L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 2016, 8, 463–490. [Google Scholar] [CrossRef]
- Simmons, S.M.; Parsons, D.R.; Best, J.L.; Oberg, K.A.; Czuba, J.A.; Keevil, G.M. An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment. Appl. Acoust. 2017, 126, 81–90. [Google Scholar] [CrossRef]
- Fromant, G.; Le Dantec, N.; Perrot, Y.; Floc’h, F.; Lebourges-Dhaussy, A.; Delacourt, C. Suspended sediment concentration field quantified from a calibrated MultiBeam EchoSounder. Appl. Acoust. 2021, 180, 108107. [Google Scholar] [CrossRef]
- Weber, T.C.; Mayer, L.; Jerram, K.; Beaudoin, J.; Rzhanov, Y.; Lovalvo, D. Acoustic estimates of methane gas flux from the seabed in a 6000 km2; region in the Northern Gulf of Mexico. Geochem. Geophys. Geosyst. 2014, 15, 1911–1925. [Google Scholar] [CrossRef]
- Spain, E.; Lamarche, G.; Lucieer, V.; Watson, S.J.; Ladroit, Y.; Heffron, E.; Pallentin, A.; Whittaker, J.M. Acoustic Predictors of Active Fluid Expulsion From a Hydrothermal Vent Field, Offshore Taupō Volcanic Zone, New Zealand. Front. Earth Sci. 2022, 9, 785396. [Google Scholar] [CrossRef]
- Janowski, Ł.; Pydyn, A.; Popek, M.; Gajewski, J.; Gminska-Nowak, B. Towards better differentiation of archaeological objects based on geomorphometric features of a digital elevation model, the case of the Old Oder Canal. Archaeol. Prospect. 2024, 1–12. [Google Scholar] [CrossRef]
- Demer, D.A.; Berger, L.; Bernasconi, M.; Bethke, E.; Boswell, K.; Chu, D.; Domokos, R.; Dunford, A.; Fassler, S.; Gauthier, S.; et al. Calibration of Acoustic Instruments; ICES Cooperative Research Report No. 326; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2015. [Google Scholar]
- Lurton, X.; Lamarche, G. (Eds.) Backscatter Measurements by Seafloor-Mapping Sonars: Guidelines and Recommendations. 2015. Available online: https://zenodo.org/records/10089261 (accessed on 27 March 2024).
- Eleftherakis, D.; Berger, L.; Le Bouffant, N.; Pacault, A.; Augustin, J.-M.; Lurton, X. Backscatter calibration of high-frequency multibeam echosounder using a reference single-beam system on natural seafloor. Mar. Geophys. Res. 2018, 39, 55–73. [Google Scholar] [CrossRef]
- Roche, M.; Degrendele, K.; Vrignaud, C.; Loyer, S.; Le Bas, T.; Augustin, J.-M.; Lurton, X. Control of the repeatability of high frequency multibeam echosounder backscatter by using natural reference areas. Mar. Geophys. Res. 2018, 39, 89–104. [Google Scholar] [CrossRef]
- Snellen, M.; Gaida, T.C.; Koop, L.; Alevizos, E.; Simons, D.G. Performance of Multibeam Echosounder Backscatter-Based Classification for Monitoring Sediment Distributions Using Multitemporal Large-Scale Ocean Data Sets. IEEE J. Ocean. Eng. 2019, 44, 142–155. [Google Scholar] [CrossRef]
- Applied Physics Laboratory (APL). APL-UW High-Frequency Ocean Environmental Acoustic Models Handbook; Technical Report APL-UW TR9407; APL, University of Washington: Seattle, WA, USA, 1994. [Google Scholar]
- Gaida, T.C.; Snellen, M.; Van Dijk, T.A.G.P.; Simons, D.G. Geostatistical modelling of multibeam backscatter for full coverage seabed sediment maps. Hydrobiologia 2019, 845, 55–79. [Google Scholar] [CrossRef]
- Gaida, T.C. Acoustic Mapping and Monitoring of the Seabed—From Single-Frequency to Multispectral Multibeam Backscatter. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Thorne, P.D.; Pace, N.G.; Al-Hamdani, Z.K.S. Laboratory measurements of backscattering from marine sediments. J. Acoust. Soc. Am. 1988, 84, 303–309. [Google Scholar] [CrossRef]
- Parthiot, F.; de Nanteuil, E.; Merlin, F.X.; Zerr, B.; Guedes, Y.; Lurton, X.; Augustin, J.-M.; Cervenka, P.; Marchal, J.; Sessarego, J.P.; et al. Sonar detection and monitoring of sunken heavy fuel oil on the seafloor. In Proceedings of the lnterspill 2004 Conference, Trondheim, Norway, 14–17 June 2004. [Google Scholar]
- Ivakin, A.N.; Sessarego, J.P. High frequency broad band scattering from water-saturated granular sediments: Scaling effects. J. Acoust. Soc. Am. 2007, 122, 165–171. [Google Scholar] [CrossRef]
- Williams, K.L.; Jackson, D.A.; Tang, D.; Briggs, K.B.; Thorsos, E.I. Acoustic backscattering from a sand and a sand/mud environment: Experiments and data/model comparisons. IEEE J. Ocean. Eng. 2009, 34, 388–398. [Google Scholar] [CrossRef]
- Li, J.; An, W.; Xu, C.; Hu, J.; Gao, H.; Du, W.; Li, X.Y. Sunken oil detection and classification using MBES backscatter data. Mar. Pollut. Bull. 2022, 180, 113795. [Google Scholar] [CrossRef] [PubMed]
- Van Gent, M.R.A. The new Delta Flume for large-scale testing. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Trenkel, V.M.; Mazauric, V.; Berger, L. The new fisheries multibeam echosounder ME70: Description and expected contribution to fisheries research. ICES J. Mar. Sci. 2008, 65, 645–655. [Google Scholar] [CrossRef]
- Kongsberg EK80 Wide Band Scientific Echo Sounder—Reference Manual—Release 23.6.0, Kongsberg Technical Document 395234/J 2023. Available online: https://www.kongsbergdiscovery.net/ek80/documents.htm (accessed on 14 March 2024).
- Kongsberg EM2040c Product Specification. Kongsberg Technical Document 2017. Available online: https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/369468_em2040c_product_specification.pdf (accessed on 20 March 2024).
- Kongsberg Seapath 130 Series Datasheet. Kongsberg Technical Document 2023. Available online: https://www.kongsberg.com/contentassets/c22a596095db4994a5f26ba216b6b968/110-0034148a_datasheet_seapath130_apr23.pdf (accessed on 20 March 2024).
- AQUAScat 1000S Datasheet. Aquatech Technical Document 2024. Available online: https://www.aquatecgroup.com/images/Datasheets/Aquatec_AQUAscat_1000S_Datasheet.pdf (accessed on 20 March 2024).
- SIDUS. SS250 Pan & Tilt Device “Deep Blue”. SIDUS Technical Document. Available online: https://www.sidus-solutions.com/product/ss250-pan-tilt-device-deep-blue/ (accessed on 20 March 2024).
- Augustin, J.-M.; Fezzani, R.; Poncelet, C.; Scalabrin, C. SonarScope Software; SEANOE: Plouzane, France, 2022; Available online: https://www.seanoe.org/data/00766/87777/ (accessed on 20 March 2024).
- Urban, P.; Köser, K.; Greinert, J. Processing of multibeam water column image data for automated bubble/seep detection and repeated mapping. Limnol. Oceanogr. Methods 2017, 15, 1–21. [Google Scholar] [CrossRef]
- Thorne, P.D.; Hanes, D.M. A review of acoustic measurement of small-scale sediment processes. Cont. Shelf Res. 2002, 22, 603–622. [Google Scholar] [CrossRef]
- Betteridge, K.F.E.; Thorne, P.D.; Cooke, R.D. Calibrating multi-frequency acoustic backscatter systems for studying near-bed suspended sediment transport processes. Cont. Shelf Res. 2008, 28, 227–235. [Google Scholar] [CrossRef]
- Francois, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part I: Pure water and magnesium sulphate contributions. J Acoust. Soc. Am. 1982, 72, 896–907. [Google Scholar] [CrossRef]
- Francois, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 1982, 72, 1879–1890. [Google Scholar] [CrossRef]
- Moate, B.D.; Thorne, P.D. Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Cont. Shelf Res. 2012, 46, 67–82. [Google Scholar] [CrossRef]
- Hughes-Clarke, J. Applications of multibeam water column imaging for hydrographic survey. Hydrogr. J. 2006, 120, 3. [Google Scholar]
- Fettweis, M.; Francken, F.; Pison, V.; Van den Eynde, D. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Mar. Geol. 2006, 235, 63–74. [Google Scholar] [CrossRef]
- Fettweis, M.; Nechad, B.; Van den Eynde, D. An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Cont. Shelf Res. 2007, 27, 1568–1583. [Google Scholar] [CrossRef]
- Jensen, J.H.; Saremi, S.; Jimenez, C.; Hadjioannou, L. Field experimental observations of highly graded sediment plumes. Mar. Pollut. Bull. 2015, 95, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.; Kemps, H. Generation and Release of Sediments by Hydraulic Dredging: A Review; Report of Theme 2—Project 2.1; The Dredging Science Node, Western Australian Marine Science Institution: Perth, WA, Australia, 2006; 97p. [Google Scholar]
- Van Dijk, T.A.G.P.; Roche, M.; Lurton, X.; Fezzani, R.; Simmons, S.M.; Gastauer, S.; Fietzek, P.; Mesdag, C.; Berger, L.; Klein Breteler, M.; et al. Recorded Data with EM2040 MBES, EK80 SBES and Aquascat System during the BSinFlume Feasibility Experiment in the Delta Flume, Deltares, The Netherlands in 2020. SEANOE. 2020. Available online: https://www.seanoe.org/data/00818/93014/ (accessed on 20 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Dijk, T.A.G.P.; Roche, M.; Lurton, X.; Fezzani, R.; Simmons, S.M.; Gastauer, S.; Fietzek, P.; Mesdag, C.; Berger, L.; Klein Breteler, M.; et al. Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties. J. Mar. Sci. Eng. 2024, 12, 609. https://doi.org/10.3390/jmse12040609
Van Dijk TAGP, Roche M, Lurton X, Fezzani R, Simmons SM, Gastauer S, Fietzek P, Mesdag C, Berger L, Klein Breteler M, et al. Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties. Journal of Marine Science and Engineering. 2024; 12(4):609. https://doi.org/10.3390/jmse12040609
Chicago/Turabian StyleVan Dijk, Thaiënne A. G. P., Marc Roche, Xavier Lurton, Ridha Fezzani, Stephen M. Simmons, Sven Gastauer, Peer Fietzek, Chris Mesdag, Laurent Berger, Mark Klein Breteler, and et al. 2024. "Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties" Journal of Marine Science and Engineering 12, no. 4: 609. https://doi.org/10.3390/jmse12040609
APA StyleVan Dijk, T. A. G. P., Roche, M., Lurton, X., Fezzani, R., Simmons, S. M., Gastauer, S., Fietzek, P., Mesdag, C., Berger, L., Klein Breteler, M., & Parsons, D. R. (2024). Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties. Journal of Marine Science and Engineering, 12(4), 609. https://doi.org/10.3390/jmse12040609