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Abstract: This paper investigates an anticipatory activation anti-windup approach based on Linear
Active Disturbance Rejection Control (LADRC) to address the influences of accelerated saturation on
the actuators in a Miniaturized Inertial Stabilized Platform (MISP) with extreme external disturbance.
The proposed method aims to eliminate the high-frequency vibrations on the Line of Sight (LOS)
of electro-optical devices during actuator saturation. To achieve this, the Linear Extended State
Observer (LESO) is modified by adding saturation feedback to the total disturbance observed state
variable, which is operated as an anticipatory activation anti-windup compensator. The stability of the
proposed controller is discussed, and the gains are optimized by the Linear Matrix Inequality (LMI)
constraints though quadratic programming and an H-infinite performance indicator. Additionally, as
the multiple activated scheme for anti-windup, the effectiveness of immediate activation in dealing
with accelerated saturation is compared and analyzed. These comparisons and verification are
implemented through simulations, where the external disturbance is introduced using recorded
attitude data from USV sailing. Finally, experiments are conducted on an MISP for a visual tracking
system, demonstrating that the anticipatory activation mothed effectively suppresses high-frequency
vibrations on the LOS during instances of accelerated saturation.

Keywords: robustness control; accelerated saturation; LADRC; quadratic programming; anti-windup; LMI

1. Introduction

The Miniaturized Inertial Stabilized Platform (MISP) presents extensive application
in Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) to stabi-
lize electro-optical devices for high-precision control of the Line of Sight (LOS) [1–5].
This technology is indispensable for performing complex tasks, such as visual-aided au-
tonomous navigation [6–10] and target tracking in coast patrol [11,12]. Moreover, the joint
USV-UAV operations [13–16] in marine environments characterized by complex and ran-
dom disturbances, such as wave motion, turbulence, and environmental gusts, are also
required urgently. To meet the requirements of unmanned vehicle applications, researchers
have been dedicated to enhancing the performance of the MISP. The modified Kalman filter
has been applied in dual-axial MISPs to enhance precision in target tracking for surveying
and mapping [17]. Furthermore, the angular signal of an MISP is leveraged to improve
navigation precision for obstacle detection and avoidance [18,19]. Refs. [20,21] employed a
camera-stabilized gimbal system to track the landmarks for localization and navigation
when an autonomous vehicle explores the unknown and GPS signals are denied in the
environments. Ref. [22] implemented a dynamic camera for visual-inertial navigation using
an MISP, with the parametrization of the actuated mechanism enabling online calibration.

Currently, to meet the requirements of diverse loads for the miniaturized unmanned
vehicles, gear-driven actuators with a large torque output are employed in MISPs to adjust
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the frame for stabilizing the LOS. However, the actuators experience saturation in angular
acceleration during the stabilized control of the LOS when unmanned vehicles operate with
high-frequency and large-amplitude external disturbances, such as marine environments.
The vibrations caused by accelerated saturation affect the target identification for the visual
sensors, particularly when the MISP operates in a low-power condition of the unmanned
vehicle. Therefore, the problems in the control system are characterized by high-frequency
random disturbances and uncertain conditions; most control strategies are restricted by the
demand for the low-cost of the design of the MISP.

Fortunately, the Active Disturbance Rejection Controller (ADRC), proposed in the
1990s by Han and theorized in [23], does not rely on the system model and exhibits a
superior performance in addressing uncertain conditions during the control process. Par-
ticularly, Gao designed the Linear ADRC (LADRC) by applying the scaling and bandwidth
parameterization mentioned in [24], to meet the demands of convenient application, espe-
cially when operated on low-cost microchips for designers. In recent years, researchers have
utilized a modified ADRC to enhance system performance under nonlinear constraints and
actuator saturation. Ref. [25] combines the trajectory linearization control and ADRC for a
hypersonic reentry vehicle attitude tracking system, achieving a good performance when
overcoming actuator saturation. Refs. [26,27] investigate the use of an ADRC for stabilizing
nonlinear systems with actuator saturation and demonstrate that local stabilization can be
achieved in a region including the origin. Moreover, modified Extended State Observer
(ESO) techniques have been proposed in [28–31] to estimate system states and disturbances
simultaneously without a time delay. These techniques are adapted as anti-windup com-
pensators to address input saturation and time delays in actuators. A novel robustness
controller for the anti-windup loop has been modified using an improved ESO, which
accurately estimates the state and disturbance under Magnitude and Rate Saturation (MRS)
conditions, thereby enhancing the stability of uncertain nonlinear systems [32]. The anti-
windup ESO is proposed to estimate disturbances under input saturations, demonstrating
good performances in both Unmanned Ground Vehicles (UGVs) path-following control [33]
and turbofan engine systems [34]. Refs. [35–38] investigate a multiple activated scheme for
anti-windup control, which is convenient to be realized in engineering, especially satisfying
the low-cost controller for the antenna servo system in uncertain conditions when combined
with an LADRC. A robust, adaptive, multistage anti-windup control based on anticipatory
activation is developed in [39] to handle input constraint for dynamic-positioning ships and
improves the transient performance significantly. Ref. [40] investigates a permanent-type
axial-gap-bearing motorless control system, which includes a robust controller combined
with disturbance observers and anticipatory activation anti-windup compensator, achiev-
ing high-accuracy control for speed tracking. However, the methods mentioned above do
not consider situations where the actuator is limited by acceleration. As an unmanned
miniaturized device, the performance of the actuator’s acceleration is constrained by power
supplies and often overlooked by designers. Therefore, an anti-windup LADRC with an
anticipatory activation compensator is proposed to address these challenges. The primary
contributions of this research could be summarized as follows:

1. Accelerated saturation in gear actuators is proposed for the first time. The model of
this phenomenon is developed, and its influence on MISPs is analyzed. To address
this problem, an anti-windup method based on an LADRC is proposed. This method
can be conveniently implemented in a low-cost system;

2. As part of the multiple activated anti-windup method, the limitations of immediate
activations in dealing with accelerated saturation are analyzed. By combining the
LESO with saturation feedback, the modified anticipatory activation anti-windup
compensator is proposed and verified;

3. The proposed method enhances the robustness of visual tracking by the MISP control
system, effectively mitigating the high-frequency vibrations on the LOS induced by
accelerated saturation, thereby improving the effectiveness of target identification.
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The rest of this paper is organized as follows. In Section 2, the accelerated saturation is
modeled and analyzed. In Section 3, the proposed controller is designed and discussed in
detail. In Section 4, simulations of the proposed method are implemented based on angular
rate tracking for stabilized control. In Section 5, experiments are conducted with a visual
stabilized and tracking platform. Finally, the conclusions are presented in Section 6.

2. Model of Accelerated Saturation

The actuator’s acceleration constraint could be represented as an input saturation
model, which facilitates the analysis and is addressed by an anti-windup method. This
model is expressed as:

sat(u) = sign(u)min{|ka·u|, amax} (1)

As illustrated in Figure 1, the saturation function, denoted as sat(u), comprises a linear
segment with a gain, ka, and the output is a = ka·u, representinng the acceleration of the
actuator. Then, a saturation segment with a limitation of amax, corresponding to the input,
ua, represents the maximum absolute value of acceleration.
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Figure 1. The model of accelerated saturation.

The stabilized control system for the MISP, as illustrated in Figure 2, incorporates the
accelerated saturation of the actuator. It operates as an inertial stabilized loop when the
input reference, r = 0, serves as an inertial tracking loop when r represents the command
from the tracking sensors. The input of the controller, C(s), is the error between r and the
feedback in the angular rate from the Inertial Measurement Unit (IMU) provided by the
transfer function, H(s). The output, u = E(s)C(s), represents the control signal in acceleration
and is limited by the saturation function, sat(u), then integrated as the input angular rate
order of the actuator. Furthermore, the external disturbance, d, introduced by the motions
of the UAV or USV can be compensated for by the stabilized control loop for the LOS.
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The model of the actuator can be described by Equation (2), where the gain, km, represents
the relation of the actuator between the input order and rotary output. The gain, km, is
determined by the gear reducer ratio and the motor’s precision in control. Both the output
of the actuator in angle θm and angular rate ωm are related to the input order, rm, and its
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differential value. The output of the controller, u, is constrained by the saturation function,
sat(u), which limits the input of the actuator in acceleration denoted as

..
rm.

θm = kmrm
ωm = km

.
rm..

rm = sat(u)
(2)

3. Tracking System with the Anti-Windup LADRC
3.1. Optimal Desgin for the Anti-Windup LADRC

In the visual tracking control system with actuator saturation, the inertial stabilized
platform is considered as a 2-axis-frame control system. Each frame is controlled indi-
vidually and treated as a Single Input Single Output (SISO) model with second order.
Combining the model (2), the single frame control system can be described by Equation (3),
where the variable x1 denotes the angle of the LOS and the variable x2 denotes the angular
rate of the LOS. Additionally, the disturbance of the system is considered and denoted as
f (x1, x2, ω(t), t). 

.
x1 = x2.
x2 = f (x1, x2, ω(t), t) + bsat(u)
y = x1

(3)

ω(t) represents the external disturbance angular rate, and the disturbance f (x1, x2,
ω(t), t) includes the mechanical deviations and internal influences that cannot be measured.
According to the method of LESO as depicted in Equation (4), the uncertain conditions
leading to vibrations in the LOS mentioned above can be extended as the state variable x3 and
observed as the total disturbance. The gain b = ∆b + b0, where ∆b is an uncertain factor in the
system parameters and is included in x3. The state variable, x3, also includes the disturbance
from saturation. 

.
x1 = x2.
x2 = x3 + b0u
.
x3 = h(x1, x2, ωsat(t), t)
y = x1

(4)

To analyze the system using the robustness H-infinity model, let the state vector be
represented as xp = [x1, x2, x3]

T , ω = [v1, v2, h]T . The system is expressed in Equation (5).
.
xp = Apxp + B1ω + B2u
zp = C1xp + D11ω + D12u
y = C2xp

(5)

The performance output, denoted as zp, is designed for a quadratic programming
model. Then, the weighted value matrix is designed as shown in Equation (6).

AP =

0 1 0
0 0 1
0 0 0

, B1 =

0 0 0
0 0 0
0 0 1

, B2 =

 0
b0
0

, C1 =


√

q1 0 0
0

√
q2 0

0 0
√

q3
0 0 0

, C2 =
[
1 0 0

]
, D12 =


0
0
0√
ρ

 (6)

Then, the closed-loop system is optimized for the H-infinity tracking performance,
leading to the expression D11 = 0, and defining the constraint condition in Equation (7).∫ ∞

0
(q1x2

1 + q2x2
2 + q3x2

3 + ρu2)dt <
∫ ∞

0
ω2dt (7)

As stated in Equation (8), the H-infinity norm of the closed-loop transfer function from
the disturbance, w, to the performance output, zp, is constrained to be less than γ.
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∥Tωz(s)∥∞ = sup
ω ̸=0

∥∥zp
∥∥

2
∥ω∥2

< γ (8)

The system is designed to track the input reference while compensating for the total
disturbance, including the external disturbance and the effects of accelerated saturations
as defined in the vector ω. Additionally, the controller aims to optimize the tracking
performance whilst complying with the constraints mentioned during disturbances.

3.2. Tracking Controller with a Modified LESO

As illustrated in Figure 3, we created a visual tracking control system in a single frame
for the MISP based on an LADRC with an anti-windup compensator.
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The proposed scheme comprises a visual tracking part consisting of a Tracking Differ-
entiator (TD) and Proportional plus Derivative (PD) controller. Then, the stabilized part
is implemented by the total disturbance observed variable, denoted as − z3/b0. As the
visual tracking input, v0 represents the bias of the identified target to the center of the
Field of View (FOV); hence, vs = 0. The accelerated saturation of the actuator can introduce
nonlinear uncertainties leading to vibrations on the LOS.

To address this issue, an anti-windup method with the modified LESO is proposed, as
show in Equation (9). 

.
z1 = z2 − l1ε
.
z2 = z3 − l2ε + b0u
.
z3 = −l3ε − jaq

(9)

where q = u − sat(u), which represents the feedback of the accelerated saturation for the
LESO. The vector L = [l1, l2, l3] is defined as the the observer gains to be designed, and the
observed errors are defined by the vector er = [er1, er2, er3]

T , eri = zi − xi, i = 1, 2, 3. Then,
the observed errors, er, can be expressed as:

.
er = (Ap − LC2

)
er + Dhω + Dqq (10)

The matrixes are set as follows:

Ap − LC2 =

−l1 1 0
−l2 0 1
−l3 0 0

, Dh =

0 0 0
0 0 0
0 0 −1

Dq =

 0
0
−ja


The total disturbance, f, and the saturation factor, q, are differentiable with respect to t;

it was determined that the observed errors, er, are bounded f and q values by designing the
system in reality. As can be observed in [24], if the matrix (Ap − LC2) is Hurwitz, the gain,
L, is converted by the positive parameter ωe > 0, which represents the frequency bandwidth
of the LESO, as shown in Equation (11).∣∣sI − (Ap − LC2)

∣∣ = (s + ωe)
3 = 0 (11)
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where
l1 = 3ωe, l2 = ω2

e , l3 = ω3
e (12)

This can be designed by placing all poles at −ωe, and additionally confirmed by the
condition that the LESO is BIBO stable. When the state variables are observed by the LESO
with er → 0, the control signal of the actuator, u, is illustrated in Equation (13). It consists of
the output of the tracking part represented by u0 with gains of k1 and k2 and the stabilized
part including the compensation for the accelerated saturation in z3 with the gain b0.

u = u0 − z3/b0 = k1(v1 − z1) + k2(v2 − z2)− z3/b0 (13)

3.3. Gains of the System for Robustness in Stability

The saturation feedback, q, can be traded as an adaptation parameter with a gain of
ja. Then, the gains of the controller can be defined as K, which is a matrix with the gains
to be adjusted and denoted as u = Kxk. The observed vector of the LESO is denoted as
xk = [z1, z2, z3]

T . Then, the cotroller base on the state variable feedback is designed as
Equation (14). { .

xk = (Ap + B2K)xk + B1ω
zp = (C1 + D12K)xk

(14)

Then, the constraint condition in the H-infinite norm is represented as (15):

∥Tωz(s)∥∞ =
∥∥∥(C1 + D12K)[sI − (Ap + B2K)]−1B1

∥∥∥
∞
< γ (15)

The closed-loop system mentioned above is asymptotically stable, and the condition
for the H-infinite norm of the transfer function from w to zp being less than γ is the existence
of a positive definite matrix, P1 = PT

1 > 0, and P2 satisfying the following conditions:[
ApP1 + P1Ap + B2P2 + P2BT

2 + γ−2B1BT
1 (C1P1 + D12P2)

T

C1P1 + D12P2 −I

]
< 0 (16)

The state feedback robust controller is u = P2P−1
1 xk. To facilitate solving using tools,

the scalar presented can be transformed following Equation (17):

∥Tωz(s)∥∞ < γ ⇔
∥∥∥γ−1Tωz(s)

∥∥∥
∞
< 1 (17)

Defining P1 = γ2P1, P2 = γ2P2, and the matrix inequality can be transformed into
Equation (18):[

ApP1 + P1Ap + B2P2 + P2BT
2 + B1BT

1 (C1P1 + D12P2)
T

C1P1 + D12P2 −γ−2I

]
< 0 (18)

where γ =
√

ρ. Finally, controller K can be solved by the YALMIP tools in an open-
source environment. The stability of the proposed controller can be ensured through
optimization using quadratic programming and the H-infinite performance indicator in
parameter turning.

4. Simulations and Analysis

The accelerated saturation usually occurs during extreme external disturbance and
is caused by the power constraints in the MISP. When the actuator reaches or exceeds its
limit value, it loses its acceleration regulation capability. Therefore, the immediate acti-
vation method for the anti-windup LADRC proves inefficient, despite being widely used
in low-cost systems as a multiple activated method for the anti-windup compensator. To
address this issue, an anticipatory activation method was investigated and tested. Initially,
the system was simulated under normal conditions without accelerated saturation, serving
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as a comparison group. Subsequently, the anti-windup controller with the immediate acti-
vation method was implemented. Following this, the controller employing an anticipatory
activation method was tested under the same external disturbance. Finally, the simulation
results were contrasted and analyzed.

4.1. Parameter Setting of the System

To enhance effectiveness, the simulation utilizes attitude data recorded from USV sail-
ing, which is considered as the external disturbance from the base. The definitions of the
pitch and roll angles of the USV are depicted in Figure 4.
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Figure 4. The axes of attitude angles of the USV.

The data describe two instances of the USV’s instantaneous acceleration during sailing.
The trajectory of the angle and angular rate in the pitch axis are depicted in Figure 5. The
angular acceleration in the pitch axis during sailing is calculated from the angular rate as
shown in Figure 6.
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Figure 5. Recorded attitude data of the UAV for pitch angle and angular rate: (a) complete data of
angle and angular rate; (b) data for 50 s.

From the recorded data, it can be seen that there are overshoots in the angular rate
and acceleration during sailing with instantaneous acceleration. To establish a quantitative
relationship between the disturbance and the actuator’s accelerated saturation, the distur-
bance is quantified by the degree of the accelerated overshoot as defined in Equation (19).
According to the USV’s attitude data and for ease of analysis during the simulation, the
external disturbance is set as a sinusoidal signal, representing the base velocity combined
with only one overshoot in the angular rate. The parameters are specified in Table 1.

α =

{
ab−amax

amax
× 100% ab > amax

0 ab ≤ amax
(19)
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Table 1. The parameters of the external disturbance from the base.

External Disturbance Maximal Velocity Maximal Acceleration Duration

base velocity 5◦/s 35◦/s2 8 s
Overshoot 10◦/s 70◦/s2 1 s

Therefore, ab represents the absolute value of angular acceleration from the base, where
ab = 35◦/s2 during the base velocity phase. Consequently, the maximal acceleration values
of the actuator are amax = 70◦/s2 and ab = amax during the overshoot. This establishes the
threshold, where α = 0 when the system operates under normal conditions. Subsequently,
α > 0 indicates that the actuator’s accelerated saturation has occurred, and the severity
increases with the growth of its value.

The observation bandwidth of the LESO with anti-windup compensation is designed
at 0.5 kHz, and the operation update rate is 1 kHz. Consequently, the LESO bandwidth is
set as ωe = 0.5. Referring to Equation (12), the gains of the LESO can be adjusted in Table 2.

Table 2. The gains of the LESO with an operational bandwidth of 1 kHz.

LESO Bandwidth Gains for LESO

ωe = 0.5 l1 = 1.5, l2 = 0.75, l3 = 0.125

The gains of controller K, which can be determined using the matrixes presented in
Section 3.3, represent the matrixes inequalities presented in Equations (17) and (18). These
can be solved using the YALMIP tools.

The actuator coefficient is km = 0.00432. Combining the bandwidth of the actuator
operation, set at 0.1 kHz, we determined the gain b0 = 0.432 for the system model. Based
on the optimized results obtained using the YALMIP tools, as shown in Table 3, the gains
can be determined as γ = 0.8.

To simplify the process of acquiring the observed total disturbance, the gain of the
anti-windup compensator was set as ja = l3 jq. The observed total disturbance was equal
to

.
z3= l3(ε − jq q), which means that the saturation feedback, q, can be regarded as an

adjustment value to the observed error, ε, in the state x3.
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Table 3. The gains of the controller, K, with different values of γ.

Gains for K Conditions

k1 = 2.1786, k2 = 4.5847, −1/b0 = −2.3115 γ = 1.0
k1 = 2.1788, k2 = 4.5852, −1/b0 = −2.3062 γ = 0.9
k1 = 2.1790, k2 = 4.5855, −1/b0 = −2.3038 γ = 0.8
k1 = 2.1859, k2 = 4.6226, −1/b0 = −1.3038 γ = 0.7
k1 = 2.1864, k2 = 4.6237, −1/b0 = −1.3631 γ = 0.6
k1 = 2.1870, k2 = 4.6249, −1/b0 = −1.2995 γ = 0.5

4.2. Simulations in the Normal Condition

The system operated within the limitation of the acceleration during an overshoot.
The output angular rate of the actuator compensates for disturbances from the base, as
shown in Figure 7.

J. Mar. Sci. Eng. 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

0

−10

10

An
gu

la
r r

at
e[

de
g 

/s
ec

]

time(s)
0 1 2 3 4 5 6 7 8 9 10

 
Figure 7. Angular rate of the actuator while compensating for the disturbance from the base. 

In Figure 8a, the control signal of the actuator, u, is a combination of the tracking 
output, u0, and observed disturbance variable, z3. The equation u − sat(u) served as 
feedback for accelerated saturation and remained at 0 throughout the test. However, 
vibrations in the control signal, u, were observed at the beginning when the overshoots 
were introduced. Nonetheless, the LOS vibrations are no more than 1 °/s during the 
overshoots, as illustrated in Figure 8b. 

time(s)
0 1 2 3 4 5 6 7 8 9 10

time(s)
0 1 2 3 4 5 6 7 8 9 10

0

−5

5

An
gu

la
r r

at
e[

de
g 

/s
ec

]

0

An
gl

e[
de

g]

−5

5

0

−100

100

Ac
ce

le
ra

tio
n 

[d
eg

 /s
ec

2 ]

(a)

(b)  
Figure 8. The system is simulated within the constraints of acceleration: (a) the accelerated control 
signal of the actuator; (b) the LOS angle and angular rate during the disturbance without saturation. 

4.3. Simulations under Acceleration-Limitated Conditions 
4.3.1. Immediate Activation Method 

According to the recorded data, overshoots are alternately set at α = 5% and α = 10%, 
while the system operates under accelerated saturations. Consequently, the maximum 
accelerations of the overshoots are around 73.5°/s2 and 77.0°/s2, respectively. The LADRC 
with an anti-windup compensator is configured with an immediate activation model. As 
shown in Figure 9a, when the overshoot degree is set to α = 5%, the controller output, u, 
shows vibrations following the introduction of the overshoots, retaining high-frequency 
vibrations with an amplitude of less than 10°/s2 as the overshoots diminish. Additionally, 
when α = 10% in Figure 9b, the amplitude of the vibrations reaches almost 50°/s2 as the 
overshoots diminish. The maximum acceleration value corresponding to the accelerated 
saturation feedback, q, during this process is 100°/s2, and the data range in all figures is 
referenced within this value. 

Figure 7. Angular rate of the actuator while compensating for the disturbance from the base.

In Figure 8a, the control signal of the actuator, u, is a combination of the tracking output,
u0, and observed disturbance variable, z3. The equation u − sat(u) served as feedback for
accelerated saturation and remained at 0 throughout the test. However, vibrations in the
control signal, u, were observed at the beginning when the overshoots were introduced.
Nonetheless, the LOS vibrations are no more than 1 ◦/s during the overshoots, as illustrated
in Figure 8b.
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4.3. Simulations under Acceleration-Limitated Conditions
4.3.1. Immediate Activation Method

According to the recorded data, overshoots are alternately set at α = 5% and α = 10%,
while the system operates under accelerated saturations. Consequently, the maximum
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accelerations of the overshoots are around 73.5◦/s2 and 77.0◦/s2, respectively. The LADRC
with an anti-windup compensator is configured with an immediate activation model. As
shown in Figure 9a, when the overshoot degree is set to α = 5%, the controller output, u,
shows vibrations following the introduction of the overshoots, retaining high-frequency
vibrations with an amplitude of less than 10◦/s2 as the overshoots diminish. Additionally,
when α = 10% in Figure 9b, the amplitude of the vibrations reaches almost 50◦/s2 as the
overshoots diminish. The maximum acceleration value corresponding to the accelerated
saturation feedback, q, during this process is 100◦/s2, and the data range in all figures is
referenced within this value.
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Figure 9. The control signal and saturation quality with the immediate activation method: (a) the
accelerated overshoot is 5%; (b) the accelerated overshoot is 10%.

As illustrated in Figure 10a, there are attenuated high-frequency vibrations in the
angular rate of the LOS during the overshoots, reaching a maximum amplitude of approxi-
mately 5◦/s when α = 5%. Additionally, at α = 10%, the maximum amplitude reduces to
approximately 10◦/s, with low-frequency vibrations exceeding 13◦/s in Figure 10b. The
angle of the LOS is almost 3◦ during the overshoots. High-frequency vibrations still exist
in the angular rate with a low amplitude when the overshoots diminish.

J. Mar. Sci. Eng. 2024, 11, x FOR PEER REVIEW 11 of 19 
 

 

time(s)
0 1 2 3 4 5 6 7 8 9 10

0

−100

100

Ac
ce

le
ra

tio
n 

[d
eg

 /s
ec

2 ]

time(s)
0 1 2 3 4 5 6 7 8 9 10

0

−100

100

Ac
ce

le
ra

tio
n 

[d
eg

 /s
ec

2 ]

α=10%

α=5%

(a)

(b)  
Figure 9. The control signal and saturation quality with the immediate activation method: (a) the 
accelerated overshoot is 5%; (b) the accelerated overshoot is 10%. 

As illustrated in Figure 10a, there are attenuated high-frequency vibrations in the 
angular rate of the LOS during the overshoots, reaching a maximum amplitude of 
approximately 5°/s when α = 5%. Additionally, at α = 10%, the maximum amplitude 
reduces to approximately 10°/s, with low-frequency vibrations exceeding 13°/s in Figure 
10b. The angle of the LOS is almost 3° during the overshoots. High-frequency vibrations 
still exist in the angular rate with a low amplitude when the overshoots diminish. 

time(s)
0 1 2 3 4 5 6 7 8 9 10

0

−10

10

An
gu

la
r r

at
e[

de
g 

/s
ec

]

0

An
gl

e[
de

g]

−5

5

time(s)
0 1 2 3 4 5 6 7 8 9 10

0

−5

5

An
gu

la
r r

at
e[

de
g 

/s
ec

]

0

An
gl

e[
de

g]

−5

5

α=10%

α=5%

(a)

(b)  
Figure 10. High-frequency vibrations of the LOS in angle and angular rate with the immediate 
activation method: (a) the accelerated overshoot is 5%; (b) the accelerated overshoot is 10%. 

4.3.2. Anticipatory Activation Method 
To facilitate the implementation of anticipatory activation for the compensator, the 

threshold value, us, is proposed and defined as: 

λ| ua | ≤ | us | < | ua |, 0 < λ < 1  (20) 

Hence, the anti-windup compensator operates in three states: normal mode (Model 
1), anticipatory activation mode (Model 2), and acceleration-limited mode (Model 3). 

Figure 10. High-frequency vibrations of the LOS in angle and angular rate with the immediate
activation method: (a) the accelerated overshoot is 5%; (b) the accelerated overshoot is 10%.



J. Mar. Sci. Eng. 2024, 12, 616 11 of 18

4.3.2. Anticipatory Activation Method

To facilitate the implementation of anticipatory activation for the compensator, the
threshold value, us, is proposed and defined as:

λ| ua | ≤ | us | < | ua |, 0 < λ < 1 (20)

Hence, the anti-windup compensator operates in three states: normal mode (Model 1),
anticipatory activation mode (Model 2), and acceleration-limited mode (Model 3).

Model 1: |u|≤ |us| and q = 0. In this mode, no saturation occurs with the actuator
and the tracking system operates as a normal system.

Model 2: |us| < |u| ≤ |ua| and q > 0. In this model, accelerated saturation occurs.
The disturbance observation term z3 introduced by the LESO incorporates a saturation
feedback term, q, and pre-compensation control is conducted through the stabilized con-
trol loop.

Model 3: |u| > |ua|. The system enters a substantial saturation state, where the
control input, u, corresponding to the acceleration exceeds the output limit of the actuator.
The actuator’s acceleration output remains at its limited value.

The proposed controller, operating on the LADRC with an anti-windup compensator
using an anticipatory activation method, is simulated under the same conditions as the
overshoot scenario. The threshold values are set as λ = 0.85 and λ·amax = 59.5◦/s. Com-
pared to the immediate activation method, accelerated saturation rarely occurs during
the overshoots. These two conditions are demonstrated in Figure 11; when α = 5% and
α = 10%, the control signal, u, exhibits a smaller amplitude in vibrations after the overshoots.
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According to Figure 12, the high-frequency vibrations in the angular rate of the LOS are
weakened in the case of α = 5%, which can lead to an interference in the visual identification.
Conversely, for α = 10%, these vibrations are almost eliminated, and the amplitude of low-
frequency vibrations remain within 18◦/s. Furthermore, there are almost no vibrations in
the angular rate.

4.3.3. Simulations with Recorded Attitude Data

Comparing the simulations based on an individual overshoot in acceleration, it can be
seen that the disturbance is introduced by the recorded data from the USV sailing, with
results sampled from 200 to 250 s. During the simulation, the value of α ranged from 5% to
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10%. According to the results illustrated in Figure 13, when compared to the immediate
activation method, the proposed controller exhibits greater stability with the regulation of
the accelerated signal, sat(u), and less accelerated saturation, as indicated by u − sat(u).
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The instability of the regulation during the process results in vibrations on the LOS,
as illustrated in Figure 14. Low-frequency vibrations on the LOS imply a better quality
of identification by the visual sensor mounted on the MISP. The proposed controller
avoids high-frequency vibrations during overshoots when compared to the immediate
activation method.

The simulation with the recorded data supports the result that the anti-windup con-
troller in the anticipatory activation mode effectively suppresses the high-frequency vibra-
tions in the angular rate of the LOS, which occur due to the accelerated saturation of the
actuator in the control process.
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5. Experimental Verifications
5.1. Hardware of the Dynamic Camera Platform

In the visual tracking control for the MISP, the occurrence of high-frequency vibrations
in the angular rate of the LOS can lead to several adverse effects, including blurred vision,
introduction of disturbances, failure of target identification, and exacerbation of stability
issues within the control system. This section aims to assess the performance of the LADRC
with an anti-windup compensator on a dynamic camera platform, as illustrated in Figure 15.
The controller was evaluated using both anticipatory activation and immediate activation
methods, and the obtained results were subjected to comparative analysis.
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The experiment focused on target tracking in USV-UAV joint operations in a marine
environment. The target may be the sea marker or USV for visual navigation. The scenario
is simulated with the ground target, and the FOV captured by the visual sensor is depicted
in Figure 16. Performance parameters for controlling the platform are outlined in Table 4.
The dynamic camera platform was installed on motion equipment capable of simulating
the motions experienced during UAV hover or flight modes. This setup provides external
disturbances on the base velocity. To approximate the scenario of the recorded date, the base
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motion was simulated using a sinusoidal velocity curve with a period of 1.2 s, incorporating
a 7% random disturbance.
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Table 4. Parameters of the dynamic camera platform.

Terms Scope Range Accuracy

Pitch
Angular rate ±190◦/s Gyro:0~±250◦/s,

131 LSB/(◦/s)Angular acceleration ±70◦/s2

Yaw
Pitch angle speed ±170◦/s Gyro:0~±250◦/s,

131 LSB/(◦/s)Yaw angle speed ±70◦/s2

Visual resolution 320 × 240 1 pixel

During the initialization of the experiment, the target was identified by a visual sensor
and captured at the center of the FOV. There was no base motion acting as the external
disturbance until the LOS stabilized. During the experiment, the maximum angular rate
reached approximately ±10◦/s and the maximum acceleration reached ±75◦/s2, equivalent
to α = 6.7%. The subsequent experiment results and analysis are detailed below.

5.2. Comparison and Analyses

The platform operates under an immediate activation model, compensating for the
base velocity, as illustrated in Figure 17a. However, the velocity control loop becomes
unstable when the disturbance’s acceleration surpasses the actuator’s threshold value,
leading to high-frequency vibrations in the output velocity. Due to physical constraints
within the real system, these vibrations converge faster than in simulations. Consequently,
the LOS velocity is affected, as depicted in Figure 17b. The velocity vibrations in the LOS
significantly reduce the identification performance, as evident in Figure 18. Each screenshot
per second from the visual sensor reveals swaying in the FOV. The misidentification of the
target renders the visual tracking loop nonfunctional.

For enhancement, the platform incorporates a controller with an anticipatory activation
method, showcasing the control performance in Figure 19. Noticeably, the high-frequency
vibrations in the velocity-stabilized loop have been significantly suppressed. The actuator’s
output effectively compensates for the base velocity to a maximum extent. Consequently,
there is a substantial improvement in the stability of the LOS, resulting in sufficient target
identification, as illustrated in Figure 20. This reinforces the robustness and stability of the
system through the visual tracking loop.
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Figure 20. The geography target is identified and tracked by the stabilized LOS during the overshoot
from the base.

6. Conclusions

In this paper, an anticipatory anti-windup method based on the LADRC has a signifi-
cant effect on suppressing the high-frequency vibrations on the LOS caused by accelerated
actuator saturation. The experimental results of visual tracking for the MISP demonstrate
that the target can be identified during low-frequency vibrations with the proposed con-
troller. The robustness of the stabilized control system is ensured through optimization
using quadratic programming and an H-infinite performance indicator. As part of the
investigation into the multiple activated anti-windup method, the limitations of immediate
activation in addressing accelerated saturation have been analyzed through comparisons
in the simulations and experiments. The simulations incorporate recorded attitude data
from USV sailing as the external disturbance, representing just one scenario of USV sailing.
In future work, additional attitude data from various USV sailing cases or UAV cruises
will be provided to enhance the credibility of the simulation results. Actual experiments
will be conducted in the marine environment for USVs to further validate the proposed
method. Additionally, other methods will be explored to address accelerated saturation
and optimize the control system.
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