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Abstract: Tiny person detection based on computer vision technology is critical for maritime emer-
gency rescue. However, humans appear very small on the vast sea surface, and this poses a huge
challenge in identifying them. In this study, a single-stage tiny person detector, namely the “You only
look once”-based Maritime Tiny Person detector (MTP-YOLO), is proposed for detecting maritime
tiny persons. Specifically, we designed the cross-stage partial layer with two convolutions Efficient
Layer Aggregation Networks (C2fELAN) by drawing on the Generalized Efficient Layer Aggregation
Networks (GELAN) of the latest YOLOv9, which preserves the key features of a tiny person during
the calculations. Meanwhile, in order to accurately detect tiny persons in complex backgrounds, we
adopted a Multi-level Cascaded Enhanced Convolutional Block Attention Module (MCE-CBAM) to
make the network attach importance to the area where the object is located. Finally, by analyzing
the sensitivity of tiny objects to position and scale deviation, we proposed a new object position
regression cost function called Weighted Efficient Intersection over Union (W-EIoU) Loss. We verified
our proposed MTP-YOLO on the TinyPersonv2 dataset. All these results confirm that this method
significantly improves model performance while maintaining a low number of parameters and can
therefore be applied to maritime emergency rescue missions.

Keywords: tiny person detection; cross-stage partial layer with two convolutions efficient layer
aggregation networks; multi-level cascaded enhanced convolutional block attention module; weighted
efficient intersection over union

1. Introduction

With increasing global maritime activities, the complexity and urgency of maritime
rescue missions have also increased. In this context, quickly and accurately locating people
in distress is the key to improving rescue efficiency and minimizing casualties and property
losses. However, existing methods such as manual observation or satellite positioning
still face many challenges in accurately locating victims. Manual observation can easily
cause personnel fatigue and distraction, thereby increasing the risk of missing search and
rescue targets. For satellite positioning, when the signal quality is poor or the victim’s
communication equipment fails, positioning cannot be performed. Therefore, existing
detection technology cannot meet the requirements of modern maritime emergency rescue.

Lately, there has been a growing emphasis among scholars on techniques for object
detection through visual data analysis. As it uses high-resolution cameras and complex
image processing algorithms to identify objects in specific scenes, this method will not
be affected by visual fatigue and signal quality when being used for maritime emergency
rescue. Vision-based object detection algorithms mainly include the following categories:
two-stage object detectors represented by the RCNN series, one-stage detectors represented
by the YOLO series [1], and Transformer-based DETR series [2]. Although they all achieved
impressive performances with natural images, detecting tiny objects at sea remains a
challenge [3].
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On the one hand, there is a certain commonality between maritime tiny object detec-
tion and small object detection. Firstly, compared to regular images, tiny objects in sea
surface images are smaller in size and contain less information compared to the entire
image. Secondly, limited information about tiny objects may disappear during forward
propagation, and the model may not be able to capture the key features of tiny objects, lead-
ing to detection errors. Furthermore, tiny objects might overlap with each other, challenging
the detector’s ability to differentiate between objects that are close together.

On the other hand, detecting small objects at sea has its own unique characteristics. For
example, the lighting conditions at sea may be complex and variable due to the presence
of more specular reflections [4]. The fluctuation in lighting intensity can significantly
impact the imaging effect of the camera. This complicates the process of discerning the
characteristics of the object. Moreover, due to the lack of additional light sources, the
lighting conditions largely depend on sunlight, resulting in a large number of backlit scenes.
In scenes with such backlighting, there is a scenario where the object is poorly lit, contrasted
by a very bright background, and both factors might potentially degrade the efficacy of
object detection.

To tackle these particular hurdles, we designed an innovative architecture named
MTP-YOLO for tiny person detection in maritime emergency rescue missions. We trained
and evaluated MTP-YOLO on the TinyPersonv2 [5] dataset, which contains sea surface
images annotated with tiny person labels. The results indicate that MTP-YOLO can improve
the detection ability of tiny objects compared to the most advanced methods currently
available. Our contributions are summarized as follows:

1. We designed a new feature extraction module called C2fELAN to better retain tiny
object information and reduce information loss during forward propagation, allowing
the model to use this information to detect tiny objects and overcome the challenges
of tiny object detection.

2. We adopted the Multi-level Cascaded Enhanced CBAM to obtain a more focused
attention distribution, allowing the model to attach importance to areas where the
important features of tiny objects exist and learn more useful information.

3. We proposed a new bounding box regression loss function called Weighted EIoU Loss
to solve the problem of tiny objects having different sensitivities to position and scale
deviation and boost the model’s performance in identifying tiny persons.

2. Related Work
2.1. Object Detection

At present, the popular object detection algorithms mainly include the following
categories: two-stage object detectors represented by the RCNN series, one-stage detectors
represented by the YOLO series [6], and DETR series based on the Transformer. After
integrating the RPN [7] structure, the RCNN series algorithm greatly improves detection
accuracy but is slow and cannot fulfill the demands of real-time detection in most applica-
tions. Algorithms in the YOLO series approach the task of object detection as a problem of
spatial regression. It uses CSPNet [8], PAN [9], FPN [10], and a series of their variants as
the basic building blocks of the network. While fulfilling real-time detection requirements,
its accuracy reaches the same level as the RCNN series. The DETR series of algorithms are
introduced, utilizing the Transformer architecture [11] from the domain of natural language
processing; however, it is difficult to be applied to new fields without a pre-trained model
in the corresponding field. Therefore, the YOLO series currently remains the most widely
used algorithm. YOLOv8 [12] was chosen as the basis of this article as this method has
proven to be powerful in a large number of computer vision tasks.

2.2. Tiny Object Detection

Despite significant advancements in the field of object detection algorithms, research
on tiny object detection still faces great challenges, including the following: (1) the tiny
object itself occupies a small size in the image and has limited available information;
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(2) the features of tiny objects may disappear during the forward propagation process
of the network, which poses certain difficulties to detection; (3) tiny objects in complex
environments will be interfered with by factors like lighting, occlusion, and aggregation,
thereby complicating their differentiation from the backdrop or akin items. In response to
the difficulties in tiny object detection, researchers have made numerous improvements
to mainstream object detection algorithms. Their improvement methods can be divided
as follows: context information learning methods [13] that solve the problem of limited
feature information being carried by tiny objects, multi-scale feature fusion methods [14]
that integrate multiple feature layers to improve the representation ability of tiny objects,
and attention mechanism methods to [15–18] improve the model’s attention to tiny object
features. Although these works have improved tiny object detection performance in their
respective scenarios, they may not be applicable when there are scene changes. Considering
this, we propose that the MTP-YOLO algorithm is suitable for the scenarios listed in
this paper.

3. Method
3.1. Overview of MTP-YOLO

MTP-YOLO is built upon YOLOv8 and comprises three primary parts, as depicted
in Figure 1. The backbone of MTP-YOLO includes the following four main components:
CBS (conv2d, batch normalization, sigmoid linear unit), C2fELAN, MCE-CBAM, and SPPF
(Spatial Pyramid Pooling Fast). These are utilized to extract pertinent attributes of the
object from an input image. The neck architecture still adopts the FPN (Feature Pyramid
Network) and PAN (Path Aggregation Network) structures for feature fusion at different
scales, mainly composed of C2fELAN, Concat, Upsample, and CBS components. This
enhances the model’s ability to recognize objects of various sizes by integrating localization
information and semantic information. The head module adopts the current mainstream
decoupling head structure, dividing the detection head into a regression branch and
a classification branch. The regression branch uses DFL (Distribution Focal Loss) and
Weighted EIoU Loss, while the classification branch uses BCE (Binary Cross Entropy) loss.
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MTP-YOLO retains the overall style of YOLOv8. However, the original YOLOv8
network was not designed for tiny object detection tasks, which reduces its applicability in
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tiny person detection tasks at sea. Therefore, we improved the network structure to enhance
its performance in detecting tiny objects. Firstly, we drew inspiration from the GELAN
structure of the latest object detector, YOLOv9 [19], and design the C2fELAN module to
replace the C2f modules in the original YOLOv8 backbone and neck. This allowed us
to preserve the key features of the tiny objects and obtain richer gradient information
during the calculation process, thereby achieving a higher detection accuracy. Secondly,
we inserted our proposed MCE-CBAM module before the SPPF layer in the YOLOv8
architecture to boost the feature extraction ability of the backbone and make the model pay
attention to key details that are conducive to identifying tiny objects, thereby improving
the ability to detect tiny objects. In addition, by analyzing the sensitivity of tiny objects
to position and scale deviation, we designed a new boundary box regression loss called
Weighted EIoU Loss, substituting the CIoU in the cost function to alleviate the substantial
influence of tiny object position deviation on detection performance, thereby improving
the detection performance of tiny objects.

3.2. C2fELAN Module

By combining two neural network architectures designed using gradient path plan-
ning, CSPNet (Cross Stage Partial Network) and ELAN [20], the authors of YOLOv9
designed a Generalized Efficient Layer Aggregation Network (GELAN) that considers
weight, inference speed, and accuracy. The design purpose of CSPNet is to enable the
network to obtain richer gradient fusion information while reducing computational com-
plexity. The method divides the tensor of the base layer into two segments, which are then
merged through a cross-stage hierarchical approach. By separating the gradient flows,
they can propagate on different network paths. In addition, CSPNet can greatly reduce
computational complexity, and improve inference speed and accuracy. The main purpose of
designing ELAN is to address the issue of the gradually deteriorating convergence of deep
models during model scaling. Comparing VoVNet (Variety of View Network) and ResNet
(Residual Network), VoVNet performs worse than ResNet when stacking more blocks. The
authors analyzed that this is because there are too many transition layers in the VoVNet
structure, which leads to an increasing number of shortest gradient paths when stacking
blocks, making training more difficult as the number of blocks increases. Therefore, by
appropriately deleting the transition layer, network performance can be improved, and the
shortest gradient path of the entire network can be quickly lengthened. When the network
is stacked deeper, the above design strategy can then successfully train ELAN. The author
of YOLOv9 extended the ability of ELAN, which initially only used convolutional layers
for stacking, to a new architecture that can accommodate any kind of computational block.

Taking inspiration from the GELAN module proposed by the author of YOLOv9, we
combined the C2f and ELAN neural network modules with gradient path planning to
design the feature extraction module, C2fELAN, used in this paper. This structure can
retain relatively complete feature information of small objects and provide reliable gradient
information that can be used to determine the objective function. The comprehensive
layout is depicted in Figure 2. Specifically, we replaced the stacking of convolution mod-
ules in ELAN modules with the stacking of RepNC2f (re-parameterization cross stage
partial layer with two convolutions without identity connection) modules. RepNC2f
modifies the convolution in the bottleneck structure of the C2f module to RepConvN
(re-parameterization convolution without identity connection), which is the structure of
RepConv (re-parameterization convolution) after removing the identity mapping. The
RepConv idea is to reparameterize the RepVGG block used during training, converting
the 1 × 1 convolution and unprocessed identity maps in RepVGG into a 3 × 3 convolution,
and then fusing them. By applying this RepConv to RepNC2f and RepNBottleneck, the
inference efficiency of the network can be greatly improved.



J. Mar. Sci. Eng. 2024, 12, 669 5 of 13

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 13 
 

 

(re-parameterization convolution) after removing the identity mapping. The RepConv 
idea is to reparameterize the RepVGG block used during training, converting the 1 × 1 
convolution and unprocessed identity maps in RepVGG into a 3 × 3 convolution, and 
then fusing them. By applying this RepConv to RepNC2f and RepNBottleneck, the infer-
ence efficiency of the network can be greatly improved. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The structure of C2fELAN and its components. (a) The details of C2fELAN; (b) The de-
tails of RepNC2f; (c) The details of RepNBottleneck. RepNC2f: re-parameterization cross stage 
partial layer with two convolutions without identity connection. RepNBottleneck: re-parameteri-
zation bottleneck without identity connection. RepConvN: re-parameterization convolution with-
out identity connection. 

As shown in Figure 3, when the model is in the training phase, the RepConvN mod-
ule has two different convolution kernels: 3 × 3 and 1 × 1. When the model is in the in-
ference stage, the 1 × 1  and 3 × 3  convolution kernels can be combined into a single 3 × 3 kernel through structural reparameterization. The specific method includes filling 
the surrounding parts of the 1 × 1 kernel into a 3 × 3 form. Based on the additivity prin-
ciple of convolution kernels of the same size, the padding kernel is added to the original 3 × 3 convolution kernel to form a 3 × 3 convolution kernel for inference. 

 
Figure 3. The details of RepConvN. BN: batch normalization. SilU: sigmoid linear unit. 

3.3. Multi-Level Cascaded Enhanced CBAM Module 
In recent years, various object detection architectures have adopted attention mecha-

nisms to optimize their models and have achieved good results. Research on the combi-
nation of deep learning and visual attention mechanisms mostly focuses on using masks 
to form attention mechanisms. The principle of masking is to identify key features in im-
age data through another layer of new weights. Through learning and training, deep neu-
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Figure 2. The structure of C2fELAN and its components. (a) The details of C2fELAN; (b) The details
of RepNC2f; (c) The details of RepNBottleneck. RepNC2f: re-parameterization cross stage partial
layer with two convolutions without identity connection. RepNBottleneck: re-parameterization
bottleneck without identity connection. RepConvN: re-parameterization convolution without identity
connection.

As shown in Figure 3, when the model is in the training phase, the RepConvN module
has two different convolution kernels: 3 × 3 and 1 × 1. When the model is in the inference
stage, the 1 × 1 and 3 × 3 convolution kernels can be combined into a single 3 × 3 kernel
through structural reparameterization. The specific method includes filling the surrounding
parts of the 1 × 1 kernel into a 3 × 3 form. Based on the additivity principle of convolution
kernels of the same size, the padding kernel is added to the original 3 × 3 convolution
kernel to form a 3 × 3 convolution kernel for inference.
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3.3. Multi-Level Cascaded Enhanced CBAM Module

In recent years, various object detection architectures have adopted attention mecha-
nisms to optimize their models and have achieved good results. Research on the combina-
tion of deep learning and visual attention mechanisms mostly focuses on using masks to
form attention mechanisms. The principle of masking is to identify key features in image
data through another layer of new weights. Through learning and training, deep neural
networks learn the areas that need attention in each new image, forming the necessary
attention. Among them, the most typical attention mechanisms include the self-attention,
spatial attention, and temporal attention mechanisms. These attention mechanisms allow
the model to assign different weights to different positions of the input sequence in order
to focus on the most relevant part when processing each sequence element.

Therefore, MTP-YOLO within this article was also designed with a Multi-level Cas-
caded Enhanced CBAM, targeted at improving the tiny person detection effect, as depicted
in Figure 4. Considering that the original CBAM can enhance the model’s ability to focus on
key features, we stacked and cascaded the spatial attention module and channel attention
module in the CBAM to further enhance the model’s performance to focus on crucial
attributes and improve its detection performance.
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The traditional CBAM aims to enhance the network’s representation ability by intro-
ducing attention mechanisms, including the following two submodules: channel attention
module and spatial attention module. Through the adaptive refinement of intermediary
feature representations in each convolutional block of the deep network, CBAM achieves
the attention to key information and suppression of unnecessary information. Utilizing the
operations of both average and max pooling, the channel attention mechanism integrates
the spatial information from the input feature maps, resulting in the acquisition of dual
feature maps. After feeding them separately into a shared multi-layer perceptron, the
output features of the two multi-layer perceptrons are added element by element, and the
channel attention map is generated through a sigmoid activation function. The spatial
attention mechanism first conducts channel-wise global maximum pooling and global
average pooling on the input feature map, yielding a pair of feature maps. Next, these
two feature maps along the channel axis are concatenated and a convolution is executed to
reduce the parameter count. Subsequently, spatial attention features are generated through
sigmoid operations.

3.4. Weighted-EIoU Loss

The loss associated with object position regression is a vital part of the loss function
used in object detection, and currently the mainstream bounding box regression loss is
the IoU series [21–24]. Although it has undergone multiple evolutions, we found that
they have all overlooked a problem, which is the different sensitivities of tiny objects to
the positional and scale deviations of the detection box, as shown in Figure 5. When the
detection box is offset by a width in the horizontal direction, the tiny object will disappear
from the detection box, resulting in a missed detection, even though the offset distance is
very small. When the size of the box doubles, the tiny object is still in the detection box,
and the model can still recognize the small object without missing the detection.
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To address this problem, we propose a novel bounding box loss function called
Weighted-EIoU Loss. We apply different weights to the center point distance deviation
term and the detection box scale deviation term respectively, with the aim of boosting the
detection efficacy of tiny objects:

WEIoU = IoU − α
ρ2(b, bgt)

c2 − β
ρ2(w, wgt)

C2
w

− β
ρ2(h, hgt)

C2
h

(1)

α + 2β = 3 (2)

where IoU represents the intersection and union ratio of the detection box and the ground
truth, c is the diagonal length of the minimum bounding rectangle, Cw and Ch are the width
and height of the minimum bounding rectangle, b and bgt represent the center points of
the detection box and the ground truth, w and h represent the width and height of the
detection box, wgt and hgt represent the width and height of the ground truth, ρ stands
for the Euclidean distance, and α and β represent the weight applied. Equation (1) takes
into account the overlapping area, center point distance, and differences in width and
height between the predicted and actual boxes simultaneously. Among them, α + 2β = 3 is
meant to adjust only the weight within the bounding box loss, thereby avoiding implicitly
imposing additional weights between the bounding box loss and the classification loss. In
addition, considering that tiny objects are more sensitive to center point distance offset, we
set α > β in the experiment.

4. Experiment
4.1. Datasets and Experimental Settings

The TinyPersonv2 dataset used in this paper includes 6278 images, which are taken
from Internet platforms such as Baidu, YouTube, and Bing, as well as from cameras, and are
specially designed for tiny person detection. We randomly divide it into a training set and
a validation set with a ratio of 8:2. In order to further enrich the dataset and enhance the
generalization ability of the model, we also utilize multiple data augmentation methods,
including HSV transformation, shifting, and mosaic augmentation, etc.

We trained our MTP-YOLO on NVIDIA RTX3060 GPU and used the PyTorch 2.0.1
framework. All the networks we mentioned did not use pretrained weights and were
trained from scratch. The total training time is 500 epochs. The starting learning rate was
configured at 0.01, with a momentum of 0.937 and a weight decay coefficient of 0.0005. Like
YOLOv8, we turned mosaic augmentation off during the final 10 epochs. This model uses
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the SGD optimizer. We then configured the input image dimensions to 640 by 640 pixels
and established the batch size as 8.

4.2. Comparison of Different Weight Values for Weighted EIoU

In order to determine how to set the weights of the Weighted EIoU to achieve the
optimal model performance, we started from 1 and continuously increased the value of
α with a step size of 0.5. We trained the model under different α values and evaluated
its performance. Table 1 shows the experimental results, which show that when α = 1,
W-EIoU degenerates into EIoU. When α > 1 and α < 3, the model performance improves
to varying degrees, and the best performance is achieved when α = 3.0. This is because as
it approaches 3.0, the width and height related terms in W-EIoU are suppressed, increasing
its attention to positional deviation, and allowing for more tiny objects to be detected.
Therefore, we set α to 3.0, where β is 0.0. This indicated a substantial enhancement in
the model’s detection capabilities upon the elimination of terms associated with width
and height, confirming that tiny objects have a high sensitivity to positional discrepancies.
Specifically, when α = 3, the terms related to width and height are suppressed, and the
mAP score reaches its maximum value. This means that for small targets, the position of
the center point should be considered as the main factor, while width and height become
irrelevant. At this point, Weighted EIoU is somewhat similar to DIoU, but unlike DIoU,
α = 3 weight is applied to the terms related to the distance from the center point.

Table 1. The results when taking different values of α.

α Precision Recall mAP@0.5

1.0 0.767 0.579 0.675
1.5 0.750 0.573 0.665
2.0 0.769 0.580 0.680
2.5 0.773 0.590 0.688
3.0 0.776 0.596 0.691

Bold represents the maximum value of the column.

4.3. Algorithm Comparison

To demonstrate the effectiveness of our proposed network, we compared it with
nine other state-of-the-art (SOTA) methods, including five anchor-based object detection
methods (i.e., Faster RCNN, YOLOv5, YOLOv6 [25], YOLOv7, and SSD [26]) and four
anchor-free object detection methods (i.e., FCOS [27], YOLOv8, YOLOv9, and DETR [28]).
For a fair comparison, all comparison results were generated from the source code provided
by the author. All methods were retrained on the same dataset as the approach introduced
in this paper, and the original set parameters of the corresponding methods were used.

Table 2 and Figure 6 show the comparison of the four indicators and visualization
results of different methods, respectively.

Table 2. Comparison of the MTP-YOLO with other networks. RCNN: region-convolutional neural
network. YOLO: You only look once. SSD: Single Shot Multi-Box Detector. FCOS: Fully Convolutional
One-Stage object detection. DETR: Detection Transformer. MTP-YOLO: “You only look once”-based
Maritime Tiny Person detector.

Methods Precision Recall mAP@0.5 mAP@[0.5,0.9]

Faster RCNN - - 0.498 0.211
YOLOv5 0.791 0.583 0.665 0.284
YOLOv6 - - 0.491 0.228
YOLOv7 0.784 0.628 0.663 0.245

SSD 0.272 0.052 0.057 -

FCOS - - 0.581 0.313
YOLOv8 0.758 0.578 0.674 0.315
YOLOv9 0.767 0.597 0.690 0.331

DETR - - 0.189 0.050

MTP-YOLO (Ours) 0.776 0.596 0.691 0.331

Bold represents the maximum value of the column.
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Table 2 shows the evaluation scores of our method and other SOTA methods on
precision, recall, and mAP metrics. Among them, precision represents the proportion
of true positives among all the positive samples detected, recall represents how many
positives in the total sample were predicted correctly, and mAP signifies the mean AP
across all classes, where AP denotes the area encompassed by the curve of precision and
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recall and the coordinate axes. The larger the three indicators, the better. In addition, the
parameters of these models are also shown in Table 3. As indicated in Table 2, the proposed
MTP-YOLO achieves the highest mAP value, indicating the necessity of a network model
specifically designed for detecting tiny persons at sea. For example, compared to the latest
YOLOv9 method, our method achieved percentage gains of 0.9% and 0.1% in accuracy and
mAP, respectively. In Table 2, the precision and recall of YOLOv7 are better than that of
MTP-YOLO as they were obtained at the specified confidence threshold, which indicates
that YOLOv7 has a higher precision and recall only at that confidence threshold; however,
YOLOv7′s mAP is observed to be lower than that of MTP-YOLO as the mAP is obtained at
different confidence thresholds, indicating that MTP-YOLO can better adapt to different
confidence thresholds and has high robustness. Furthermore, it should be highlighted that
the model size of our method is much smaller than that of the optimal method, YOLOv9.
By comparing all indicators, our method achieved a 77.6% accuracy, 56.9% recall, and 69.1%
mAP on the TinyPersonv2 dataset using only 48.7% of YOLOv9 parameters. The above
results clearly indicate that our model has achieved accuracy comparable to state-of-the-art
object detection methods.

Table 3. Comparison of parameters. RCNN: Region Convolutional Neural Network. YOLO: You
only look once. SSD: Single Shot Multi-Box Detector. FCOS: Fully Convolutional One-Stage object
detection. DETR: Detection Transformer. MTP-YOLO: “You only look once”-based Maritime Tiny
Person detector.

Faster RCNN YOLOv5 YOLOv6 YOLOv7 SSD

315.0 M 13.8 M 38.8 M 284.7 M 90.6 M

FCOS YOLOv8 YOLOv9 DETR MTP-YOLO

244 M 21.5 M 116.7 M 474 M 56.9 M

In Figure 6, we provide a visual (qualitative) comparison to demonstrate the superi-
ority of the proposed MTP-YOLO. The first row comprises the original images, and the
second row is our result, followed by YOLOv5, YOLOv6, YOLOv7, YOLOv8, and YOLOv9.
Our method can accurately identify the position of tiny persons in the image. Compared
with other SOTA methods, our proposed method has a lower missed detection rate and is
more suitable for detecting tiny people at sea in emergency rescue missions.

4.4. Ablation Study

To validate the efficiency of our diverse enhancement strategies for the detection
of tiny persons, we conducted ablation testing by gradually merging each optimization
measure. Table 4 presents the detailed results of these experiments.

Table 4. Results of ablation study. C2fELAN: cross stage partial layer with two convolutions efficient
layer aggregation networks. MCE-CBAM: Multi-level Cascaded Enhanced Convolutional Block
Attention Module. W-EIoU: Weighted Efficient Intersection over Union.

Methods Precision Recall mAP@0.5

Baseline 0.758 0.578 0.674
Baseline + C2fELAN 0.771 0.597 0.689

Baseline + C2fELAN + MCE-CBAM 0.775 0.596 0.690
Baseline + C2fELAN + MCE-CBAM +

W-EIoU 0.776 0.596 0.691

Bold represents the maximum value of the column.

Analysis of C2fELAN. C2fELAN resulted in an increase in the number of network
layers from 225 to 548, and GFLOPS increased from 28.8 G to 78.7 G. However, compared
to the baseline, due to the integration of the C2fELAN module in Table 4, the model’s
precision increased from 0.758 to 0.771, with a percentage gain of 1.30%. The recall rate
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increased from 0.578 to 0.597, with a percentage gain of 1.90%. In addition, the mAP value
of the model has increased from 0.674 to 0.689. The above results indicate the effectiveness
of the C2fELAN module.

Analysis of MCE-CBAM. In Table 4, we also demonstrate the effectiveness of the
Multi-level Cascaded Enhanced CBAM. In terms of accuracy, this module brought a 0.4%
gain to the baseline and contributed 0.1% percentage points to the baseline in terms of mAP.
The Multi-level Cascaded Enhanced CBAM enables networks to focus on important regions
that are conducive to detecting tiny objects, thereby improving the detection performance
of tiny objects.

Analysis of W-EIoU. Table 4 shows that the adoption of the refined Weighted EIoU led
to a 0.1% improvement in both the model’s accuracy and its mAP score. The experimental
results demonstrate that the weighted EIoU loss fully considers the sensitivity of tiny
objects to position deviation, and applies larger weights to the position deviation term,
making the model more focused on predicting the center point position, thereby improving
the recognition ability of tiny objects.

5. Conclusions

This paper proposes an end-to-end object detection network specifically designed
for detecting maritime tiny persons, called MTP-YOLO. Benefiting from the proposed
C2fELAN feature extraction module, our network can fully capture key features related
to tiny objects to accurately locate the objects. We integrated the designed Multi-level
Cascaded Enhanced CBAM into our model, improving the capacity of the model to focus
on crucial details of tiny objects. In addition, by modifying the bounding box regression loss
function to our proposed Weighted EIoU, there is an additional enhancement in the model’s
capacity to pinpoint the location of tiny objects, leading to a decrease in the rate at which
tiny objects go undetected. However, this method is mainly suitable for conditions with
good lighting, and its performance may decrease when night approaches. Moving forward,
our intention is to obtain images in night or dark scenes through data augmentation or
camera shooting, making them suitable for emergency rescue in night scenes, and use
model lightweight methods to enhance the detection efficiency of our model, thereby
evaluating the practical deployment efficacy of the suggested approach.
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Abbreviations

MTP-YOLO you only look once based maritime tiny person detector
C2fELAN cross stage partial layer with two convolutions efficient layer aggregation networks
MCE-CBAM multi-level cascaded enhanced convolutional block attention module
W-EIoU weighted efficient intersection over union
GELAN generalized efficient layer aggregation networks
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CBS conv2d, batch normalization, sigmoid linear unit
SPPF spatial pyramid pooling fast
DFL distribution focal loss
BCE binary cross entropy

RepNC2f
re-parameterization cross stage partial layer with two convolutions
without identity connection

RepNBottleneck re-parameterization bottleneck without identity connection
RepConvN re-parameterization convolution without identity connection
RepConv re-parameterization convolution
SiLU sigmoid linear unit
CAM channel attention module
SAM spatial attention module
FC Fully Connected layer
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