Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir
Abstract
:1. Introduction
2. Physical Experiments
2.1. Mechanical and Permeability Testing of Cement
2.2. Experiment on the Cement Sheath Integrity
2.2.1. Experimental System
2.2.2. Experimental Procedure
3. Numerical Simulation
3.1. Finite Element Model
3.2. Boundary Conditions and Simulation Steps
3.3. Mesh Sensitive Analysis
3.4. Model Validation
4. Results and Discussion
4.1. Experimental Results
4.1.1. TCT, TCLT, and Permeability Test Results
4.1.2. Stress–Strain Evolution in Cement under Cyclic Loading
4.1.3. Cement Sheath Integrity Experiment Results
4.2. Numerical Simulation Results
4.2.1. Equivalent Plastic Strain Evolution in Cement Sheaths
4.2.2. Micro-Annulus Evolution at Interfaces
4.3. Correlation between Numerical Simulation and Experimental Results
4.4. Sensitivity Analysis
4.5. Suggestions for Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, K.; Fan, K.; Chen, X.; Lei, G.; Wei, S.; Navik, R.; Li, J. A New Approach for Production Prediction in Onshore and Offshore Tight Oil Reservoir. J. Mar. Sci. Eng. 2023, 11, 2079. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Wang, Q. Rock fabric of tight sandstone and its influence on irreducible water saturation in Eastern Ordos Basin. Energy Fuels 2023, 37, 3685–3696. [Google Scholar] [CrossRef]
- Meng, M.; Zhang, Y.; Yuan, B.; Li, Z.; Zhang, Y. Imbibition Behavior of Oil-Saturated Rock: Implications for Enhanced Oil Recovery in Unconventional Reservoirs. Energy Fuels 2023, 37, 13759–13768. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into water occurrence and pore size distribution by nuclear magnetic resonance in marine shale reservoirs, southern China. Energy Fuels 2022, 37, 319–327. [Google Scholar] [CrossRef]
- Friesen, O.J.; Dashtgard, S.E.; Miller, J.; Schmitt, L.; Baldwin, C. Permeability heterogeneity in bioturbated sediments and im-plications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Mar. Petro-Leum Geol. 2017, 82, 371–387. [Google Scholar] [CrossRef]
- Wu, B.; Wu, G.; Wang, L.; Lou, Y.; Liu, S.; Yin, B.; Li, S. Study on fracturing parameters optimization of horizontal wells in low-permeability reservoirs in South China Sea. Processes 2023, 11, 2999. [Google Scholar] [CrossRef]
- Du, F.; Huang, J.; Ru, X.; Ga, Y.; Yu, Z. Status and prospect of offshore horizontal well staged fracturing technology. Offshore Oil 2021, 41, 22–26. [Google Scholar] [CrossRef]
- Liu, K.; Gao, D.; Taleghani, A.D. Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing. J. Pet. Sci. Eng. 2018, 168, 370–379. [Google Scholar] [CrossRef]
- Chu, W.; Shen, J.; Yang, Y.; Li, Y.; Gao, D. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change. Pet. Explor. Dev. 2015, 42, 414–421. [Google Scholar] [CrossRef]
- Arshad, W.; Khaqan, K. Understanding the Key Factors Affecting Well Integrity in Horizontal Well Multistage Hydraulic Frac-turing. In Proceedings of the SPE Middle East Oil, Gas and Geosciences Show and Conference, Manama, Bahrain, 19–21 February 2023. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, R.; Li, X.; Zhou, S.; Tao, Q.; Lu, P. Cement sheath sealing integrity evaluation under cyclic loading using large-scale sealing evaluation equipment for complex subsurface settings. J. Pet. Sci. Eng. 2019, 176, 811–820. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Z.; Xi, Y.; Liu, G.; Li, J. Analysis of dynamic thermal behaviors for multi-stage hydraulic fracturing treatments in horizontal shale oil and shale gas wells. Appl. Therm. Eng. 2024, 240, 122213. [Google Scholar] [CrossRef]
- Arjomand, E.; Bennett, T.; Nguyen, G.D. Evaluation of cement sheath integrity subject to enhanced pressure. J. Pet. Sci. Eng. 2018, 170, 1–13. [Google Scholar] [CrossRef]
- Su, D.; Li, Z.; Huang, S.; Wu, X.; Li, J.; Xue, Y. Experiment and failure mechanism of cement sheath integrity under development and production conditions based on a mechanical equivalent theory. Energy Sci. Eng. 2021, 9, 2400–2422. [Google Scholar] [CrossRef]
- Zhang, W.; Eckert, A. Micro-annulus generation under downhole conditions: Insights from three-dimensional staged finite element analysis of cement hardening and wellbore operations. J. Rock Mech. Geotech. Eng. 2020, 12, 1185–1200. [Google Scholar] [CrossRef]
- Goodwin, K.J.; Crook, R.J. Cement sheath stress failure. SPE Drill. Eng. 1992, 7, 291–296. [Google Scholar] [CrossRef]
- Deng, K.; Yuan, Y.; Hao, Y.; Li, Z.; Lin, Y. Experimental study on the integrity of casing-cement sheath in shale gas wells under pressure and temperature cycle loading. J. Pet. Sci. Eng. 2020, 195, 107548. [Google Scholar] [CrossRef]
- Su, D.; Li, Z.; Wu, X.; Li, J.; Sun, J.; Zheng, G. Cement Sheath Integrity Evaluation Under Multiple Cyclic Loading Using Mechanical Equivalent Experiment for Gas Storage Wells in Eastern China. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 5–10 June 2022. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Gray, K.E. Development of a 3D numerical model for quantifying fluid-driven interface debonding of an injector well. Int. J. Greenh. Gas Control 2017, 62, 76–90. [Google Scholar] [CrossRef]
- Wang, W.; Taleghani, A.D. Impact of hydraulic fracturing on cement sheath integrity; A modelling approach. J. Nat. Gas Sci. Eng. 2017, 44, 265–277. [Google Scholar] [CrossRef]
- Li, J.; Xi, Y.; Tao, Q.; Li, Y.; Qu, G. Experimental investigation and numerical simulation of the emergence and development of micro-annulus in shale gas wells subjected to multistage fracturing. J. Nat. Gas Sci. Eng. 2020, 78, 103314. [Google Scholar] [CrossRef]
- Dahi Taleghani, A.; Li, G.; Moayeri, M. Smart expandable cement additive to achieve better wellbore integrity. J. Energy Resour. Technol. 2017, 139, 062903. [Google Scholar] [CrossRef]
- Pereira, F.L.G.; De Simone, M.; Roehl, D. Wellbore integrity assessment considering casing-cement-formation interaction based on a probabilistic approach. In Proceedings of the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Landry, G.; Welty, R.D.; Thomas, M.; Vaughan, M.L.; Tatum, D. Bridging the gap: An integrated approach to solving sustained casing pressure in the Cana Woodford shale. In Proceedings of the SPE Well Integrity Symposium, Galveston, TX, USA, 2–3 June 2015. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Hou, Z.; Liu, J.; Huang, S.; Su, D.; Li, J.; Cao, C.; Wu, L.; Song, W. Analytical Perspectives on Cement Sheath Integrity: A Comprehensive Review of Theoretical Research. ACS Omega 2024, 9, 17741–17759. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Valadez, T.; Mentzer, R.A.; Hasan, A.R.; Mannan, M.S. Inherently safer sustained casing pressure testing for well integrity evaluation. J. Loss Prev. Process Ind. 2014, 29, 209–215. [Google Scholar] [CrossRef]
- Al Ramadan, M.; Salehi, S.; Kwatia, G.; Ezeakacha, C.; Teodoriu, C. Experimental investigation of well integrity: Annular gas migration in cement column. J. Pet. Sci. Eng. 2019, 179, 126–135. [Google Scholar] [CrossRef]
- Wolterbeek, T.K.; Cornelissen, E.K.; Nolan, S.; Todea, F.; Stam, W.; Roggeband, S.M.; Keultjes, W.J.G. Restoration of annular zonal isolation using localized casing expansion (LCE) technology: A proof of concept based on laboratory studies and field trial results. J. Pet. Sci. Eng. 2021, 197, 108103. [Google Scholar] [CrossRef]
- Beltrán-Jiménez, K.; Skadsem, H.J.; Sunde, J.K.; Gardner, D.; Wolterbeek, T.K.; Cornelissen, E.K.; Keultjes, W.J. Restoration of annular zonal isolation using localized casing expansion (LCE) technology: Treatment of near-horizontal test sections containing a free-water channel. J. Pet. Sci. Eng. 2022, 208, 109792. [Google Scholar] [CrossRef]
- Congro, M.; Skadsem, H.J.; Beltrán-Jiménez, K.; Roehl, D. Experimental and numerical study on the pushout shear strength of conventional and expanding cement–casing sections for well integrity. Geoenergy Sci. Eng. 2024, 234, 212638. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Santos, L.; Al Hassan, A.A.; Dahi Taleghani, A. Surface-modified graphite nanoplatelets to limit deteriorative impacts of oil-based mud residuals on cement bonding. SPE Drill. Complet. 2023, 38, 235–242. [Google Scholar] [CrossRef]
- Corina, A.N.; Opedal, N.; Vrålstad, T.; Skorpa, R.; Sangesland, S. The effect of casing-pipe roughness on cement-plug integrity. SPE Drill. Complet. 2020, 35, 237–251. [Google Scholar] [CrossRef]
- Khurshid, I.; Lee, K.J.; Choe, J. Analyses of thermal disturbance in drilling deep and high temperature formations. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 1487–1497. [Google Scholar] [CrossRef]
- Xi, Y.; Li, J.; Tao, Q.; Guo, B.; Liu, G. Experimental and numerical investigations of accumulated plastic deformation in cement sheath during multistage fracturing in shale gas wells. J. Pet. Sci. Eng. 2020, 187, 106790. [Google Scholar] [CrossRef]
- Ali, I.T.; Afgan, I.; Khurshid, I. Stratified Two-Phase Turbulent Pipe Flow Simulations. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1301–1311. [Google Scholar] [CrossRef]
- Aycan, O.; Topuz, A.; Kadem, L. Evaluating uncertainties in CFD simulations of patient-specific aorta models using Grid Convergence Index method. Mech. Res. Commun. 2023, 133, 104188. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, R.; Zeng, H.; Zeng, Y.; Zhang, L.; Zhang, J.; Li, X. Mechanical characteristics of well cement under cyclic loading and its influence on the integrity of shale gas wellbores. Fuel 2019, 250, 132–143. [Google Scholar] [CrossRef]
- Murphy, B.P.; Prendergast, P.J. Measurement of non-linear microcrack accumulation rates in polymethylmethacrylate bone cement under cyclic loading. J. Mater. Sci. Mater. Med. 1999, 10, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Zhang, Z.; Ye, G.; Liu, J. Mechanical behavior and assessment of foamed cement paste under staged cyclic loading. Mater. Struct. 2021, 54, 182. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Duren, R.M.; Conley, S.; Prasad, K.R.; Bue, B.D.; Yadav, V.; Miller, C.E. Methane emissions from underground gas storage in California. Environ. Res. Lett. 2020, 15, 045005. [Google Scholar] [CrossRef]
Casing | Grade | Diameter (mm) | Thickness (mm) |
---|---|---|---|
Surface casing | P110 | 177.8 | 9.19 |
Intermediate casing | P110 | 244.5 | 9.65 |
Conductor casing | N80 | 339.7 | 11.99 |
Name | Elastic Modulus (GPa) | Poisson’s Ratio | Friction Angle (°) | Cohesive Strength (MPa) |
---|---|---|---|---|
Cement | 12 | 0.23 | 25 | 9 |
Formation | 23 | 0.18 | 30 | 6.2 |
Casing | 210 | 0.28 |
Name | Normal Stiffness (GPa) | Shear Stiffness (GPa) | Normal Cohesive Strength (MPa) | Shear Cohesive Strength (MPa) | Critical Energy (J/m2) |
---|---|---|---|---|---|
The 1st, 2nd, and 3rd interface | 0.8 | 2.2 | 1.2 | 2.3 | 100 |
The 4th interface | 1.5 | 4.5 | 2.6 | 5.6 | 210 |
Configuration | Mesh Size of the Wellbore (mm) | Total Number of Meshes | Micro-Annuli Width (um) |
---|---|---|---|
Coarse | 8 | 16,371 | 130.33 |
Medium | 4 | 49,152 | 130.12 |
Fine | 2 | 114,600 | 130 |
Type | Triaxial Compressive Strength (MPa) | Elastic Modulus (GPa) | Permeability (mD) |
---|---|---|---|
Before TCLT | 55 | 7.2 | 0.022 |
After TCLT | 49.1 | 6.6 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, Y. Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir. J. Mar. Sci. Eng. 2024, 12, 814. https://doi.org/10.3390/jmse12050814
Wang Y, Feng Y. Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir. Journal of Marine Science and Engineering. 2024; 12(5):814. https://doi.org/10.3390/jmse12050814
Chicago/Turabian StyleWang, Yangang, and Yongcun Feng. 2024. "Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir" Journal of Marine Science and Engineering 12, no. 5: 814. https://doi.org/10.3390/jmse12050814
APA StyleWang, Y., & Feng, Y. (2024). Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir. Journal of Marine Science and Engineering, 12(5), 814. https://doi.org/10.3390/jmse12050814