Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. GHs in Site W08
3.2. Sea-Level Change and Deposition
3.3. Methane in Pore Water
3.4. Sedimentary Soil-Water Properties
3.5. Hydraulic Conductivity in Gas Chimney
3.6. Tensile Strength Estimation
3.7. GH layer Formation Dynamics
4. Results
4.1. Evolution Process
4.2. Force Disequilibrium
4.3. Different Sedimentary Conditions
4.4. Palaeo-GH Existence
5. Discussion
5.1. Petrophysical Variations
5.2. Difference of MTDs
5.3. Multiple Accumulation Assumption
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. A Flow-Reaction Model
References
- Collett, T.; Bahk, J.; Baker, R.; Boswell, R.; Divins, D.; Frye, M.; Goldberg, D.; Husebø, J.; Koh, C.; Malone, M.; et al. Methane hydrates in nature—Current knowledge and challenges. J. Chem. Eng. Data 2015, 60, 319–329. [Google Scholar] [CrossRef]
- Boswell, R.; Shipp, C.; Reichel, T.; Shelander, D.; Saeki, T.; Frye, M.; Shedd, W.; Collett, T.S.; McConnell, D.R. Prospecting for marine gas hydrate resources. Interpretation 2016, 4, SA13–SA24. [Google Scholar] [CrossRef]
- Cook, A.E.; Portnov, A.; Heber, R.C.; Vadakkepuliyambatta, S.; Bunz, S. Widespread subseafloor gas hydrate in the Barents Sea and Norwegian Margin. Earth Planet. Sci. Lett. 2023, 604, 117993. [Google Scholar] [CrossRef]
- Liu, J.; Haeckel, M.; Rutqvist, J.; Wang, S.; Yan, W. The mechanism of methane gas migration through the gas hydrate stability zone: Insights from numerical simulations. JGR Solid Earth 2019, 124, 4399–4427. [Google Scholar] [CrossRef]
- Bello, A.; Heggland, R.; Peacock, D.C.P. Pressure significance of gas chimneys. Mar. Pet. Geol. 2017, 86, 402–407. [Google Scholar] [CrossRef]
- Elger, J.; Berndt, C.; Rupke, L.; Krastel, S.; Gross, F.; Geissler, W.H. Submarine slope failures due to pipe structure formation. Nat. Commun. 2018, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.H.; Callow, B.; Bottner, C.; Yilo, N.; Provenzano, G.; Falcon-Suarez, I.H.; Marin-Moreno, H.; Lichtschlag, A.; Bayrakci, G.; Gehrmann, R.; et al. Multiscale characterization of chimneys/pipes: Fluid escape structures within sedimentary basins. International J. Greenh. Gas Control 2021, 106, 103245. [Google Scholar] [CrossRef]
- Dentzer, J.; Bruel, D.; Delescluse, M.; Chamot-Rooke, N.; Beccaletto, L.; Lopez, S.; Courrioux, G.; Violette, S. Thermal and seismic hints for chimney type cross-stratal fluid flow in onshore basins. Sci. Rep. 2018, 8, 15330. [Google Scholar] [CrossRef]
- Han, W.; Chen, L.; Liu, C. Distribution and characteristics of gas chimneys in the passive margin offshore SW Taiwan. Mar. Geophys. Res. 2021, 42, 25. [Google Scholar] [CrossRef]
- Hovland, M.; Sommerville, J.H. Characteristics of two natural gas seepages in the North Sea. Mar. Pet. Geol. 1985, 2, 319–326. [Google Scholar] [CrossRef]
- Hovland, M. The formation of pockmarks and their potential influence on offshore construction. Q. J. Eng. Geol. Hydrogeol. 1989, 22, 131–138. [Google Scholar] [CrossRef]
- Hovland, M.; Svensen, H. Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Mar. Geol. 2006, 228, 15–23. [Google Scholar] [CrossRef]
- Cheng, C.; Jiang, T.; Kuang, Z.; Ren, J.; Liang, J.; Lai, H.; Xiong, P. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea. Mar. Pet. Geol. 2021, 129, 105118. [Google Scholar] [CrossRef]
- Yang, J.; Davies, R.J.; Huuse, M. Gas migration below gas hydrates controlled by mass transport complexes, offshore Mauritania. Mar. Pet. Geol. 2013, 48, 366–378. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhatnagar, G.; Dugan, B.; Dickens, G.R.; Chapman, W.G.; Hirasaki, G.J. The impact of lithologic heterogeneity and focused fluid flow upon gas hydrate distribution in marine sediment. J. Geophys. Res. Solid Earth 2014, 119, 6705–6732. [Google Scholar] [CrossRef]
- Guan, J.; Wan, L.; Liang, D. Gauging formation dynamics of structural-seepage methane hydrate reservoirs in Shenhu area of northern South China Sea: Impact of seafloor sedimentation and assessment of controlling factors. Mar. Pet. Geol. 2019, 107, 185–197. [Google Scholar] [CrossRef]
- Yang, S.; Liang, J.; Lu, J.; Qu, C.; Liu, B. New understandings on characteristic and controlling factors of gas hydrate reservoirs in Shenhu area on northern slope of South China Sea. Earth Sci. Front. 2017, 24, 1–14, (In Chinese with English abstract). [Google Scholar]
- Cathles, L.M.; Su, Z.; Chen, D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar. Pet. Geol. 2010, 27, 82–91. [Google Scholar] [CrossRef]
- Sun, Q.; Cartwright, J.; Wu, S.; Chen, D. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse. Mar. Geol. 2013, 337, 171–181. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, W.; Ma, C.; Liang, J.; Li, A.; Meng, D.; Huang, W.; Yang, C.; Zhang, J.; Sun, Y. Dissociation of gas hydrates by hydrocarbon migration and accumulation-derived slope failures: An example from the South China Sea. Geosci. Front. 2021, 12, 101345. [Google Scholar] [CrossRef]
- Argentino, C.; Conti, S.; Fioroni, C.; Fontana, D. Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences 2019, 9, 134. [Google Scholar] [CrossRef]
- Chun, J.H.; Bahk, J.J.; Um, I.K. Ulleung basin gas hydrate drilling expeditions, Korea: Lithologic characteristics of gas hydrate-bearing sediments. In World Atlas of Submarine Gas Hydrates in Continental Margins; Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, C.S., Eds.; Springer: Cham, Switzerland, 2022; pp. 155–161. [Google Scholar]
- Collett, T.S.; Chopra, K.; Bhardwaj, A.; Boswell, R.; Waite, W.F.; Misra, A.K.; Kumar, P. A review of the exploration, discovery and characterization of highly concentrated gas hydrate accumulations in coarse-grained reservoir systems along the eastern continental margin of India. In World Atlas of Submarine Gas Hydrates in Continental Margins; Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, C.S., Eds.; Springer: Cham, Switzerland, 2022; pp. 139–154. [Google Scholar]
- Liang, C.; Liu, C.; Xie, X.; Yu, X.; He, Y.; Su, M.; Chen, H.; Zhou, Z.; Tian, D.; Mi, H.; et al. Basal shear zones of recurrent mass transport deposits serve as potential reservoirs for gas hydrates in the Central Canyon area, South China Sea. Mar. Geol. 2021, 441, 106631. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Wan, Z.; Sun, Z.; Liu, J.; Zhang, C. The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea. Mar. Geol. 2015, 361, 11–24. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Sun, L.; Wang, Z.; Sun, Z. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea. Basin Res. 2018, 30 (Suppl. S1), 269–288. [Google Scholar] [CrossRef]
- Deng, W.; Liang, J.; Zhang, W.; Kuang, Z.; Zhong, T.; He, Y. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern South China Sea. Mar. Pet. Geol. 2021, 124, 104810. [Google Scholar]
- Lai, H.; Fang, Y.; Kuang, Z.; Ren, J.; Liang, J.; Lu, J.; Wang, G.; Xing, C. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site GMGS5-W08. Mar. Pet. Geol. 2021, 123, 104774. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Lu, J.; Zhang, W.; He, Y. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea-Results of the fifth gas hydrate drilling expedition. Mar. Pet. Geol. 2019, 110, 287–298. [Google Scholar] [CrossRef]
- Ye, J.; Wei, J.; Liang, J.; Lu, J.; Lu, H.; Zhang, W.; all the participants of GMGS5. Complex gas hydrate system in a gas chimney, South China Sea. Mar. Pet. Geol. 2019, 104, 29–39. [Google Scholar] [CrossRef]
- Gong, C.; Wang, Y.; Zhu, W.; Li, W.; Xu, Q.; Zhang, J. The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Mar. Pet. Geol. 2011, 28, 1690–1702. [Google Scholar] [CrossRef]
- Li, W.; Alves, T.M.; Wu, S.; Volker, D.; Zhao, F.; Mi, L.; Kopf, A. Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island). Mar. Pet. Geol. 2015, 64, 17–30. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, C.; Xiong, P.; Kuang, Z.; Liang, J.; Lai, H.; Chen, Z.; Chen, Y.; Li, T.; Jiang, T. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea. J. Pet. Sci. Eng. 2022, 215 Pt B, 110630. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, T.; Zhang, D.; Wang, Y.; Zuo, Q.; He, W. Evolution of deepwater sedimentary environments and its implication for hydrocarbon exploration in Qiongdongnan Basin, northwestern South China Sea. Acta Oceanol. Sin. 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Huang, B.; Tian, H.; Li, X.; Wang, Z.; Xiao, X. Geochemistry, origin and accumulation of natural gases in the Deepwater area of the Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2016, 72, 254–267. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Lu, J.; Wei, J.; Kuang, Z.; He, Y.; all participants of GMGS5 expedition. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Mar. Pet. Geol. 2019, 418, 106042. [Google Scholar] [CrossRef]
- Meng, M.; Liang, J.; Lu, J.; Zhang, W.; Kuang, Z.; Fang, Y.; He, Y.; Deng, W.; Huang, W. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea. Deep-Sea Res. 2021, 177, 103628. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Yang, X.; Su, P.; Wan, Z. The formation mechanism of mud diapirs and gas chimneys and their relationship with natural gas hydrates: Insights from the deep-water area of Qiongdongnan Basin, northern South China Sea. Int. Geol. Rev. 2018, 62, 789–810. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Zhang, R.; Deng, W.; Gu, Y.; He, Y.; Gong, Y.; Meng, M.; Feng, J.; Liang, J. Gas hydrate accumulation in shelf break setting: Example from the Qiongdongnan Basin in the northern slope of the South China Sea. Geol. J. 2022, 57, 1153–1171. [Google Scholar] [CrossRef]
- Yang, W.; Kuang, Z.; Ren, J.; Liang, J.; Lu, H.; Ning, Z.; Xu, C.; Lai, H.; Chen, R.; Zhao, B.; et al. The controlling factors of the natural gas hydrate accumulation in the Songnan Low Uplift, Qiongdongnan Basin, China. Front. Earth Sci. 2022, 10, 882080. [Google Scholar]
- Conti, S.; Fontana, D.; Lucente, C.C.; Pini, G.A. Relationships between seep-carbonates, mud volcanism and basin geometry in the Late Miocene of the northern Apennines of Italy: The Montardone mélange. Int. J. Earth Sci. (Geol. Rundsch.) 2014, 103, 281–295. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Feng, Z.; Xiao, X.; Feng, L. Geochemical evidence of methane seepage in the sediments of the Qiongdongnan Basin, South China Sea. Chem. Geol. 2020, 543, 119588. [Google Scholar] [CrossRef]
- He, Y.; Liang, J.; Kuang, Z.; Deng, W.; Ren, J.; Lai, H.; Meng, M.; Zhang, W. Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin, China. China Geol. 2022, 5, 234–250. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, F.; Guo, Q.; Hu, Y.; Chen, D.; Yang, S.; Cao, J.; Chen, H.; Wei, R.; Cheng, S.; et al. Possible links between methane seepages and glacial-interglacial transitions in the South China Sea. Geophys. Res. Lett. 2021, 48, e2020GL091429. [Google Scholar] [CrossRef]
- Davie, M.K.; Zatsepina, O.Y.; Buffett, B.A. Methane solubility in marine hydrate environments. Mar. Geol. 2004, 203, 177–184. [Google Scholar] [CrossRef]
- Duan, Z.; Moller, N.; Greenberg, J.; Weare, J. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 °C and from 0 to 1600 bar. Geochim. Cosmochim. Acta 1992, 56, 1451–1460. [Google Scholar] [CrossRef]
- Tishchenko, P.; Hensen, C.; Wallmann, K.; Wong, C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 2005, 219, 37–52. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. [Google Scholar] [CrossRef]
- Murphy, Z.W.; DiCarlo, D.A.; Flemings, P.B.; Daigle, H. Hydrate is a nonwetting phase in porous media. Geophys. Res. Lett. 2020, 47, e2020GL089289. [Google Scholar] [CrossRef]
- Daigle, H.; Ghanbarian, B.; Henry, P.; Conin, M. Universal scaling of the formation factor in clays: Example from the Nankai Trough. J. Geophys. Res. Solid Earth 2015, 120, 7361–7375. [Google Scholar] [CrossRef]
- Guan, J.; Liang, D.; Wu, N.; Fan, S. The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone. J. Asian Earth Sci. 2009, 36, 277–288. [Google Scholar] [CrossRef]
- Daigle, H.; Cook, A.; Fang, Y.; Bihani, A.; Song, W.; Flemings, P.B. Gas-driven tensile fracturing in shallow marine sediments. JGR Solid Earth 2020, 125, e2020JB020835. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Liang, Q.; Liang, J.; Lu, J.; Zhang, W.; Zhang, X.; Lu, X. Geomechanical properties of gas hydrate-bearing sediments in Shenhu Area of the South China Sea. Energy Rep. 2021, 7, 8013–8020. [Google Scholar] [CrossRef]
- Crutchley, G.J.; Mountjoy, J.J.; Hillman, J.I.T.; Turco, F.; Watson, S.; Flemings, P.B.; Davy, B.; Woelz, S.; Gorman, A.R.; Bialas, J. Upward-Doming Zones of Gas Hydrate and Free Gas at the Bases of Gas Chimneys, New Zealand’s Hikurangi Margin. JGR Solid Earth 2021, 126, e2020JB021489. [Google Scholar] [CrossRef]
- Su, P.; Liang, J.; Peng, J.; Zhang, W.; Xu, Z. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China Sea. J. Asian Earth Sci. 2018, 16, 57–76. [Google Scholar] [CrossRef]
- Bi, G.; Lyu, C.; Li, C.; Chen, G.; Zhang, G.; Zhou, Q.; Li, C.; Zhao, Y. Impact of early hydrocarbon charge on the diagenetic history and reservoir quality of the Central Canyon sandstones in the Qiongdongnan Basin, South China Sea. J. Asian Earth Sci. 2019, 185, 104022. [Google Scholar] [CrossRef]
- Guan, J.; Liang, Y.; Wang, S.; Wan, L.; Fan, S.; Su, P.; Zhang, W.; Liang, D. New insight on the stratigraphic-diffusive gas hydrate system since the Pleistocene in the Dongsha area of the Northeastern South China Sea. J. Mar. Sci. Eng. 2022, 10, 434. [Google Scholar] [CrossRef]
- Riboulot, R.; Cattaneo, A.; Sultan, N.; Ker, S.G.; Imbert, P.; Voisset, M. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria. Earth Planet. Sci. Lett. 2013, 375, 78–91. [Google Scholar] [CrossRef]
- Wang, B.; Lei, H.; Huang, F.; Kong, Y.; Pan, F.; Cheng, W.; Chen, L.; Guo, L. Effect of Sea-Level Change on Deep-Sea Sedimentary Records in the Northeastern South China Sea over the past 42 kyr. Geofluids 2020, 2020, 8814545. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S.; Frye, M.; Shedd, W.; McConnell, D.R.; Shelander, D. Subsurface gas hydrates in the northern Gulf of Mexico. Mar. Pet. Geol. 2012, 34, 4–30. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Methane flux (kg·m−2·yr−1): qm | 0.25 |
Water flux (kg·m−2·yr−1): qw | 0 |
Geothermal heat (mW·yr−2): qe | 80 |
Sedimentary rate (cm/kyr): vs | 19 |
Kinetic coefficient (mol·m−3·MPa−1·yr−1): ζ0 | 0.3 |
Total evolution time (kyr): t | 30 |
Density (kg/m3): ρs, ρw, ρg0, ρh | 2650, 1025, 0.7 (standard temperature and pressure), 912 |
Molar mass (g/mol): ηw, ηm, ηh | 18, 16, 124 |
Viscosity (Pa·s): µl, µg | 1.3 × 10−3, 1.5 × 10−5 |
Diffusivity (m2/s): Dlm, Dls | 1.3 × 10−9, 1.0 × 10−9 |
Initial salinity: Xl0s | 0.033 |
Fraction of clay particle volume: xc | 0.3 |
Geothermal gradient (°C/m): Td | 102 |
Heat conductivity (W·m−1·K−1): λr, λl, λh, λg | 1.2, 0.58, 0.53, 0.05 |
Specific heat (J·kg−1·K−1): Cr, Cl, Ch, Cg | 2.2 × 103, 4.2 × 103, 2.1 × 103, 3 × 103 |
Scenarios | Gas Flux (kg·m−2·yr−1) | Kinetic Coefficient (mol·m−3·MPa−1·yr−1) | Permeability (in Chimney, in MTDs) (mD) |
---|---|---|---|
1 | 0.25 | 0.3 | 20,000, 2000 |
2 | 0.025 | 0.03 | 200, 2 |
3 | 2.5 | 0.03 | 200, 2 |
4 | 25 | 0.003 | 200, 20 |
5 | 250 | 0.03 | 200, 2 |
6 | 2500 | 0.03 | 2000, 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Wang, M.; Zhang, W.; Wan, L.; Haeckel, M.; Wu, Q. Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea. J. Mar. Sci. Eng. 2024, 12, 834. https://doi.org/10.3390/jmse12050834
Guan J, Wang M, Zhang W, Wan L, Haeckel M, Wu Q. Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea. Journal of Marine Science and Engineering. 2024; 12(5):834. https://doi.org/10.3390/jmse12050834
Chicago/Turabian StyleGuan, Jinan, Menghe Wang, Wei Zhang, Lihua Wan, Matthias Haeckel, and Qi Wu. 2024. "Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea" Journal of Marine Science and Engineering 12, no. 5: 834. https://doi.org/10.3390/jmse12050834
APA StyleGuan, J., Wang, M., Zhang, W., Wan, L., Haeckel, M., & Wu, Q. (2024). Representative Dynamic Accumulation of Hydrate-Bearing Sediments in Gas Chimney System since 30 Kyr BP in the QiongDongNan Area, Northern South China Sea. Journal of Marine Science and Engineering, 12(5), 834. https://doi.org/10.3390/jmse12050834