A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests
Abstract
:1. Introduction
2. Methods for Calculating Undrained Shear Strength and Soil Behavior Type Index
2.1. Estimation of Su by “Total” Cone Tip Resistance qt
2.2. Estimation of Su by Effective Cone Tip Resistance qe
2.3. Calculation of Undrained Shear Strength Su
2.4. Calculation of Soil Behavior Type Index Ic
3. CPTU Results
4. Conclusions
- The soil behavior type index Ic exhibits a negatively correlated exponential relation with the cone factors Nkt, Nke.
- Considering the correlation between cone factors Nkt, Nke and the soil behavior type index Ic can enhance the prediction accuracy of undrained shear strength.
- As Ic increases, the predicted accuracy of undrained shear strength from CPTU can be improved.
- The functional relation between Ic and the Nkt can be applied to the adjacent regions of Zhejiang Province in China.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilgili, M.; Yasar, A.; Simsek, E. Offshore wind power development in Europe and its comparison with onshore counterpart. Renew. Sust. Energy Rev. 2011, 15, 905–915. [Google Scholar] [CrossRef]
- Chen, J. Development of offshore wind power in China. Renew. Sust. Energy Rev. 2011, 15, 5013–5020. [Google Scholar] [CrossRef]
- Qiao, H.; Liu, L.; He, H.; Liu, X.; Liu, X.; Peng, P. The practice and development of T-bar penetrometer tests in offshore engineering investigation: A comprehensive review. J. Mar. Sci. Eng. 2023, 11, 1160. [Google Scholar] [CrossRef]
- Mbarak, W.K.; Cinicioglu, E.N.; Cinicioglu, O. SPT based determination of undrained shear strength: Regression models and machine learning. Front. Struct. Civ. Eng. 2020, 14, 185–198. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Guo, L.; Cui, Y.; Su, X.; Ling, X. Soil classification and site variability analysis based on CPT—A case study in the Yellow River subaquatic delta, China. J. Mar. Sci. Eng. 2021, 9, 431. [Google Scholar] [CrossRef]
- Kang, X.; Sun, H.-M.; Luo, H.; Dai, T.; Chen, R.-P. A portable bender element-double cone penetration testing equipment for measuring stiffness and shear strength of in-situ soft soil deposits. KSCE J. Civ. Eng. 2020, 24, 3546–3560. [Google Scholar] [CrossRef]
- Liu, X.; Shen, J.; Yang, M.; Cai, G.; Liu, S. Subsurface characterization of a construction site in Nanjing, China using ERT and CPTU methods. Eng. Geol. 2022, 299, 106563. [Google Scholar] [CrossRef]
- Cai, G.; Liu, S.; Puppala, A.J. Evaluation of geotechnical parameters of a lagoonal clay deposit in Jiangsu Lixia River area of China by seismic piezocone tests. KSCE J. Civ. Eng. 2016, 20, 1769–1782. [Google Scholar] [CrossRef]
- Duan, W.; Congress, S.S.C.; Cai, G.; Puppala, A.J.; Du, Y. Empirical Correlations of Soil Parameters based on Piezocone Penetration Tests (CPTU) for Hong Kong- Zhuhai-Macau Bridge (HZMB) Project. Transp. Geotech. 2021, 10, 100605. [Google Scholar] [CrossRef]
- Drusa, M.; Gago, F.; Vlček, J. Contribution to estimating bearing capacity of pile in clayey soils. Civ. Environ. Eng. 2016, 12, 128–136. [Google Scholar] [CrossRef]
- Salgado, R.; Lyamin, A.V.; Sloan, S.W.; Yu, H.S. Two and three dimensional bearing capacity of foundations in clay. Géotechnique 2004, 54, 297–306. [Google Scholar] [CrossRef]
- Senneset, K.; Sandven, R.; Janbu, N. Evaluation of soil parameters from piezocone tests. Transport. Res. Rec. 1989, 1235, 24–37. [Google Scholar]
- Teh, C.I.; Houlsby, G.T. An analytical study of the cone penetration test in clay. Géotechnique 1992, 42, 529–532. [Google Scholar] [CrossRef]
- Cleary, M.P. Fundamental solutions for a fluid-saturated porous solid. Int. J. Solids Struct. 1977, 12, 785–806. [Google Scholar] [CrossRef]
- Lunne, T.; Robertson, P.K.; Powell, J.J.M. Cone-Penetration Testing in Geotechnical Practice; Spon Press: London, UK, 2001. [Google Scholar]
- Paniagua, P.; D’Ignazio, M.; L’Heureux, J.-S.; Lunne, T.; Karlsrud, K. CPTU correlations for Norwegian clays: An update. AIMS Geosci. 2019, 5, 82–103. [Google Scholar] [CrossRef]
- Lunne, T.; Eide, O.; De, R.J. Correlations between cone resistance and vane shear strength in some Scandinavian soft to medium stiff clays. Can. Geotech. J. 1976, 13, 430–441. [Google Scholar] [CrossRef]
- Aas, G.; Lacasse, S.M.; Lunne, T.A.; Høeg, K. Use of In Situ Tests for Foundation Design on Clay. In Proceedings of the ASCE Specialty Conference In Situ’86, Use of In Situ tests in Geotechnical Engineering, Blacksburg, VA, USA, 23–25 June 1986. [Google Scholar]
- Shin, Y.J.; Kim, D. Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils. KSCE J. Civ. Eng. 2011, 15, 1161–1166. [Google Scholar] [CrossRef]
- Mayne, P.W.; Peuchen, J. CPTU bearing factor Nkt for undrained strength evaluation in clays. In Proceedings of the Cone Penetration Testing 2018: Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT’18), Delft, The Netherlands, 21–22 June 2018. [Google Scholar]
- JTS/T 242-2020; Technical Specification for Underwater Inspection Cone Penetration Engineering. China Communications Press Co., Ltd.: Beijing, China, 2020. (In Chinese)
- Naeini, S.A.; Moayed, R.Z. Evaluation of undrained shear strength of loose silty sand soil using CPT results. Int. J. Civ. Eng. 2007, 2, 104–117. [Google Scholar]
- Bol, E.; Önalp, A.; Özocak, A.; Sert, S. Estimation of the undrained shear strength of Adapazari fine grained soils by cone penetration test. Eng. Geol. 2019, 261, 105277. [Google Scholar] [CrossRef]
- Bol, E. The influence of pore pressure gradients in soil classification during piezocone penetration test. Eng. Geol. 2013, 157, 69–78. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.Y.; Jin, Y.F. Bayesian neural network-based uncertainty modelling: Application to soil compressibility and undrained shear strength prediction. Can. Geotech. J. 2022, 59, 546–557. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Baziar, M.H.; Saeedi Azizkandi, A.; Kashkooli, A. Prediction of pile settlement based on cone penetration test results: An ANN approach. KSCE J. Civ. Eng. 2015, 19, 98–106. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Z.; Yu, S. Correlations of soil shear strength with specific penetration resistance of CPT in Shanghai area. Rock Soil Mech. 2014, 35, 536–542. (In Chinese) [Google Scholar]
- Li, Y.; Wang, Z.; Wang, H.; Xu, Z. Study on the undrained shear strength of Fujian Marine clay based on CPTU. China Water Transp. 2021, 21, 133–135. (In Chinese) [Google Scholar]
- Robertson, P.K. Estimating in-situ soil permeability from CPT & CPTu. In Proceedings of the 2nd International Symposium on Cone Penetration Testing (CPT ’10), Huntington Beach, CA, USA, 9–11 May 2010. [Google Scholar]
- Fan, H.; Xu, G. Application of ROSON 200 kN Seabed Cone Penetration Test System. Bull. Sci. Technol. 2019, 35, 163–167. (In Chinese) [Google Scholar]
- Robertson, P.K. Soil classification using the cone penetration test. Can. Geotech. J. 1990, 27, 151–158. [Google Scholar] [CrossRef]
- Jefferies, M.G.; Davies, M.P. Use of CPTu to estimate equivalent SPT. Geotech. Test. J. 1993, 16, 458–468. [Google Scholar] [CrossRef]
- Robertson, P.K. Interpretation of cone penetration tests a unified approach. Can. Geotech. J. 2009, 46, 1337–1355. [Google Scholar] [CrossRef]
- Du, G.; Gao, C.; Liu, S.; Guo, Q.; Luo, T. Evaluation method for the liquefaction potential using the standard penetration test value based on the CPTU soil behavior type index. Adv. Civ. Eng. 2019, 2019, 5612857. [Google Scholar] [CrossRef]
- Wang, K.; Shen, K.; Wang, M.; Wang, H.; Guo, Z. Strength interpretation parameter of piezoncone penetration test for soft clay in offshore area of Hangzhou Bay. Rock. Soil. Mech. 2023, 44 (Suppl. S1), 521–532. (In Chinese) [Google Scholar]
Range of Ic | Classification of the Soil in China |
---|---|
Ic > 3.45 | Muck and mucky soil |
3.00 < Ic < 3.45 | Clay |
2.80 < Ic < 3.00 | Silty clay, clay |
2.60 < Ic < 2.80 | Silt, silty clay |
2.40 < Ic < 2.60 | Silt |
2.10 < Ic < 2.40 | Silty sand, silt |
1.87 < Ic < 2.10 | Fine sand |
Ic < 1.87 | Medium sand |
Experiment in A | Experiment in B | ||
---|---|---|---|
Soil Layers | Statistic | Soil Layers | Statistic |
Silty clay | 116 | Muddy silty clay | 27 |
Silt mixed with silty clay | 67 | Silty clay | 26 |
Silty clay mixed with silt | 53 | Muddy clay | 16 |
Muddy silty clay | 18 | Silty clay mixed with silt | 9 |
Silty clay mixed with silt | 13 | Clayey silt mixed with silty clay | 4 |
Silty clay with silty sand | 7 | ||
Silt mixed with silty clay | 6 |
Depth Range of the Soil Layer Bottom (m) | Ic | Ic (Mean Value) | Nkt | R2 | Nke | R2 |
---|---|---|---|---|---|---|
[43–54] | [1.80–1.94] | 1.88202 | 38.46 | 0.96 | 38.43 | 0.96 |
[52–65] | [1.94–2.06] | 2.01657 | 29.23 | 0.97 | 29.36 | 0.97 |
[47–59] | [2.06–2.12] | 2.09938 | 25.58 | 0.97 | 25.95 | 0.96 |
[46–63] | [2.12–2.20] | 2.15491 | 25.23 | 0.93 | 25.75 | 0.93 |
[46–61] | [2.20–2.25] | 2.22081 | 21.07 | 0.96 | 21.43 | 0.96 |
[50–65] | [2.26–2.30] | 2.27726 | 19.51 | 0.95 | 19.69 | 0.94 |
[56–72] | [2.30–2.38] | 2.34376 | 18.33 | 0.97 | 18.90 | 0.96 |
[67–83] | [2.38–2.44] | 2.41203 | 17.87 | 0.97 | 18.76 | 0.97 |
[59–78] | [2.44–2.47] | 2.45625 | 16.95 | 0.98 | 17.59 | 0.98 |
[54–74] | [2.47–2.53] | 2.49873 | 15.28 | 0.99 | 15.86 | 0.98 |
[62–82] | [2.53–2.62] | 2.57546 | 13.87 | 0.97 | 13.90 | 0.97 |
[67–84] | [2.62–2.80] | 2.69623 | 10.49 | 0.97 | 10.89 | 0.96 |
Soil Number | Soil Depth (m) | Nkt | Nke |
---|---|---|---|
1 | 27.5 | 13.23 | 15.17 |
2 | 30 | 46.05 | 50.47 |
3 | 40.5 | 15.2 | 17.34 |
4 | 41.7 | 30.67 | 34.11 |
5 | 44.5 | 22.36 | 25.16 |
6 | 48.3 | 26.28 | 29.39 |
7 | 57 | 11.93 | 13.73 |
8 | 68.2 | 15.75 | 17.94 |
9 | 69.7 | 26.69 | 29.83 |
10 | 70.9 | 17.27 | 19.61 |
11 | 78 | 24.96 | 27.97 |
12 | 81.2 | 27.1 | 30.27 |
13 | 86.2 | 9.4 | 10.91 |
14 | 91 | 23.97 | 26.9 |
15 | 93.52 | 13.48 | 15.45 |
Ic | R2 | RMSE (MPa) | MAE (MPa) |
---|---|---|---|
2.20–2.37 | 0.79 | 0.0595 | 0.0035 |
2.38–2.51 | 0.84 | 0.0443 | 0.0019 |
2.51–2.62 | 0.92 | 0.0342 | 0.0011 |
2.63–2.80 | 0.94 | 0.0318 | 0.0010 |
2.20–2.80 | 0.88 | 0.0042 | 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Shen, Y.; Jia, X.; Zhang, Z.; Li, X. A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests. J. Mar. Sci. Eng. 2024, 12, 1019. https://doi.org/10.3390/jmse12061019
Fu S, Shen Y, Jia X, Zhang Z, Li X. A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests. Journal of Marine Science and Engineering. 2024; 12(6):1019. https://doi.org/10.3390/jmse12061019
Chicago/Turabian StyleFu, Sai, Yanghai Shen, Xianlin Jia, Zhiqing Zhang, and Xibin Li. 2024. "A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests" Journal of Marine Science and Engineering 12, no. 6: 1019. https://doi.org/10.3390/jmse12061019
APA StyleFu, S., Shen, Y., Jia, X., Zhang, Z., & Li, X. (2024). A Novel Method for Estimating the Undrained Shear Strength of Marine Soil Based on CPTU Tests. Journal of Marine Science and Engineering, 12(6), 1019. https://doi.org/10.3390/jmse12061019