Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables
Abstract
:1. Introduction
2. Method of Eliciting Expert Knowledge
- Personal profile questions—PPQs.
- Fuzzy variable range questions—RFQs.
- PPQ1: Rank on board.
- PPQ2: Sea experience in years.
- PPQ3: Type of your last ship.
- PPQ4: Length overall in meters of your last ship.
- RFQ1: Please describe the linguistic variable Very Small Ship by recording minimum and maximum values in meters, in a range from 0 to 400 m.
- RFQ2: Please describe the linguistic variable Small Ship by recording minimum and maximum values in meters, in a range from 0 to 400 m.
- RFQ3: Please describe the linguistic variable Medium Ship by recording minimum and maximum values in meters, in a range from 0 to 400 m.
- RFQ4: Please describe the linguistic variable Large Ship by recording minimum and maximum values in meters, in a range from 0 to 400 m.
- RFQ5: Please describe the linguistic variable Very Large Ship by recording minimum and maximum values in meters, in a range from 0 to 400 m.
3. Results of Survey
3.1. Personal Profile Questions
3.2. Fuzzy Range Questions
3.3. Regression Analysis to Obtain Membership Functions
3.4. Review of Obtained Results with Conceptual Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martelli, M.; Žuškin, S.; Zaccone, R.; Rudan, I. A COLREGs-compliant decision support tool to prevent collisions at sea. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2023, 17, 347–353. [Google Scholar] [CrossRef]
- Demirel, E.; Bayer, D. Further studies on the COLREGs (collision regulations). TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2015, 9, 17–23. [Google Scholar] [CrossRef]
- Mohović, D.; Mohović, R.; Barić, M. Deficiencies in learning COLREGs and new teaching methodology for nautical engineering students and seafarers in lifelong learning programs. J. Navig. 2016, 69, 765–776. [Google Scholar] [CrossRef]
- Ahmed, Y.A.; Hannan, M.A.; Oraby, M.Y.; Maimun, A. COLREGs Compliant Fuzzy-Based Collision Avoidance System for Multiple Ship Encounters. J. Mar. Sci. Eng. 2021, 9, 790. [Google Scholar] [CrossRef]
- International Maritime Organisation (IMO). Available online: https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx (accessed on 6 March 2024).
- Benjamin, M.R.; Curcio, J.A.; Leonard, J.J.; Newman, P.M. Navigation of unmanned marine vehicles in accordance with the rules of the road. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006. [Google Scholar]
- Namgung, H.; Kim, J.S. Collision risk inference system for maritime autonomous surface ships using COLREGs rules compliant collision avoidance. IEEE Access 2021, 9, 7823–7835. [Google Scholar] [CrossRef]
- Wróbel, K.; Gil, M.; Huang, Y.; Wawruch, R. The Vagueness of COLREG versus Collision Avoidance Techniques—A Discussion on the Current State and Future Challenges Concerning the Operation of Autonomous Ships. Sustainability 2022, 14, 16516. [Google Scholar] [CrossRef]
- Zaccone, R.; Martelli, M. Interaction between COLREG-compliant collision avoidance systems in a multiple MASS scenario. J. Phys. Conf. Ser. 2023, 2618/1, 012006. [Google Scholar] [CrossRef]
- Donnarumma, S.; Figari, M.; Martelli, M.; Zaccone, R. Simulation of the Guidance and Control Systems for Underactuated Vessels. In Proceedings of the 6th International Conference, MESAS 2019, Palermo, Italy, 29–31 October 2019. [Google Scholar] [CrossRef]
- Martelli, M.; Faggioni, N.; Zaccone, R. Development of a navigation support system by means of a synthetic scenario. In Proceedings of the 18th International Congress of the Maritme Association of the Mediterranean (IMAM 2019), Varna, Bulgaria, 9–11 September 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Jiang, H. A Review of Artificial Intelligence-Based Optimization Applications in Traditional Active Maritime Collision Avoidance. Sustainability 2023, 15, 13384. [Google Scholar] [CrossRef]
- Fruzzetti, C.; Donnarumma, S.; Martelli, M. Dynamic target chasing: Parameters and performance indicators assessment. J. Mar. Sci. Technol. 2022, 27, 712–729. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Yang, Z.; Bashir, M.; Lee, K. Collision avoidance for autonomous ship using deep reinforcement learning and prior-knowledge-based approximate representation. Front. Mar. Sci. 2023, 9, 1084763. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Jiang, L.; An, L.; Yang, R. Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Eng. 2021, 235, 109380. [Google Scholar] [CrossRef]
- International Maritime Organisation (IMO). Outcome of the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS); IMO: London, UK, 2021. [Google Scholar]
- Rødseth, Ø.J.; Wennersberg, L.A.L.; Nordahl, H. Improving Safety of Interactions between Conventional and Autonomous Ships. Ocean Eng. 2023, 284, 115206. [Google Scholar] [CrossRef]
- Chang, C.H.; Wijeratne, I.B.; Kontovas, C.; Yang, Z. COLREG and MASS: Analytical review to identify research trends and gaps in the Development of Autonomous Collision Avoidance. Ocean Eng. 2024, 302, 117652. [Google Scholar] [CrossRef]
- Miyoshi, T.; Fujimoto, S.; Rooks, M.; Konishi, T.; Suzuki, R. Rules required for operating maritime autonomous surface ships from the viewpoint of seafarers. J. Navig. 2022, 75, 384–399. [Google Scholar] [CrossRef]
- Xie, W.; Gang, L.; Zhang, M.; Liu, T.; Lan, Z. Optimizing Multi-Vessel Collision Avoidance Decision Making for Autonomous Surface Vessels: A COLREGs-Compliant Deep Reinforcement Learning Approach. J. Mar. Sci. Eng. 2024, 12, 372. [Google Scholar] [CrossRef]
- He, Y.; Jin, Y.; Huang, L.; Xiong, Y.; Chen, P.; Mou, J. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea. Ocean Eng. 2017, 140, 281–291. [Google Scholar] [CrossRef]
- Kim, J.-K.; Park, D.-J. Determining the Proper Times and Sufficient Actions for the Collision Avoidance of Navigator-Centered Ships in the Open Sea Using Artificial Neural Networks. J. Mar. Sci. Eng. 2023, 11, 1384. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, D.J. Understanding of sailing rule based on COLREGs: Comparison of navigator survey and automated collision-avoidance algorithm. Mar. Policy 2024, 159, 105894. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Huang, J.-J.; Wang, F.-W.; Wu, Z.-L.; Liu, Z.-J. A Study of the Application Barriers to the Use of Autonomous Ships Posed by the Good Seamanship Requirement of COLREGs. J. Navig. 2020, 73, 710–725. [Google Scholar] [CrossRef]
- Kim, I. Systematization of Legal Procedures for Collision Avoidance between a Fully Autonomous Ship and a Traditional Manned Ship. J. Mar. Sci. Eng. 2023, 11, 1850. [Google Scholar] [CrossRef]
- Li, Q. A Research on Autonomous Collision Avoidance under the Constraint of COLREGs. Sustainability 2023, 15, 2446. [Google Scholar] [CrossRef]
- Hagen, I.B.; Vassbotn, O.; Skogvold, M.; Johansen, T.A.; Brekke, E. Safety and COLREGS Evaluation for Marine Collision Avoidance Algorithms. Ocean Eng. 2021, 288, 115991. [Google Scholar] [CrossRef]
- Kao, S.L.; Lee, K.T.; Chang, K.Y.; Ko, M.D. A fuzzy logic method for collision avoidance in vessel traffic service. J. Navig. 2007, 60, 17–31. [Google Scholar] [CrossRef]
- Chen, S.; Ahmad, R.; Lee, B.G.; Kim, D. Composition ship collision risk based on fuzzy theory. J. Cent. S. Univ. 2014, 21, 4296–4302. [Google Scholar] [CrossRef]
- Olindersson, F.; Bruhn, W.; Scheidweiler, T.; Andersson, A. Developing a maritime safety index using fuzzy logics. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2017, 11, 469–475. [Google Scholar] [CrossRef]
- Goerlandt, F.; Montewka, J.; Kuzmin, V.; Kujala, P. A risk-informed ship collision alert system: Framework and application. Saf. Sci. 2015, 77, 182–204. [Google Scholar] [CrossRef]
- Shi, Z.; Zhen, R.; Liu, J. Fuzzy logic-based modeling method for regional multi-ship collision risk assessment considering impacts of ship crossing angle and navigational environment. Ocean Eng. 2022, 259, 111847. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Y.; Wu, B.; Soares, C.G. Traffic-conflict and fuzzy-logic-based collision risk assessment for constrained crossing scenarios of a ship. Ocean Eng. 2023, 274, 114004. [Google Scholar] [CrossRef]
- Brcko, T.; Androjna, A.; Srše, J.; Boć, R. Vessel Multi-Parametric Collision Avoidance Decision Model: Fuzzy Approach. J. Mar. Sci. Eng. 2021, 9, 49. [Google Scholar] [CrossRef]
- Brcko, T.; Luin, B. A Decision Support System Using Fuzzy Logic for Collision Avoidance in Multi-Vessel Situations at Sea. J. Mar. Sci. Eng. 2023, 11, 1819. [Google Scholar] [CrossRef]
- Lee, H.-J.; Park, D.-J. SASD Modeling Using an ANFIS to Prevent the Collision of MASS in Restricted Areas. J. Mar. Sci. Eng. 2022, 10, 961. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Im, N.K. Automatic ship berthing based on fuzzy logic. Int. J. Fuzzy Log. Intell. Syst. 2019, 19, 163–171. [Google Scholar] [CrossRef]
- Zaib, A.; Yin, J.; Khan, R.U. Determining Role of Human Factors in Maritime Transportation Accidents by Fuzzy Fault Tree Analysis (FFTA). J. Mar. Sci. Eng. 2022, 10, 381. [Google Scholar] [CrossRef]
- Chen, M.S.; Wang, S.W. Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets syst. 1999, 103, 239–254. [Google Scholar] [CrossRef]
- Hasuike, T.; Katagiri, H.; Tsubaki, H.; Tsuda, H. Constructing membership function based on fuzzy shannon entropy and human’s interval estimation. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012. [Google Scholar]
- Hu, L.; Hu, H.; Naeem, W.; Wang, Z. A review on COLREGs-compliant navigation of autonomous surface vehicles: From traditional to learning-based approaches. J. Autom. Intell. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Ren, Y.; Mou, J.; Yan, Q.; Zhang, F. Study on assessing dynamic risk of ship collision. In Proceedings of the First International Conference on Transportation Information and Safety, Wuhan, China, 30 June–2 July 2011. [Google Scholar]
- Luo, J.; Wang, D.; Gao, Y. An improved AHP based fuzzy evaluation model for ship collision risk. J. Intell. Fuzzy Syst. 2021, 41, 4905–4913. [Google Scholar] [CrossRef]
- Xiao, G.; Ren, B.; Tong, C.; Hong, X. A Quantitative Evaluation Method for Obstacle Avoidance Performance of Unmanned Ship. J. Mar. Sci. Eng. 2021, 9, 1127. [Google Scholar] [CrossRef]
- Tonoğlu, F.; Atalar, F.; Başkan, İ.B.; Yildiz, S.; Uğurlu, Ö.; Wang, J. A new hybrid approach for determining sector-specific risk factors in Turkish Straits: Fuzzy AHP-PRAT technique. Ocean Eng. 2022, 253, 111280. [Google Scholar] [CrossRef]
- Sahin, B.; Yip, T.L. Shipping technology selection for dynamic capability based on improved Gaussian fuzzy AHP model. Ocean Eng. 2017, 136, 233–242. [Google Scholar] [CrossRef]
- Türk, A.; Özkök, M. A Comprehensive Risk Assessment Analysis of Accidental Falls in Shipyards Using the Gaussian Fuzzy AHP Model. J. ETA Marit. Sci. 2022, 10, 211–222. [Google Scholar] [CrossRef]
- Baalousha, H.M.; Younes, A.; Yassin, M.A.; Fahs, M. Comparison of the Fuzzy Analytic Hierarchy Process (F-AHP) and Fuzzy Logic for Flood Exposure Risk Assessment in Arid Regions. Hydrology 2023, 10, 136. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- LimeSurvey. Available online: https://www.limesurvey.org/ (accessed on 15 December 2023).
- Krueger, T.; Page, T.; Hubacek, K.; Smith, L.; Hiscock, K. The role of expert opinion in environmental modelling. Environ. Model. Softw. 2012, 36, 4–18. [Google Scholar] [CrossRef]
- Ekel, P.Y.; Pedrycz, W.; Pereira, J.G., Jr. Multicriteria Decision-Making under Conditions of Uncertainty: A Fuzzy Set Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- GitHub. Available online: https://github.com/tpartner/LimeSurvey-Range-Slider-5x-6x (accessed on 26 March 2024).
- MATLAB. Available online: https://matlab.mathworks.com/ (accessed on 1 March 2024).
- Smiti, A. A critical overview of outlier detection methods. Comput. Sci. Rev. 2020, 38, 100306. [Google Scholar] [CrossRef]
- Kwak, S.K.; Kim, J.H. Statistical data preparation: Management of missing values and outliers. Korean J. Anesthesiol. 2017, 70, 407. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, M.; Pareto, A. Normalization methods for spatio-temporal analysis of environmental performance: Revisiting the Min–Max method. Environmetrics 2022, 33, e2730. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Available online: https://www.mathworks.com/help/pdf_doc/curvefit/index.html (accessed on 7 March 2024).
- Kanovic, Z.; Vukelic, D.; Simunovic, K.; Prica, M.; Saric, T.; Tadic, B.; Simunovic, G. The Modelling of Surface Roughness after the Ball Burnishing Process with a High-Stiffness Tool by Using Regression Analysis, Artificial Neural Networks, and Support Vector Regression. Metals 2022, 12, 320. [Google Scholar] [CrossRef]
- Kerr-Wilson, J.; Pedrycz, W. Generating a hierarchical fuzzy rule-based model. Fuzzy Sets Syst. 2020, 381, 124–139. [Google Scholar] [CrossRef]
- Zhao, T.; Zhu, Y.; Xie, X. Topology structure optimization of evolutionary hierarchical fuzzy systems. Expert Syst. Appl. 2024, 238, 121857. [Google Scholar] [CrossRef]
- Pintelas, E.; Livieris, I.E.; Pintelas, P. A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability. Algorithms 2020, 13, 17. [Google Scholar] [CrossRef]
- Kristić, M.; Žuškin, S.; Brčić, D.; Car, M. Overreliance on ECDIS technology: A challenge for safe navigation. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 277–288. [Google Scholar] [CrossRef]
Ship’s Size | Range Limits | SD | Min | Mean | Max | Ku | Sk | IQR | C |
---|---|---|---|---|---|---|---|---|---|
VL | lower | 10.3983 | 0 | 5.9659 | 41 | 4.8606 | 1.6843 | 10.5 | 0 |
upper | 20.2872 | 10 | 43.3450 | 101 | 3.2339 | 0.6615 | 24.25 | 45 | |
L | lower | 17.5196 | 0 | 39.0455 | 83 | 2.8815 | −0.0821 | 25 | 41 |
upper | 28.0226 | 30 | 95.1724 | 180 | 3.1751 | 0.2994 | 24 | 100 | |
M | lower | 28.2761 | 30 | 95.1667 | 167 | 2.8211 | 0.1738 | 29 | 100 |
upper | 35.7669 | 100 | 185.0506 | 272 | 3.1328 | −0.0768 | 45 | 187.5 | |
H | lower | 37.2397 | 80 | 187.2880 | 274 | 3.3676 | −0.1965 | 41 | 193 |
upper | 36.8226 | 200 | 284.0000 | 350 | 2.8887 | −0.2651 | 50 | 299 | |
VH | lower | 34.2945 | 197 | 279.2707 | 359 | 2.9865 | −0.3982 | 50 | 297 |
upper | 0 | 400 | 400.0000 | 400 | Na | Na | 0 | 400 |
Ship’s Size | SD | Mean | C |
---|---|---|---|
VL | 18.3734 | 26.729 | 24 |
L | 27.1491 | 68.5861 | 67 |
M | 39.8209 | 141.8283 | 140 |
H | 45.3227 | 235.6199 | 236 |
VH | 41.5732 | 336.1744 | 340 |
Coefficients | Low | Medium | High |
---|---|---|---|
a | 1 | 1 | 1 |
b | 66.65 | 139.7 | 237 |
c | 36.2 | 57.5 | 66.89 |
Coefficients | Very Low | Very High |
---|---|---|
a | 1 | 1 |
b | −0.0931 | 0.0535 |
c | 44.587 | 282.1991 |
Goodness of Fit | ||||
---|---|---|---|---|
Linguistic Variables | SSE | R-Square | Adjusted R-Square | RMSE |
Very Low | 0.3699 | 0.9716 | 0.9713 | 0.0621 |
Low | 0.6204 | 0.9646 | 0.9644 | 0.0625 |
Medium | 0.7338 | 0.9733 | 0.9732 | 0.0564 |
High | 1.5820 | 0.9549 | 0.9547 | 0.0771 |
Very high | 0.8787 | 0.9719 | 0.9717 | 0.0664 |
Length Overall (m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | 50 | 80 | 110 | 140 | 170 | 200 | 230 | 260 | 290 | 320 | 350 | 380 | |
Very Low | 0.91 | 0.38 | 0.04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Low | 0.19 | 0.81 | 0.87 | 0.24 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Medium | 0.01 | 0.09 | 0.34 | 0.77 | 1 | 0.76 | 0.33 | 0.08 | 0.01 | 0 | 0 | 0 | 0 |
High | 0 | 0 | 0 | 0.03 | 0.12 | 0.37 | 0.74 | 0.99 | 0.89 | 0.53 | 0.21 | 0.06 | 0.01 |
Very High | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.06 | 0.23 | 0.6 | 0.88 | 0.97 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristić, M.; Žuškin, S. Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables. J. Mar. Sci. Eng. 2024, 12, 849. https://doi.org/10.3390/jmse12060849
Kristić M, Žuškin S. Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables. Journal of Marine Science and Engineering. 2024; 12(6):849. https://doi.org/10.3390/jmse12060849
Chicago/Turabian StyleKristić, Miho, and Srđan Žuškin. 2024. "Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables" Journal of Marine Science and Engineering 12, no. 6: 849. https://doi.org/10.3390/jmse12060849
APA StyleKristić, M., & Žuškin, S. (2024). Quantification of Expert Knowledge in Describing COLREGs Linguistic Variables. Journal of Marine Science and Engineering, 12(6), 849. https://doi.org/10.3390/jmse12060849