Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs
Abstract
:1. Introduction
1.1. Unconventional Reservoirs
1.2. Pore System
1.3. Methods for Reservoir Characterization
2. Materials and Methods Multi-Scale Characterization of Pores of Unconventional Reservoirs
2.1. Methods for Quantitative Characterization
2.1.1. Nuclear Magnetic Resonance (NMR)
2.1.2. Nuclear Magnetic Resonance Cryoporometry
2.1.3. Mercury Intrusion Capillary Pressure
2.1.4. Constant-Rate Mercury Injection
2.1.5. N2 Gas Adsorption
2.2. Qualitative Characterization Methods
2.2.1. Field Emission Scanning Electron Microscopy
2.2.2. Laser Scanning Confocal Microscopy
2.2.3. Focused Ion Beam–Scanning Electron Microscopy
2.2.4. Transmission Electron Microscopy
2.2.5. Atomic Force Microscopy
2.3. X-ray Radiation Method
2.3.1. Small Angle X-ray Scattering
2.3.2. X-ray Computed Tomography
Method | Image Direct Observation | CT Number Analysis | 3D Reconstruction Model Method |
---|---|---|---|
principle | the internal structural features of the core can be directly observed; in the scanned section, there are 256 levels of grayscale, with 0 representing the darkest (all black) and 255 representing the brightest (all white); lower density material appears as black and higher density material appears as white (Figure 14). | CT values correlate with the attenuation coefficient and indirectly reflect the density of the substance; for scanned samples, the larger mean CT value indicates a denser, more inhomogeneous substance. | threshold segmentation is performed by recognizing material with different densities and pores according to their respective CT number distribution intervals; none standardized criteria for setting the threshold. |
2.4. Comprehensive Characterization PSD of Reservoir
2.5. Method Limitations and Challenges
3. Characterization of Reservoir Inhomogeneity by Fractal Dimension (Df)
3.1. Fractal Dimension (Df) of Mercury Intrusion Capillary Pressure
3.2. Fractal Dimension (Df) of N2 Gas Adsorption
3.3. Fractal Dimension (Df) of Nuclear Magnetic Resonance
3.4. Fractal Dimension (Df) of Nuclear Magnetic Resonance Cryoporometry
3.5. Relationship between Df and Physical Properties of Reservoirs
4. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Shen, J.; Wang, G.; Li, K.; Fang, X. Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal. Energy 2023, 284, 128596. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, Y.; Wang, Y.; Chen, S.; Jiang, Z. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, D.; Wang, Z.; Xu, Z.; Chen, J.; Liu, L.; Huyan, Y.; Liu, Y. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin, NW China. Mar. Pet. Geol. 2016, 73, 554–571. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, X.; Wang, Z.; Cheng, M.; Lei, Y.; Zhang, L.; Yin, J. A new correction method for mercury injection capillary pressure (MICP) to characterize the pore structure of shale. J. Nat. Gas Sci. Eng. 2019, 68, 102896. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Ge, L.; Hu, F.; Li, C.; Li, X.; Yu, J.; Xu, H.; Lu, S.; Xue, Q. Pore-scale characterization of tight sandstone in Yanchang Formation Ordos Basin China using micro-CT and SEM imaging from nm- to cm-scale. Fuel 2017, 209, 254–264. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Feng, S.; Feng, X.; Guo, Z.; Teng, J. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation. Fuel 2019, 253, 1300–1316. [Google Scholar] [CrossRef]
- Iqbal, O.; Padmanabhan, E.; Mandal, A.; Dvorkin, J. Characterization of geochemical properties and factors controlling the pore structure development of shale gas reservoirs. J. Pet. Sci. Eng. 2021, 206, 109001. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, F.; Liu, N.; Cai, Y.; Guo, Y.; Zhao, B.; Qiu, Y. Pore structure characterization and its significance for gas adsorption in coals: A comprehensive review. Unconv. Resour. 2022, 2, 139–157. [Google Scholar] [CrossRef]
- Sun, S.; Liu, C.; Ye, Y.; Liu, Y. Pore capillary pressure and saturation of methane hydrate bearing sediments. Acta Oceanol. Sin. 2014, 33, 30–36. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, M.; Sun, X.; Liu, B.; Ostadhassan, M.; Huang, W.; Chen, X.; Pan, Z. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review. Gas Sci. Eng. 2023, 113, 204967. [Google Scholar] [CrossRef]
- Bera, A.; Shah, S. A review on modern imaging techniques for characterization of nanoporous unconventional reservoirs: Challenges and prospects. Mar. Pet. Geol. 2021, 133, 105287. [Google Scholar] [CrossRef]
- Peng, J.; Han, H.; Xia, Q.; Li, B. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin. Pet. Res. 2020, 5, 1–17. [Google Scholar] [CrossRef]
- Yin, T.; Liu, D.; Cai, Y.; Zhou, Y.; Yao, Y. Size Distribution and Fractal Characteristics of Coal Pores through Nuclear Magnetic Resonance Cryoporometry. Energy Fuels 2017, 31, 7746–7757. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; He, D.; Sun, P.; Zou, X. Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Appl. Clay Sci. 2020, 196, 105758. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, J.; Shao, H.; Deng, Z.; Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng. 2022, 215, 110618. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, X.; Hu, C.; Wei, L.; Jiang, Z.; Yang, S.; Fan, Y.; Xue, Z.; Yu, H. Characterizing the pore structure of low permeability Eocene Liushagang Formation reservoir rocks from Beibuwan Basin in northern South China Sea. Mar. Pet. Geol. 2019, 99, 107–121. [Google Scholar] [CrossRef]
- Zhao, D.; Hou, J.; Sarma, H.; Guo, W.; Liu, Y.; Xie, P.; Dou, L.; Chen, R.; Zhang, Z. Pore throat heterogeneity of different lithofacies and diagenetic effects in gravelly braided river deposits: Implications for understanding the formation process of high-quality reservoirs. Geoenergy Sci. Eng. 2023, 221, 111309. [Google Scholar] [CrossRef]
- Liu, A.; Liu, S.; Liu, Y.; Liu, B.; Liu, T. Characterizing mechanical heterogeneity of coal at nano-to-micro scale using combined nanoindentation and FESEM-EDS. Int. J. Coal Geol. 2022, 261, 104081. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Hu, Q.; Wang, J.; Tian, T.; Chao, J.; Wang, M. Integrated NMR and FE-SEM methods for pore structure characterization of Shahejie shale from the Dongying Depression, Bohai Bay Basin. Mar. Pet. Geol. 2019, 100, 85–94. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Pan, J.; Peng, C.; Wan, X.; Zheng, D.; Lv, R.; Wang, K. Pore structure characteristics of coal-bearing organic shale in Yuzhou coalfield, China using low pressure N2 adsorption and FESEM methods. J. Pet. Sci. Eng. 2017, 153, 234–243. [Google Scholar] [CrossRef]
- Deng, H.; Hu, X.; Li, H.A.; Luo, B.; Wang, W. Improved pore-structure characterization in shale formations with FESEM technique. J. Nat. Gas Sci. Eng. 2016, 35, 309–319. [Google Scholar] [CrossRef]
- Bosacka, A.; Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A.; Sliwinska-Bartkowiak, M.; Sterczynska, A.; Sternik, D.; Rotnicki, K. The influence of chemical and thermal modifications of ordered mesoporous carbon on the melting processes of water confined in pores. Microporous Mesoporous Mater. 2023, 351, 112477. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, C.; Ju, Y.; Bu, H.; Li, X.; Yang, M.; Chu, Q.; Feng, H.; Qiao, P.; Qi, Y.; et al. Multi-scale multi-dimensional characterization of clay-hosted pore networks of shale using FIBSEM, TEM, and X-ray micro-tomography: Implications for methane storage and migration. Appl. Clay Sci. 2021, 213, 106239. [Google Scholar] [CrossRef]
- Zhong, X.L.; Haigh, S.J.; Zhou, X.; Withers, P.J. An in-situ method for protecting internal cracks/pores from ion beam damage and reducing curtaining for TEM sample preparation using FIB. Ultramicroscopy 2020, 219, 113135. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, M.; Campilongo, G.; Critelli, S.; Ida, D.P.; Perri, E. 3D nanopores modeling using TEM-tomography (dolostones—Upper Triassic). Mar. Pet. Geol. 2019, 99, 443–452. [Google Scholar] [CrossRef]
- Gaboreau, S.; Robinet, J.-C.; Prêt, D. Optimization of pore-network characterization of a compacted clay material by TEM and FIB/SEM imaging. Microporous Mesoporous Mater. 2016, 224, 116–128. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, L.; Hu, Q.; Pan, Z.; Yu, B.; Sun, L.; Bai, L.; Fu, H.; Zhang, Y.; Zhang, C.; et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Pet. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Fang, H.; Sang, S.; Liu, S.; Du, Y. Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui basin. J. Pet. Sci. Eng. 2019, 182, 106285. [Google Scholar] [CrossRef]
- Liu, S.; Sang, S.; Wang, G.; Ma, J.; Wang, X.; Wang, W.; Du, Y.; Wang, T. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism. J. Pet. Sci. Eng. 2017, 148, 21–31. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Ranjith, P.; Yao, Y. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT. Fuel 2017, 209, 43–53. [Google Scholar] [CrossRef]
- Devarapalli, R.S.; Islam, A.; Faisal, T.F.; Sassi, M.; Jouiad, M. Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales. Arab. J. Geosci. 2017, 10, 361. [Google Scholar] [CrossRef]
- Aslannejad, H.; Hassanizadeh, S.M.; Raoof, A.; de Winter, D.; Tomozeiu, N.; van Genuchten, M. Characterizing the hydraulic properties of paper coating layer using FIB-SEM tomography and 3D pore-scale modeling. Chem. Eng. Sci. 2017, 160, 275–280. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, G.; Xue, H.; Guo, W.; Li, X. 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Mar. Pet. Geol. 2016, 73, 174–180. [Google Scholar] [CrossRef]
- Gu, X.; Cole, D.R.; Rother, G.; Mildner, D.F.R.; Brantley, S.L. Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study. Energy Fuels 2015, 29, 1295–1308. [Google Scholar] [CrossRef]
- Wu, J.; Luo, C.; Zhong, K.; Li, Y.; Li, G.; Du, Z.; Yang, J. Innovative characterization of organic nanopores in marine shale by the integration of HIM and SEM. Energy 2023, 282, 128390. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jia, C.; Jiang, Z.; Han, F.; Wang, P.; Yuan, X.; Yang, Y.; Zeng, Y.; Li, Y.; et al. Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development. Mar. Pet. Geol. 2022, 140, 105647. [Google Scholar] [CrossRef]
- Yan, X.; Dai, C.; Wang, R.; Liu, H.; Meng, S.; Jin, X.; Hu, Y.; Wu, Y. Experimental study on countercurrent imbibition in tight oil reservoirs using nuclear magnetic resonance and AFM: Influence of liquid–liquid/solid interface characteristics. Fuel 2024, 358, 130026. [Google Scholar] [CrossRef]
- Zhang, W.; Ning, Z.; Gai, S.; Zhu, J.; Fan, F.; Liu, Z.; Wang, H. Fast and effective observations of the pore structure of tight sandstones at the same location by utilizing AFM and CF-SEM. J. Pet. Sci. Eng. 2022, 208, 109554. [Google Scholar] [CrossRef]
- Qiao, P.; Ju, Y.; Yu, K.; Ju, L.; Xiao, L.; Feng, H.; Yao, Y.; Nie, B.; Li, X.; Tian, J.; et al. Nanoscale quantitative characterization of microstructure evolution of partly graphitized high rank coal: Evidence from AFM and HRTEM. Fuel 2022, 324, 124802. [Google Scholar] [CrossRef]
- Pipintakos, G.; Hasheminejad, N.; Lommaert, C.; Bocharova, A.; Blom, J. Application of Atomic Force (AFM), Environmental Scanning Electron (ESEM) and Confocal Laser Scanning Microscopy (CLSM) in bitumen: A review of the ageing effect. Micron 2021, 147, 103083. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X.; Chen, S.; Wang, Y.; Gong, Z.; Zhang, Y. A new application of atomic force microscopy in the characterization of pore structure and pore contribution in shale gas reservoirs. J. Nat. Gas Sci. Eng. 2021, 88, 103802. [Google Scholar] [CrossRef]
- Yesufu-Rufai, S.; Marcelis, F.; Georgiadis, A.; Berg, S.; Rucker, M.; van Wunnik, J.; Luckham, P. Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124765. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Pan, Z.; Tong, W. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel 2020, 260, 116352. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, H.; Bai, Y.; Niu, W.; Tian, L.; Zhang, H. CT-based 3D pore-fracture network analysis of volcanic reservoirs of Lower Cretaceous Yingcheng formation in southern Songliao Basin, China: Impact on natural gas migration. Geoenergy Sci. Eng. 2023, 223, 211581. [Google Scholar] [CrossRef]
- Liu, C.; Buono, G.; Pappalardo, L.; Shan, X.; Yi, J.; Shi, Y.; Ventura, G. X-ray computed microtomography revealing the effects of volcanic, alteration, and burial processes on the pore structure of rocks from unconventional reservoirs (Songliao Basin, NE China). Geoenergy Sci. Eng. 2023, 226, 211781. [Google Scholar] [CrossRef]
- Li, C.; Tan, M.; Wang, Z.; Li, Y.; Xiao, L. Nuclear magnetic resonance pore radius transformation method and fluid mobility characterization of shale oil reservoirs. Geoenergy Sci. Eng. 2023, 221, 211403. [Google Scholar] [CrossRef]
- Xie, L.; You, Q.; Wang, E.; Li, T.; Song, Y. Quantitative characterization of pore size and structural features in ultra-low permeability reservoirs based on X-ray computed tomography. J. Pet. Sci. Eng. 2022, 208, 109733. [Google Scholar] [CrossRef]
- Su, Y.; Zha, M.; Jiang, L.; Ding, X.; Qu, J.; Jin, J.; Iglauer, S. Pore structure and fluid distribution of tight sandstone by the combined use of SEM, MICP and X-ray micro-CT. J. Pet. Sci. Eng. 2022, 208, 109241. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.; Wang, K.; Ge, T.; Wei, J.; Wu, W. Characterizing the shape, size, and distribution heterogeneity of pore-fractures in high rank coal based on X-ray CT image analysis and mercury intrusion porosimetry. Fuel 2020, 282, 118754. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, T.; Ning, Z.; Zhang, R.; Duan, T.; Wang, Q.; Lian, P.; Zhang, D.; Zhang, W. Petrophysical characterization of tight oil sandstones by microscale X-ray computed tomography. Mar. Pet. Geol. 2019, 102, 604–614. [Google Scholar] [CrossRef]
- Wu, Y.; Tahmasebi, P.; Lin, C.; Zahid, M.A.; Dong, C.; Golab, A.N.; Ren, L. A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments. Mar. Pet. Geol. 2019, 103, 12–28. [Google Scholar] [CrossRef]
- Liu, K.; Mirzaei-Paiaman, A.; Liu, B.; Ostadhassan, M. A new model to estimate permeability using mercury injection capillary pressure data: Application to carbonate and shale samples. J. Nat. Gas Sci. Eng. 2020, 84, 103691. [Google Scholar] [CrossRef]
- Li, P.; Jia, C.; Jin, Z.; Liu, Q.; Bi, H.; Zheng, M.; Wu, S.; Huang, Z. Pore Size Distribution of a Tight Sandstone Reservoir and its Effect on Micro Pore-throat Structure: A Case Study of the Chang 7 Member of the Xin’anbian Block, Ordos Basin, China. Acta Geol. Sin.—Engl. Ed. 2020, 94, 219–232. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.; Sun, W.; Li, Y.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Pet. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, W.; Zheng, L.; Lei, Q.-H.; Qin, C.-Z.; He, Y.-A.; Liu, S.-S.; Li, M.; Li, Y.-M.; Zhao, J.-Z.; et al. Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs: A case study from the Triassic Yanchang Formation, Ordos Basin. Pet. Sci. 2023, 20, 2892–2907. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Ouyang, S.; Luo, B.; Zhao, D.; Sun, W.; Awan, R.S.; Lu, Z.; Li, G.; Zang, Q. Investigation of pore-throat structure and fractal characteristics of tight sandstones using HPMI, CRMI, and NMR methods: A case study of the lower Shihezi Formation in the Sulige area, Ordos Basin. J. Pet. Sci. Eng. 2022, 210, 110053. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, W.; Wu, H.; Huang, S.; Li, T.; Ren, D.; Chen, B. Impacts of pore-throat spaces on movable fluid: Implications for understanding the tight oil exploitation process. Mar. Pet. Geol. 2022, 137, 105509. [Google Scholar] [CrossRef]
- Gao, H.; Cao, J.; Wang, C.; He, M.; Dou, L.; Huang, X.; Li, T. Comprehensive characterization of pore and throat system for tight sandstone reservoirs and associated permeability determination method using SEM, rate-controlled mercury and high pressure mercury. J. Pet. Sci. Eng. 2019, 174, 514–524. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R.; Zhou, M.-F.; Iglauer, S. A comprehensive review on shale studies with emphasis on nuclear magnetic resonance (NMR) technique. Gas Sci. Eng. 2023, 120, 205163. [Google Scholar] [CrossRef]
- Wang, J.; Tian, L.; Wang, Z.; Liu, Z.; Wang, H.; Yang, D.; Chai, X.; Huang, C.; Jiang, L. Performance evaluation of commingled production in a multilayer oil reservoir based on microscopic pore-throat structures. Fuel 2023, 348, 128482. [Google Scholar] [CrossRef]
- Yin, N.; Hu, Q.; Becker, S.J.; Jones, R.; Meng, M.; Zhu, X.; Liu, H. Development of an NMR workflow for determining nano-petrophysical properties of marine and lacustrine mudrocks. J. Pet. Sci. Eng. 2022, 214, 110491. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Y.; Yao, Y.; Pan, Z.; Zhou, Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. Int. J. Coal Geol. 2020, 218, 103261. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J. Characterization of pore size distributions of shale oil reservoirs: A case study from Dongying sag, Bohai Bay basin, China. Mar. Pet. Geol. 2019, 100, 297–308. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Chen, C.; Xue, H.; Zhang, J. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Mar. Pet. Geol. 2018, 89, 775–785. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Lu, S.; Wang, M.; Chen, G.; Tian, W.; Guo, Z. Nuclear Magnetic Resonance T1–T2 Map Division Method for Hydrogen-Bearing Components in Continental Shale. Energy Fuels 2018, 32, 9043–9054. [Google Scholar] [CrossRef]
- Xiao, D.; Jiang, S.; Thul, D.; Huang, W.; Lu, Z.; Lu, S. Combining rate-controlled porosimetry and NMR to probe full-range pore throat structures and their evolution features in tight sands: A case study in the Songliao Basin, China. Mar. Pet. Geol. 2017, 83, 111–123. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, J.; Pan, Z.; Hu, Q.; Yu, B.; Tan, Y.; Sun, L.; Bai, L.; Wu, C.; Blach, T.P.; et al. Pore characterization of shales: A review of small angle scattering technique. J. Nat. Gas Sci. Eng. 2020, 78, 103294. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, L.; Hu, Q.; Pan, Z.; Yu, B.; Sun, L.; Bai, L.; Connell, L.D.; Zhang, Y.; Cheng, G. Pore connectivity and water accessibility in Upper Permian transitional shales, southern China. Mar. Pet. Geol. 2019, 107, 407–422. [Google Scholar] [CrossRef]
- Sun, M.; Yu, B.; Hu, Q.; Yang, R.; Zhang, Y.; Li, B.; Melnichenko, Y.B.; Cheng, G. Pore structure characterization of organic-rich Niutitang shale from China: Small angle neutron scattering (SANS) study. Int. J. Coal Geol. 2018, 186, 115–125. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radliński, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Radlinski, A.P.; Mastalerz, M.; Hinde, A.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.; Fan, L.; Thiyagarajan, P. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 2004, 59, 245–271. [Google Scholar] [CrossRef]
- Wang, X.; Geng, J.; Zhang, D.; Xiao, W.; Chen, Y.; Zhang, H. Influence of sub-supercritical CO2 on pore structure and fractal characteristics of anthracite: An experimental study. Energy 2022, 261, 125115. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin. J. Nat. Gas Sci. Eng. 2018, 60, 49–62. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Liu, J.; Zhao, J.; Zeng, B.; Xing, D. Numerical investigating the low field NMR response of representative pores at different pulse sequence parameters. Comput. Geosci. 2021, 151, 104761. [Google Scholar] [CrossRef]
- Wu, F.; Li, Y.; Burnham, B.; Zhang, Z.; Yao, C.; Yuan, L.; Zhang, F.; Deng, H.; Xi, Y.; He, J. Fractal-based NMR permeability estimation in tight sandstone: A case study of the Jurassic rocks in the Sichuan Basin, China. J. Pet. Sci. Eng. 2022, 218, 110940. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L. Pore structure analysis and permeability prediction of shale oil reservoirs with HPMI and NMR: A case study of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China. J. Pet. Sci. Eng. 2022, 214, 110503. [Google Scholar] [CrossRef]
- Krzyzak, A.T.; Habina-Skrzyniarz, I.; Machowski, G.; Mazur, W. Overcoming the barriers to the exploration of nanoporous shales porosity. Microporous Mesoporous Mater. 2020, 298, 110003. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, S.; Xiao, H.; Cao, J.; Hu, W.; Sun, L.; Tao, K.; Liu, X. Pore structure and connectivity of tight sandstone reservoirs in petroleum basins: A review and application of new methodologies to the Late Triassic Ordos Basin, China. Mar. Pet. Geol. 2021, 129, 105084. [Google Scholar] [CrossRef]
- Fleury, M.; Chevalier, T.; Jorand, R.; Jolivet, I.; Nicot, B. Oil-water pore occupancy in the Vaca Muerta source-rocks by NMR cryoporometry. Microporous Mesoporous Mater. 2021, 311, 110680. [Google Scholar] [CrossRef]
- Webber, J.B.W.; Strange, J.H.; Dore, J.C. An evaluation of NMR cryoporometry, density measurement and neutron scattering methods of pore characterisation. Magn. Reson. Imaging 2001, 19, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Stokes, R.H.; Tomlins, R.P. Thermodynamic functions of melting for cyclohexane. J. Chem. Thermodyn. 1974, 6, 379–386. [Google Scholar] [CrossRef]
- Zhu, F.; Hu, W.; Cao, J.; Sun, F.; Liu, Y.; Sun, Z. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China. Mar. Pet. Geol. 2018, 98, 116–132. [Google Scholar] [CrossRef]
- Zhu, F.; Hu, W.; Cao, J.; Liu, B.; Liu, Y.; Chang, C. Probe material choice for nuclear magnetic resonance cryoporometry (NMRC) measurements of the nano-scale pore size distribution of unconventional reservoirs. Energy Explor. Exploit. 2018, 37, 412–428. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Q. Pore structure characterization of Carboniferous shales from the eastern Qaidam Basin, China: Combining helium expansion with low-pressure adsorption and mercury intrusion. J. Pet. Sci. Eng. 2017, 152, 91–103. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous sub stances. I. Comput. Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, C.; Wang, X.; Wang, G.; Ni, G.; Cheng, Y. Effects of micro-mesopore structure characteristics on methane adsorption capacity of medium rank coal. Fuel 2023, 351, 128910. [Google Scholar] [CrossRef]
- Guo, X.; Huang, Z.; Zhao, L.; Han, W.; Ding, C.; Sun, X.; Yan, R.; Zhang, T.; Yang, X.; Wang, R. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa depression, China. J. Pet. Sci. Eng. 2019, 178, 544–558. [Google Scholar] [CrossRef]
- Gao, Z.; Duan, L.; Jiang, Z.; Huang, L.; Chang, J.; Zheng, G.; Wang, Z.; An, F.; Wei, W. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron scale. J. Pet. Sci. Eng. 2023, 220, 111234. [Google Scholar] [CrossRef]
- Hackley, P.C.; Kus, J.; Filho, J.G.M.; Czaja, A.D.; Borrego, A.G.; Životić, D.; Valentine, B.J.; Hatcherian, J.J. Characterization of bituminite in Kimmeridge Clay by confocal laser scanning and atomic force microscopy. Int. J. Coal Geol. 2022, 251, 103927. [Google Scholar] [CrossRef]
- Liu, B.; Yan, M.; Sun, X.; Bai, Y.; Bai, L.; Fu, X. Microscopic and Fractal Characterization of Organic Matter within Lacustrine Shale Reservoirs in the First Member of Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. J. Earth Sci. 2020, 31, 1241–1250. [Google Scholar] [CrossRef]
- Hassenkam, T.; Mitchell, A.; Pedersen, C.; Skovbjerg, L.; Bovet, N.; Stipp, S. The low salinity effect observed on sandstone model surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2012, 403, 79–86. [Google Scholar] [CrossRef]
- Yang, G.; Chen, T.; Zhao, J.; Yu, D.; Liu, F.; Wang, D.; Fan, M.; Chen, W.; Zhang, J.; Yang, H.; et al. Desorption Mechanism of Asphaltenes in the Presence of Electrolyte and the Extended Derjaguin–Landau–Verwey–Overbeek Theory. Energy Fuels 2015, 29, 4272–4280. [Google Scholar] [CrossRef]
- Xie, L.; Cui, X.; Gong, L.; Chen, J.; Zeng, H. Recent Advances in the Quantification and Modulation of Hydrophobic Interactions for Interfacial Applications. Langmuir 2020, 36, 2985–3003. [Google Scholar] [CrossRef] [PubMed]
- Afekare, D.; Garno, J.; Rao, D. Enhancing oil recovery using silica nanoparticles: Nanoscale wettability alteration effects and implications for shale oil recovery. J. Pet. Sci. Eng. 2021, 203, 108897. [Google Scholar] [CrossRef]
- Tajikmansori, A.; Hosseini, M.; Dehaghani, A.H.S. Mechanistic study to investigate the injection of surfactant assisted smart water in carbonate rocks for enhanced oil recovery: An experimental approach. J. Mol. Liq. 2021, 325, 114648. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel 2017, 206, 34–42. [Google Scholar] [CrossRef]
- Afekare, D.; Gupta, I.; Rao, D. Nanoscale investigation of silicon dioxide nanofluids and implications for enhanced oil recovery—An atomic force microscope study. J. Pet. Sci. Eng. 2020, 191, 107165. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, D.; Cai, Y.; Gao, C.; Jia, Q.; Zhou, Y. AFM measurement of roughness, adhesive force and wettability in various rank coal samples from Qinshui and Junggar basin, China. Fuel 2022, 317, 123556. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Shi, C.; Cui, X.; Huang, J.; Zhang, H.; Liu, Q.; Liu, Q.; Zeng, H. Mapping the Nanoscale Heterogeneity of Surface Hydrophobicity on the Sphalerite Mineral. J. Phys. Chem. C 2017, 121, 5620–5628. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y. Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chem. Eng. Sci. 2018, 177, 445–454. [Google Scholar] [CrossRef]
- Wang, F.; Zai, Y. Fractal and multifractal characteristics of shale nanopores. Results Phys. 2021, 25, 104277. [Google Scholar] [CrossRef]
- Meng, Z.; Sun, W.; Liu, Y.; Luo, B.; Zhao, M. Effect of pore networks on the properties of movable fluids in tight sandstones from the perspective of multi-techniques. J. Pet. Sci. Eng. 2021, 201, 108449. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zheng, S.; Luo, Z.; Sheng, Y.; Wang, X. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale. J. Nat. Gas Sci. Eng. 2019, 67, 134–146. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Liu, S.; Cao, B.; Sun, Y.; Hou, B. Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Mar. Pet. Geol. 2019, 102, 116–125. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Jiang, Y.; Hou, S. Investigation on pore structure characteristics of ultra-tight sandstone reservoirs in the upper Triassic Xujiahe Formation of the northern Sichuan Basin, China. Mar. Pet. Geol. 2022, 138, 105552. [Google Scholar] [CrossRef]
- Du, S. Pore characterization of unconventional reservoirs. Nat. Gas Ind. B 2022, 9, 365–375. [Google Scholar] [CrossRef]
- Yadav, D.; Awasthi, M.K.; Al-Siyabi, M.; Al-Nadhairi, S.; Al-Rahbi, A.; Al-Subhi, M.; Ragoju, R.; Bhattacharyya, K. Double diffusive convective motion in a reactive porous medium layer saturated by a non-Newtonian Kuvshiniski fluid. Phys. Fluids 2022, 34, 024104. [Google Scholar] [CrossRef]
- Kim, M.C.; Yadav, D. Linear and Nonlinear Analyses of the Onset of Buoyancy-Induced Instability in an Unbounded Porous Medium Saturated by Miscible Fluids. Transp. Porous Media 2014, 104, 407–433. [Google Scholar] [CrossRef]
- Yadav, D.; Nair, S.B.; Awasthi, M.K.; Ragoju, R.; Bhattacharyya, K. Linear and nonlinear investigations of the impact of chemical reaction on the thermohaline convection in a permeable layer saturated with Casson fluid. Phys. Fluids 2024, 36, 014106. [Google Scholar] [CrossRef]
- Yadav, D.; Awasthi, M.K.; Mohamad, A.M.; Ragoju, R.; Bhattacharyya, K.; Hassan, M. The onset of Casson fluid convection in a permeable medium layer produced by purely inner heating with magnetic field. J. Comput. Appl. Mech. 2024; in press. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, K.; Xian, X.; Tian, S.; Cai, J. Fractal characteristics of pore structure and its impact on adsorption and flow behaviors in shale. In Modelling of Flow and Transport in Fractal Porous Media; Elsevier: Amsterdam, The Netherlands, 2021; pp. 37–77. [Google Scholar]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Pet. Geol. 2016, 70, 46–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Lan, Y.; Zi, H.; Cui, Y.; Chen, Q.; You, L.; Fan, X.; Wang, G. New insights into pore fractal dimension from mercury injection capillary pressure in tight sandstone. Geoenergy Sci. Eng. 2023, 228, 212059. [Google Scholar] [CrossRef]
- Khurpade, P.D.; Kshirsagar, L.K.; Nandi, S. Characterization of heterogeneous petroleum reservoir of Indian Sub-continent: An integrated approach of hydraulic flow unit—Mercury intrusion capillary pressure—Fractal model. J. Pet. Sci. Eng. 2021, 205, 108788. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, W.; Tao, R.; Luo, B.; Chen, L.; Ren, D. Pore–throat structure and fractal characteristics of tight sandstones in Yanchang Formation, Ordos Basin. Mar. Pet. Geol. 2020, 120, 104573. [Google Scholar] [CrossRef]
- Han, H.; Guo, C.; Zhong, N.-N.; Pang, P.; Gao, Y. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injection methods. J. Pet. Sci. Eng. 2020, 193, 107378. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Liu, K.; Gao, Y.; Qin, Z. Fractal characteristics of the pore structures of fine-grained, mixed sedimentary rocks from the Jimsar Sag, Junggar Basin: Implications for lacustrine tight oil accumulations. J. Pet. Sci. Eng. 2019, 182, 106363. [Google Scholar] [CrossRef]
- Wang, H.; Wu, W.; Chen, T.; Yu, J.; Pan, J. Pore structure and fractal analysis of shale oil reservoirs: A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. J. Pet. Sci. Eng. 2019, 177, 711–723. [Google Scholar] [CrossRef]
- Zhang, K.; Pang, X.; Zhao, Z.; Shao, X.; Zhang, X.; Li, W.; Wang, K. Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-Sarysu basin. Mar. Pet. Geol. 2018, 93, 451–467. [Google Scholar] [CrossRef]
- Hao, L.; Tang, J.; Wang, Q.; Tao, H.; Ma, X.; Ma, D.; Ji, H. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation, Ordos Basin, China. J. Pet. Sci. Eng. 2017, 158, 243–252. [Google Scholar] [CrossRef]
- Liu, B.; Nakhaei-Kohani, R.; Bai, L.; Wen, Z.; Gao, Y.; Tian, W.; Yang, L.; Liu, K.; Hemmati-Sarapardeh, A.; Ostadhassan, M. Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China. Int. J. Coal Geol. 2022, 257, 103998. [Google Scholar] [CrossRef]
- Wang, M.; Xue, H.; Tian, S.; Wilkins, R.W.; Wang, Z. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar. Pet. Geol. 2015, 67, 144–153. [Google Scholar] [CrossRef]
- Sun, W.; Feng, Y.; Jiang, C.; Chu, W. Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers. Fuel 2015, 155, 7–13. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Zang, Q.; Liu, C.; Awan, R.S.; Yang, X.; Li, G.; Wu, Y.; Lu, Z.; Feng, D. Occurrence characteristics of the movable fluid in heterogeneous sandstone reservoir based on fractal analysis of NMR data: A case study of the Chang 7 Member of Ansai Block, Ordos Basin, China. J. Pet. Sci. Eng. 2022, 214, 110499. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Z.; Lai, J.; Fan, X.; Guan, M.; Shu, H.; Wang, G.; Liu, M.; Luo, Y. Fractal behaviors of NMR saturated and centrifugal T2 spectra in oil shale reservoirs: The Paleogene Funing formation in Subei basin, China. Mar. Pet. Geol. 2021, 129, 105069. [Google Scholar] [CrossRef]
- Dai, Q.; Wang, G.; Zhao, X.; Han, Z.; Lu, K.; Lai, J.; Wang, S.; Li, D.; Li, Y.; Wu, K. Fractal model for permeability estimation in low-permeable porous media with variable pore sizes and unevenly adsorbed water lay. Mar. Pet. Geol. 2021, 130, 105135. [Google Scholar] [CrossRef]
- Zhang, K.; Lai, J.; Bai, G.; Pang, X.; Ma, X.; Qin, Z.; Zhang, X.; Fan, X. Comparison of fractal models using NMR and CT analysis in low permeability sandstones. Mar. Pet. Geol. 2020, 112, 104069. [Google Scholar] [CrossRef]
- Wu, B.; Xie, R.; Wang, X.; Wang, T.; Yue, W. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data. J. Nat. Gas Sci. Eng. 2020, 81, 103483. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; Jiu, K.; Wang, Z.; Wang, R.; He, J. Investigation of the pore structures and fractal characteristics of marine shale reservoirs using NMR experiments and image analyses: A case study of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China. Mar. Pet. Geol. 2018, 89, 530–540. [Google Scholar] [CrossRef]
Resource Type | Distribution Characteristics | Accumulation Type |
---|---|---|
conventional hydrocarbon | discrete-type | structural pool |
clustered-type | stratigraphic pool | |
lithologic pool | ||
unconventional hydrocarbon | continuous hydrocarbon accumulation | tight (sandstone) oil, gas |
tight (carbonates) oil, gas | ||
hydrate | ||
shale oil, gas | ||
coal bed methane |
Classification | Mineral Component | Developmental Genesis Spatial Location | Development Scale | Morphological Characteristics |
---|---|---|---|---|
pores | clay mineral pores | intercrystalline pores | large size (>1000 nm) medium size (100–1000 nm) small size (10–100 nm) micro size (2–10 nm) ultra-micro size (<2 nm) | round, slit, flat, and zigzag |
aggregates (stacks) circumferential pores | ||||
clay minerals or aggregates circumferential pores | ||||
brittle mineral pores | circumferential pores | |||
dissolution pores | ||||
intragranular pores (non-solviferous genesis) | ||||
intergranular pores | ||||
fracture pores | ||||
other mineral pores | other mineral-related pores | |||
microcrack | microfractures, inter-mineral microfractures, etc., caused by sedimentary tectonic genesis | sub-micron, micron | slit, flat, zigzag |
Throat Types | Examples | Features |
---|---|---|
necking | pore throats vary greatly in size, and this variability is common in rocks with grain-supported textures, point contacts and contact cementation. | |
laminar | pore-throat widths are generally less than 1 mm; pore-throat ratios are moderately high, common in contact cemented, line-contact, and concave-contact rocks. | |
curved laminar | ||
tube | the diameter of tube is generally smaller than 0.5 μm; the ratios of pore to throat is 1:1, which are very common in rocks with matrix support, suture contact and pore cementation. |
Probe Material | Melting Point (K) | KGT (K·nm) | Liquid Density (g/cm3) | Enthalpy of Fusion (kJ/mol) | Molecular Size (nm) |
---|---|---|---|---|---|
Water [83] | 273.1 | 57.3 | 0.997 | 6.01 | 0.4 |
Cyclohexane [84] | 279.9 | 148 | 0.779 | 2.72 | 0.67 |
Octamethyl cyclotetrasiloxane [85] | 290.5 | 160 | 0.955 | 19.7 | 0.9–1.0 |
CaCl2·6H2O [86] | 303.15 | - | 1.352 | 37.24 | - |
Method | Advantages | Limitations |
---|---|---|
Low-Field NMR | Non-intrusive, does not destroy the sample | May be interfered with by magnetic impurities in the sample |
Fast measurement for a large number of samples | Limited resolution, may not detect very small pores | |
Provides pore size and distribution information | ||
NMR Cryoporometry (NMRC) | Directly reveals the relationship between melting point and pore volume | Special sample preparation and handling required |
Suitable for complex pore structures | May be interfered with by other components in the sample | |
Provides a relatively complete pore size distribution | ||
Mercury Intrusion Capillary Pressure (MICP) | Measures a wide range of pore size distributions | High pressure may alter the pore structure |
Suitable for large pore measurements | The pore limit values measured by this method are related to the maximum mercury pressure of the device | |
Provides pore volume and specific surface area information | Calculated PSD overestimates the volume of large pores to the detriment of tiny pores | |
Constant-Rate Mercury Injection (CRMI) | Distinguishes between pores and throats | Longer experiment time |
Provides pore and throat radii and quantities | Limited maximum mercury intrusion pressure | |
Obtains three capillary pressure curves | ||
Nitrogen Adsorption (N2GA) | Suitable for micropore and mesopore measurements | Underestimate the content of larger mesopores and macropores |
Provides specific surface area and pore size distribution information | Requires a longer adsorption equilibration time | |
Non-intrusive method, does not destroy the sample |
Operation Mode | Contact Mode | Non-Contact Mode | Tapping Mode |
---|---|---|---|
advantages | yielding stable, high-resolution images. | no force applied to the sample surface. |
|
disadvantages |
|
| slower scanning speed than contact mode. |
Method | Advantages | Limitations |
---|---|---|
Atomic Force Microscope (AFM) | Provides true three-dimensional surface images | Limited field of view, only small areas can be observed |
High resolution up to the atomic level | May be affected by interactions between the probe and the sample | |
Suitable for conductors and non-conductors | ||
Field Emission Scanning Electron Microscope (FE-SEM) | High-resolution imaging | Special sample preparation (e.g., metal coating) required |
Direct observation of pore morphology and structure | Potential damage to the sample by the electron beam | |
Suitable for various material types | ||
Transmission Electron Microscope (TEM) | High-resolution imaging, observes internal structures | Sample needs to be sliced, which may alter the pore structure |
Suitable for various material types | Limited field of view, only small areas can be observed | |
Direct observation of pore morphology and structure | ||
Focused Ion Beam–Scanning Electron Microscope (FIB–SEM) | Combines high resolution of SEM with precise cutting of FIB | Expensive equipment and operational costs |
Enables 3D reconstruction and quantitative analysis | Complex sample preparation, may introduce artifacts | |
Suitable for various material types | ||
Laser Scanning Confocal Microscope (LSCM) | Enables 3D imaging and quantitative analysis | Lower resolution compared to electron microscopes |
Suitable for fluorescently labeled samples | May be affected by fluorescent dyes | |
Non-intrusive, does not destroy the sample |
Method | Advantages | Limitations |
---|---|---|
Small-Angle X-ray Scattering (SAXS) | Measures a wide range of pore size distributions | Complex data analysis requiring specialized software support |
Non-destructive to the sample, suitable for various materials | Limited sensitivity to small pores | |
Provides pore shape and structure information | ||
X-ray Computed Tomography (XCT) | Provides non-destructive testing, maintaining sample integrity. | Limited detection capability for large-volume samples using XCT. |
High resolution and contrast, clearly showing pore structure. | Potential radiation safety concerns, requiring strict operational guidelines. | |
Applicable to a variety of materials and morphologies. | Relatively high equipment and maintenance costs. |
Influencing Factor | Features of Df | Impact on Reservoir Heterogeneity |
---|---|---|
Sedimentary environment | Range of Df values | Different sedimentary environments may lead to varying fractal characteristics of the reservoir, such as river, delta, and lake environments, which affect the structure, pore distribution, and connectivity of the reservoir, thereby influencing its heterogeneity. |
Diagenesis | Pattern of Df value distribution | Diagenetic processes such as compaction, cementation, and dissolution can affect the petrophysical properties of the reservoir, such as porosity and permeability, thereby affecting the heterogeneity of the reservoir. |
Tectonic activity | Anomalous regions in Df values | Tectonic activities like folding and faulting can lead to complex fracture and fault systems within the reservoir, which often exhibit higher heterogeneity, manifesting as anomalous values of the Df. |
Scale effect | Scale-dependence of Df values | At different observation scales, the heterogeneity of the reservoir may exhibit different characteristics. Larger scales may mask local heterogeneity, while smaller scales may more accurately reveal the heterogeneous structure of the reservoir. |
Measurement method | Accuracy of Df value calculation | Different measurement methods may yield varying fractal dimension values. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, W.; Cai, W.; Li, Z.; Lu, H. Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs. J. Mar. Sci. Eng. 2024, 12, 908. https://doi.org/10.3390/jmse12060908
Guan W, Cai W, Li Z, Lu H. Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs. Journal of Marine Science and Engineering. 2024; 12(6):908. https://doi.org/10.3390/jmse12060908
Chicago/Turabian StyleGuan, Wen, Wenjiu Cai, Zhenchao Li, and Hailong Lu. 2024. "Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs" Journal of Marine Science and Engineering 12, no. 6: 908. https://doi.org/10.3390/jmse12060908
APA StyleGuan, W., Cai, W., Li, Z., & Lu, H. (2024). Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs. Journal of Marine Science and Engineering, 12(6), 908. https://doi.org/10.3390/jmse12060908