Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults
Abstract
:1. Introduction
- (1)
- This paper presents a novel approach by integrating an ISM output feedback technique into the design of a fault-tolerant controller for the T–S fuzzy UMV model, which enables the UMV T–S fuzzy system to achieve robustness against disturbances from the beginning only utilizing measurable output information.
- (2)
- In contrast with the existing FTC approach applied to the T–S fuzzy UMV model [22,37], in response to the challenge posed by unknown premise variables in T–S fuzzy UMV models, this study devises compensators and fault-tolerant controllers based on a switching mechanism utilizing upper and lower bounds of membership functions, effectively reducing conservatism.
- (3)
- Compared with the approaches for handling the nonlinear functions in the UMVs [48], this paper employs the radial basis function neural network (RBFNN) to approximate the nonlinear terms in the T–S fuzzy model of the UMV, which enhances the adaptability of the UMV system to complex marine environments, thereby improving its overall performance and robustness.
2. Preliminaries
2.1. UMV System Model
2.2. T–S Fuzzy UMV Modeling
2.3. RBFNN Approximation
2.4. Assumptions and Lemmas
3. Output Feedback-Based ISM FTC Strategy
3.1. Output ISM Surface Design
3.2. ISM Output Feedback Controller Design
4. Simulation Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirakura, N.; Kiyokawa, T.; Kumamoto, H.; Takamatsu, J.; Ogasawara, T. Collection of Marine Debris by Jointly Using UAV-UUV with GUI for Simple Operation. IEEE Access 2021, 9, 67432–67443. [Google Scholar] [CrossRef]
- Shah, B.C.; Gupta, S.K. Long-Distance Path Planning for Unmanned Surface Vehicles in Complex Marine Environment. IEEE J. Ocean. Eng. 2020, 45, 813–830. [Google Scholar] [CrossRef]
- Wiig, M.S.; Pettersen, K.Y.; Krogstad, T.R. Collision Avoidance for Underactuated Marine Vehicles Using the Constant Avoidance Angle Algorithm. IEEE Trans. Control Syst. Technol. 2020, 28, 951–966. [Google Scholar] [CrossRef]
- Han, J.; Cho, Y.; Kim, J. Coastal SLAM with Marine Radar for USV Operation in GPS-Restricted Situations. IEEE J. Ocean. Eng. 2019, 44, 300–309. [Google Scholar] [CrossRef]
- Mendoza-Chok, J.; Luque, J.C.C.; Salas-Cueva, N.F.; Yanyachi, D.; Yanyachi, P.R. Hybrid Control Architecture of an Unmanned Surface Vehicle Used for Water Quality Monitoring. IEEE Access 2022, 10, 112789–112798. [Google Scholar] [CrossRef]
- Moghimi, M.K.; Mohanna, F. Reliable Object Recognition Using Deep Transfer Learning for Marine Transportation Systems with Underwater Surveillance. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2515–2524. [Google Scholar] [CrossRef]
- Pugi, L.; Pagliai, M.; Allotta, B. A robust propulsion layout for underwater vehicles with enhanced manoeuvrability and reliability features. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2018, 232, 358–376. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, C.; Li, T. Finite-Time LOS Path Following of Unmanned Surface Vessels with Time-Varying Sideslip Angles and Input Saturation. IEEE/ASME Trans. Mechatron. 2022, 27, 463–474. [Google Scholar] [CrossRef]
- Yao, Q. Fixed-time trajectory tracking control for unmanned surface vessels in the presence of model uncertainties and external disturbances. Int. J. Control 2022, 95, 1133–1143. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, Q.; Du, T.; Jiang, W. Redefined output model-free adaptive control method and unmanned surface vehicle heading control. IEEE J. Ocean. Eng. 2019, 45, 714–723. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1999. [Google Scholar]
- Roberts, G.N.; Sutton, R. Advances in Unmanned Marine Vehicles, 1st ed.; Institution of Engineering and Technology: London, UK, 2006. [Google Scholar]
- Kahveci, N.E.; Ioannou, P.A. Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica 2013, 49, 685–697. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Q.L. Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments. Automatica 2018, 91, 43–53. [Google Scholar] [CrossRef]
- Rogne, R.H.; Bryne, T.H.; Fossen, T.I.; Johansen, T.A. On the Usage of Low-Cost MEMS Sensors, Strapdown Inertial Navigation, and Nonlinear Estimation Techniques in Dynamic Positioning. IEEE J. Ocean. Eng. 2021, 46, 24–39. [Google Scholar] [CrossRef]
- Ning, J.; Li, T.; Chen, C.P. Neuro-adaptive distributed formation tracking control of under-actuated unmanned surface vehicles with input quantization. Ocean Eng. 2022, 265, 112492. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.L.; Han, Q.L. Event-Triggered Dynamic Positioning for Mass-Switched Unmanned Marine Vehicles in Network Environments. IEEE Trans. Cybern. 2022, 52, 3159–3171. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Li, H.; Gao, J.; Cui, R.; Xu, D. Economic MPC-Based Planning for Marine Vehicles: Tuning Safety and Energy Efficiency. IEEE Trans. Ind. Electron. 2023, 70, 10546–10556. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Liang, B.; Shi, Y.; Xu, D. Policy Learning for Nonlinear Model Predictive Control with Application to USVs. IEEE Trans. Ind. Electron. 2024, 71, 4089–4097. [Google Scholar] [CrossRef]
- Chang, W.; Liang, H.; Ku, C. Fuzzy controller design subject to actuator saturation for dynamic ship positioning systems with multiplicative noises. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2010, 224, 725–736. [Google Scholar] [CrossRef]
- Ngongi, W.E.; Du, J.; Wang, R. Robust fuzzy controller design for dynamic positioning system of ships. Int. J. Control Autom. Syst. 2015, 13, 1294–1305. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Q.L.; Fei, M.R.; Peng, C. Network-Based T-S Fuzzy Dynamic Positioning Controller Design for Unmanned Marine Vehicles. IEEE Trans. Cybern. 2018, 48, 2750–2763. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Wu, Y.; Yang, X.; Chen, C.; Long, Y.; Yang, Z.; Ning, J. L∞ Fault Estimation and Fault-Tolerant Control for Nonlinear Systems by T-S Fuzzy Model Method with Local Nonlinear Models. Int. J. Fuzzy Syst. 2021, 23, 1714–1727. [Google Scholar] [CrossRef]
- Lin, X.; Nie, J.; Jiao, Y.; Liang, K.; Li, H. Nonlinear adaptive fuzzy output-feedback controller design for dynamic positioning system of ships. Ocean Eng. 2018, 158, 186–195. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, H.; Guo, G.; Li, H. Quantized Sliding Mode Control of Unmanned Marine Vehicles: Various Thruster Faults Tolerated with a Unified Model. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2012–2026. [Google Scholar] [CrossRef]
- Hao, L.Y.; Yu, Y.; Li, H. Fault tolerant control of UMV based on sliding mode output feedback. Appl. Math. Comput. 2019, 359, 433–455. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, B.; Wu, Z.G.; Xie, S.; Peng, Y. Adaptive Sliding Mode Fault-Tolerant Fuzzy Tracking Control with Application to Unmanned Marine Vehicles. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 6691–6700. [Google Scholar] [CrossRef]
- Hao, W.; Xian, B.; Xie, T. Fault-Tolerant Position Tracking Control Design for a Tilt Tri-Rotor Unmanned Aerial Vehicle. IEEE Trans. Ind. Electron. 2022, 69, 604–612. [Google Scholar] [CrossRef]
- Van, M.; Ge, S.S. Adaptive Fuzzy Integral Sliding-Mode Control for Robust Fault-Tolerant Control of Robot Manipulators with Disturbance Observer. IEEE Trans. Fuzzy Syst. 2021, 29, 1284–1296. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Li, S. Adaptive integral-type terminal sliding mode fault tolerant control for spacecraft attitude tracking. IEEE Access 2019, 7, 35195–35207. [Google Scholar] [CrossRef]
- Mazare, M.; Taghizadeh, M.; Ghaf-Ghanbari, P. Fault-tolerant control based on adaptive super-twisting nonsingular integral-type terminal sliding mode for a delta parallel robot. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 443. [Google Scholar] [CrossRef]
- Yu, X.N.; Hao, L.Y. Integral sliding mode fault tolerant control for unmanned surface vessels with quantization: Less iterations. Ocean Eng. 2022, 260, 111820. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, Y.Q.; Shen, C.; Xu, F. Fault-Tolerant Control for Unmanned Marine Vehicles via Quantized Integral Sliding Mode Output Feedback Technique. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5014–5023. [Google Scholar] [CrossRef]
- Ijaz, S.; Galea, M.; Hamayun, M.T.; Ijaz, H.; Javaid, U. A new output integral sliding mode fault-tolerant control and fault estimation scheme for uncertain systems. IEEE Trans. Autom. Sci. Eng. 2023, 1–12. [Google Scholar] [CrossRef]
- Chang, J.L. Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Trans. Autom. Control 2009, 54, 2653–2658. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, Y.Q.; Li, H. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Appl. Math. Comput. 2021, 401, 126078. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.Y.; Li, T.; Chen, C.P. Integral sliding mode-based fault-tolerant control for dynamic positioning of unmanned marine vehicles based on a T-S fuzzy model. J. Mar. Sci. Eng. 2023, 11, 370. [Google Scholar] [CrossRef]
- Song, W.; Li, Y.; Tong, S. Fuzzy Finite-Time H∞ Hybrid-Triggered Dynamic Positioning Control of Nonlinear Unmanned Marine Vehicles Under Cyber-Attacks. IEEE Trans. Intell. Veh. 2023, 9, 970–980. [Google Scholar] [CrossRef]
- Huang, S.J.; Yang, G.H. Fault tolerant controller design for T–S fuzzy systems with time-varying delay and actuator faults: A K-step fault-estimation approach. IEEE Trans. Fuzzy Syst. 2014, 22, 1526–1540. [Google Scholar] [CrossRef]
- Han, H.; Yang, Y.; Li, L.; Ding, S.X. Performance-based fault detection and fault-tolerant control for nonlinear systems with T–S fuzzy implementation. IEEE Trans. Cybern. 2019, 51, 801–814. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Yu, J. Discrete event-triggered fault-tolerant control of underwater vehicles based on Takagi–Sugeno fuzzy model. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 1841–1851. [Google Scholar] [CrossRef]
- Li, X.J.; Yang, G.H. Fault detection for T-S fuzzy systems with unknown membership functions. IEEE Trans. Fuzzy Syst. 2013, 22, 139–152. [Google Scholar] [CrossRef]
- Li, X.J.; Yang, G.H. Finite Frequency L2-L∞ Filtering of TS Fuzzy Systems with Unknown Membership Functions. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1884–1897. [Google Scholar] [CrossRef]
- Arioui, H.; Nehaoua, L. Unknown Dynamics Decoupling to Overcome Unmeasurable Premise Variables in Takagi–Sugeno Observer Design. IEEE Control Syst. Lett. 2020, 5, 61–66. [Google Scholar] [CrossRef]
- Yan, J.J.; Yang, G.H.; Li, X.J. Fault detection in finite frequency domain for TS fuzzy systems with partly unmeasurable premise variables. Fuzzy Sets Syst. 2021, 421, 158–177. [Google Scholar] [CrossRef]
- Dong, J.; Yang, G.H. Observer-based output feedback control for discrete-time TS fuzzy systems with partly immeasurable premise variables. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 98–110. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.; Jing, X.; Wu, L. Fuzzy tracking control for nonlinear networked systems. IEEE Trans. Cybern. 2016, 47, 2020–2031. [Google Scholar] [CrossRef]
- Hao, L.Y.; Zhang, H.; Li, T.S.; Lin, B.; Chen, C.L.P. Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on T-S Fuzzy Model with Unknown Membership Functions. IEEE Trans. Veh. Technol. 2021, 70, 146–157. [Google Scholar] [CrossRef]
- Fossen, T.I.; Sagatun, S.I.; Sørensen, A.J. Identification of dynamically positioned ships. Control Eng. Pract. 1996, 4, 369–376. [Google Scholar] [CrossRef]
- Zou, Y.; Zheng, Z. A Robust Adaptive RBFNN Augmenting Backstepping Control Approach for a Model-Scaled Helicopter. IEEE Trans. Control Syst. Technol. 2015, 23, 2344–2352. [Google Scholar] [CrossRef]
- Jabbari, F.; Benson, R. Observers for stabilization of systems with matched uncertainty. Dyn. Control 1992, 2, 303–323. [Google Scholar] [CrossRef]
- Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications, 1st ed.; CRC Press: London, UK, 1998. [Google Scholar]
Symbols | Description |
---|---|
surge velocity | |
sway velocity | |
yaw velocity | |
positions | |
heading angle | |
R | inertia matrix |
G | damping matrix |
E | mooring forces matrix |
N | thruster configuration matrix |
ocean disturbances, | |
unknown actuator effectiveness level matrix | |
stuck fault with the property | |
s | sth thruster, |
t | tth malfunction mode, |
or |
Type of Disturbance | |||
---|---|---|---|
reference [22] | |||
random noise | |||
sine wave |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, X.; Hao, L.; Li, T.; Chen, C.L. Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults. J. Mar. Sci. Eng. 2024, 12, 920. https://doi.org/10.3390/jmse12060920
Wang Y, Yang X, Hao L, Li T, Chen CL. Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults. Journal of Marine Science and Engineering. 2024; 12(6):920. https://doi.org/10.3390/jmse12060920
Chicago/Turabian StyleWang, Yang, Xin Yang, Liying Hao, Tieshan Li, and C. L. (Philip) Chen. 2024. "Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults" Journal of Marine Science and Engineering 12, no. 6: 920. https://doi.org/10.3390/jmse12060920
APA StyleWang, Y., Yang, X., Hao, L., Li, T., & Chen, C. L. (2024). Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T–S Fuzzy Model with Unknown Premise Variables and Actuator Faults. Journal of Marine Science and Engineering, 12(6), 920. https://doi.org/10.3390/jmse12060920