
Citation: Wang, Y.; Yang, X.; Hao, L.;

Li, T.; Chen, C.L. Integral Sliding

Mode Output Feedback Control for

Unmanned Marine Vehicles Using

T–S Fuzzy Model with Unknown

Premise Variables and Actuator Faults.

J. Mar. Sci. Eng. 2024, 12, 920. https://

doi.org/10.3390/jmse12060920

Academic Editor: Mohamed

Benbouzid

Received: 9 April 2024

Revised: 20 May 2024

Accepted: 21 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Integral Sliding Mode Output Feedback Control for Unmanned
Marine Vehicles Using T–S Fuzzy Model with Unknown Premise
Variables and Actuator Faults
Yang Wang 1 , Xin Yang 1, Liying Hao 2,* , Tieshan Li 3,4 and C. L. (Philip) Chen 5

1 College of Navigation, Dalian Maritime University, Dalian 116026, China; wangyang_youth@163.com (Y.W.)
2 Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026, China
3 College of Automation Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China; tieshanli@126.com
4 Yangtze Delta Region Institute, University of Electronic Science and Technology of China,

Huzhou 313000, China
5 College of Computer Science and Engineering, South China University of Technology,

Guangzhou 510006, China
* Correspondence: haoliying_0305@163.com

Abstract: This paper addresses integral sliding mode output feedback fault-tolerant control (FTC)
of unmanned marine vessels (UMVs) with unknown premise variables and actuator faults. Due to
the complexity of the marine environment, the presence of uncertainties in the yaw angle renders
the premise variables in the Takagi–Sugeno (T–S) fuzzy model of UMVs unknown. Consequently,
traditional integral sliding mode techniques become infeasible. To address this issue, a control strategy
combining integral sliding mode based on output feedback with a compensator utilizing switching
mechanisms is proposed. First, a radial basis function neural network is used to approximate the
nonlinear terms in the UMV T–S fuzzy model. In addition, an integral sliding mode surface is
constructed based on fault estimation information and membership function estimation. On this
basis, an FTC scheme based on integral sliding mode output feedback is developed to ensure that the
UMV system is asymptotically stable and satisfies the prescribed H∞ performance index. Finally,
simulation results are provided to demonstrate the effectiveness of the presented control strategy.

Keywords: unknown premise variables; integral sliding mode; output feedback control; Takagi–Sugeno
(T–S) fuzzy models; unmanned marine vessels (UMVs)

1. Introduction

Unmanned marine vessels (UMVs) find wide applications across various domains,
including tourism, fisheries, pollution cleanup, and more [1–7]. Compared with manned
vessels, UMVs offer greater flexibility and adaptability. UMVs are influenced by distur-
bances in the maritime environment. These disturbances can cause vessels to deviate
from their intended course or even lose stability. With increasing demands for precision
and reliability in vessel motion, ensuring that vessels can perform various tasks stably
and safely becomes crucial. In the literature, there are some excellent research results,
including studies on sideslip angle control [8], trajectory tracking control [9], and heading
control [10]. Additionally, dynamic positioning (DP) control is also a highly regarded
research area, aiming to utilize thrust generated by its own propulsion system to counteract
external disturbances and retain a specific orientation at a designated location on the sea
surface, thereby fulfilling various operational functions [11–13]. DP systems can move
freely in different marine environments and working conditions, without being restricted
by anchor positions [14–19]. Alternatively, Takagi–Sugeno (T–S) fuzzy models boast robust
approximation capabilities, enabling effective approximation of any smooth nonlinear
function, making it an efficient method for nonlinear system modeling. Additionally, T–S
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fuzzy models are subject to examination within the theoretical construct of fuzzy logic
control, providing a flexible and effective tool for addressing control problems in complex
systems. UMVs are typical complex nonlinear systems; the T–S fuzzy model stands out as
an effective tool for designing controllers for such systems. Meanwhile, extensive research
was conducted on the DP control problem based on the T–S fuzzy model [20–22]. Ref. [20]
proposed a fuzzy controller design methodology to tackle the management of T–S fuzzy
models dealing with multiplicative noise within nonlinear stochastic DP systems. In [21], a
robust DP controller was developed utilizing T–S fuzzy models with H∞ control techniques.
In [22], a DP control scheme for UMVs was developed by using T–S fuzzy models. To
tackle the trajectory tracking control issue of DP vessels amidst modeling uncertainties,
environmental disturbances, and unpredictable velocities, ref. [23] combined performance
control techniques with adaptive fuzzy backstepping control methods to design a novel
adaptive fuzzy controller. In [24], a control strategy with high gain was given by combining
the adaptive fuzzy method with the auxiliary dynamic system, considering the unknown
parameters, unmeasured state, and saturated input of the ship dynamic model.

Despite that the aforementioned literature has yielded promising results, the controller
may fail to operate effectively in the event of actuator faults. When UMVs operate in harsh
marine environments, they are influenced by various uncertainties, including strong winds,
large waves, marine pollution, and so on. These uncertainties exert additional pressure and
loads on the actuators of vessels, making them more prone to failure. As noted in [25,26],
occurrences of actuator faults can lead to significant performance degradation or mission
cancellations. Fortunately, the fault-tolerant control (FTC) technology stands as an effective
control methodology for addressing thruster failures. FTC denotes a system’s capability
to maintain its fundamental functions even if specific components fail. The premise of
FTC lies in the system’s redundancy, with the key being how to pre-design and utilize this
redundancy effectively for fault tolerance. The approaches to achieve FTC mainly consist
of two design methods: active FTC and passive FTC. The design principle of passive FTC
aims to develop a fixed controller for anticipated faults, ensuring system stability and
control performance while rendering the closed-loop system insensitive to faults. Due to
the difficulty of implementing hardware redundancy in many practical control systems and
its limited fault-tolerant capability, passive FTC methods may be challenging. Therefore, ac-
tive FTC based on adaptive control methods is an effective approach. Its fundamental idea
is to utilize adaptive mechanisms to estimate faults online, providing fault parameter infor-
mation for controller design based on adaptive control methods [27–29]. Ref. [27] proposed
an approach for fault-tolerant tracking control in T–S fuzzy model-based nonlinear systems,
integrating integral sliding mode control (ISMC) with adaptive control techniques. In the
work presented [28], a novel nonlinear robust FTC law is introduced for position tracking
of a tilt tri-rotor unmanned aerial vehicle in the presence of unknown rear servo stuck
faults, parametric uncertainties, and external disturbances. Ref. [29] introduced a novel
approach for robust FTC of robot manipulators, employing an adaptive fuzzy ISMC and a
disturbance observer. Ref. [30] focused on actuator fault mitigation, external disturbances,
and actuator saturation in spacecraft. It proposed an FTC method based on adaptive
integral sliding mode (ISM) to mitigate these issues. Ref. [31] investigated the issue of
FTC for robots subjected to external disturbances, model uncertainties, and actuator faults.
It suggested a control approach utilizing adaptive higher-order super-twisting control in
conjunction with nonsingular terminal sliding mode. Ref. [32] addressed the DP control
problem of unmanned ships with signal quantization. It designs an integral sliding mode
FTC strategy [32–34]. We observe that the literature mentioned above suggests an integral
sliding mode FTC scheme assuming the measurability of all system states. However, in
reality, not all system states are entirely measurable. In such cases, designing an output
feedback-based ISMC strategy is crucial for effectively controlling the system and achieving
the desired performance. Ref. [33] suggested an FTC approach utilizing integral sliding
mode output feedback for addressing ship propulsion failures and signal quantization
concerns. An adaptive mechanism is employed to estimate fault information and upper
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bounds of external disturbances online. Ref. [35] investigated ISM output feedback con-
trol methods, ensuring disturbance attenuation in linear systems. Addressing the issue
of unknown state vectors, [33,36] designed ISMC with an output feedback component
for UMVs. To mitigate the impact of actuator faults and failures on the system, ref. [34]
proposed an observer-based fault estimation unit and designed an integral sliding mode
output feedback FTC strategy. Unfortunately, when employing the T–S fuzzy model, the
aforementioned results derived from the linear ship model become impractical. To the best
of our knowledge, the utilization of an output ISMC framework in UMV T–S fuzzy systems
has not been explored. Therefore, the main motivation of this study is to design the output
ISMC law solely based on output measurements in the T–S fuzzy UMV model.

The T–S fuzzy model divides the input space into various fuzzy subspaces and con-
structs local linear models within each subspace to approximate nonlinear functions accu-
rately. The ability to approximate complex nonlinear systems more effectively is facilitated
by the property of piecewise linear approximation inherent in the T–S fuzzy modeling
approach. In contrast with traditional methods, which linearize the model at a single
operating point, the benefits of the T–S fuzzy model are apparent. Furthermore, extend-
ing linear system control methods to address the control problems of nonlinear systems
based on T–S fuzzy modeling is another advantage. Leveraging these advantages, this
paper applies the T–S fuzzy modeling approach to UMV models. The application of this
method will provide more effective solutions for handling UMV DP systems in practical
and complex marine environments. As far as we know, although there have been some
excellent research results on the FTC of T–S fuzzy systems [14,22,37], ref. [37] suggested
an FTC strategy that combines T–S fuzzy integral sliding mode adaptation with H∞ per-
formance, addressing the effects of thruster faults and marine disturbances on unmanned
vessels. Ref. [38] proposed a fuzzy finite-time H∞ mixed-trigger DP control strategy for
UMV subjected to network attacks and ocean disturbances, utilizing a combination of
fuzzy state observers and hybrid triggering techniques. To mitigate the effects of actuator
faults and time-varying state delays on T–S fuzzy systems, a dynamic output feedback
FTC strategy was formulated, incorporating fault estimation observers [39]. To address
the simultaneous occurrence of sensor and actuator faults in nonlinear systems, ref. [40]
proposed a T–S fuzzy FTC scheme based on proportional-integral observers, enabling the
reconstruction of both sensor and actuator faults. Ref. [41] addressed the FTC problem of
underwater vessels with actuator failures. Based on event-triggered techniques, it proposed
a T–S fuzzy FTC method, aiming to ensure the efficient operation of underwater vessels
while minimizing the waste of communication resources. It is noteworthy to mention that
the aforementioned T–S fuzzy fault-tolerant controllers are all designed based on known
premise variables. However, due to the complexity of the marine environment, there exists
uncertainty in the yaw angle. In such scenarios, premise variables become challenging
to measure, rendering traditional fuzzy controllers based on known premise variables
ineffective. Fortunately, significant efforts have been made in addressing the problem
of unknown premise variables in T–S fuzzy systems [42–44]. Refs. [42,43] addressed the
challenges of fault detection and finite-frequency L2–L∞ filtering in T–S fuzzy systems
with unknown membership functions, respectively. Ref. [44] investigated the decoupling
of nonlinear dynamics to manage unmeasured states within the membership functions.
Ref. [45] focused on addressing the fault detection issue of T–S fuzzy systems with partially
unmeasurable premise variables and suggested a controller relying on observers. Ref. [46]
introduced an output feedback fuzzy control approach grounded on observers for T–S
fuzzy systems with partially unmeasurable premise variables. Ref. [47] presented a control
methodology utilizing fuzzy observers, facilitating the regulation of nonlinear networked
control systems amidst uncertain model parameters. To mitigate thruster failures and
quantization effects in unmanned marine vessels modeled as T–S fuzzy systems with un-
measurable premise variables, ref. [48] devised a quantized sliding mode control strategy
employing switching mechanisms. Although the FTC problem of the UMV considering
unknown premise variables had been addressed [48], the inclusion of traditional sliding
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mode control techniques based on state feedback in the literature fails to ensure robustness
from the outset. Furthermore, the introduction of ISMC techniques, especially output ISMC
techniques, presents new challenges for FTC of UMVs with unknown premise variables in
T–S fuzzy systems. This increases control complexity, requiring the overcoming of chal-
lenges posed by unknown premise variables and the design of effective control methods
suitable for the system. Therefore, another significant motivation for this research is to
address the design of fault-tolerant controllers based on output ISM for T–S fuzzy UMVs
in the presence of unknown premise variables.

Based on the foregoing analysis and discussion, this paper addresses the design of an
FTC strategy based on ISM output feedback for a T–S fuzzy UMV model with unknown
premise variables and actuator faults. A control strategy based on output feedback ISM
with a compensator utilizing switching mechanisms is proposed, addressing the issue
of unobservable premise variables. The RBFNN is utilized to estimate the nonlinear
components within the T–S fuzzy model. Additionally, an adaptive mechanism is utilized
to estimate fault information. Based on the estimated fault information and membership
function estimation, an integral sliding mode surface is constructed. Expanding on this, a
fault-tolerant control strategy is formulated using T–S fuzzy integral sliding mode output
feedback to ensure the UMV system’s asymptotic stability and fulfill the specified H∞
performance criteria. The primary contributions are summarized as follows:

(1) This paper presents a novel approach by integrating an ISM output feedback technique
into the design of a fault-tolerant controller for the T–S fuzzy UMV model, which
enables the UMV T–S fuzzy system to achieve robustness against disturbances from
the beginning only utilizing measurable output information.

(2) In contrast with the existing FTC approach applied to the T–S fuzzy UMV model
[22,37], in response to the challenge posed by unknown premise variables in T–S fuzzy
UMV models, this study devises compensators and fault-tolerant controllers based on
a switching mechanism utilizing upper and lower bounds of membership functions,
effectively reducing conservatism.

(3) Compared with the approaches for handling the nonlinear functions in the UMVs [48],
this paper employs the radial basis function neural network (RBFNN) to approximate
the nonlinear terms in the T–S fuzzy model of the UMV, which enhances the adapt-
ability of the UMV system to complex marine environments, thereby improving its
overall performance and robustness.

Then, the following structure of this manuscript is provided: In Section 2, we give
the required definitions and existing results. Section 3 presents the FTC scheme based the
output ISM method. In Section 4, the simulation results are provided. Section 5 presents
the conclusions.

Notation: Let T−1, TT , and T† denote the inverse, transpose , and pseudo-inverse
of the matrix T, respectively. The notation diag

{
a1, a2, . . . , an

}
denotes a diagonal matrix

containing the elements a1, a2, . . . , an along its main diagonal. The symbol “∗” embedded
within a matrix is employed to signify a term resulting from symmetry. Rn and ||z||
represent Euclidean space with n-dimensions and the Euclidean norm of z, respectively.

2. Preliminaries
2.1. UMV System Model

The dynamic equation of the UMV with three degrees shown in [22] is as follows:

Rν̇(t) + Gν(t) + Eθ(t) = NuF(t) + d(t) (1)

where for arbitrary Ξ, N [49] is defined as N =

 1 1 0 0 0 cos Ξ
0 0 1 1 1 sin Ξ
k1 −k2 −k3 −k4 k5 k6 sin Ξ

.

The meanings of other symbols in the equation are shown in Table 1. Correspondingly, the
overall layout of the UMV is shown in Figure 1.
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thruster Ⅰ:u3
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thruster:u5
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Figure 1. The overall layout of the UMV.

Table 1. Table of notations in the UMV model.

Symbols Description

v1(t) surge velocity
v2(t) sway velocity
v3(t) yaw velocity
ν(t) ν(t) =

[
v1(t) v2(t) v3(t)

]T

(xp(t), yp(t)) positions
ϕ(t) heading angle
θ(t) θ(t) =

[
xp(t) yp(t) ϕ(t)

]T

R inertia matrix
G damping matrix
E mooring forces matrix
N thruster configuration matrix

d(t) ocean disturbances, ∥d(t)∥ ⩽ d̄
ϱ unknown actuator effectiveness level matrix

us(t) stuck fault with the property ∥us(t)∥ ⩽ ūs
s sth thruster, s ∈ {1, 2, · · · , p}
t tth malfunction mode, t ∈ {1, 2, · · · , q}

[ϱt
s
, ϱt

s] [ϱt
s
, ϱt

s] ⊆ [0, 1]
∆ϱt {ϱt | ϱt = diag

{
ϱt

1, ϱt
2, . . . , ϱt

p

}
, ϱt

s ∈ [ϱt
s
, ϱt

s]}
∆ςt {ςt | ςt = diag{ςt

1, ςt
2, . . . , ςt

p}, ςt
s = 0 or 1}

The unified thruster fault model uF(t) is adopted as follows [25]:

uF(t) = ϱu(t) + ςus(t) (2)

with ϱ ∈ ∆ϱt , ς ∈ ∆ςt .
The kinematic equation of the UMV is given as follows:

θ̇(t) = M(ϕ(t))ν(t), (3)

with M(ϕ(t)) being a rotation matrix defined in [22].
Let θ(t) = f (t, ν) [14,25]. Then, from (1), we have the following:

ν̇(t) = Aν(t) + B(ϱu(t) + ςus(t)) +Dd(t) +F f (t, ν) (4)
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where A = −R−1G =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

, B = −R−1N =

 b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

,

D = −R−1 =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

, and F = −R−1E =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

.

2.2. T–S Fuzzy UMV Modeling

To streamline the presentation, we omit the independent variable t in the subsequent
discussions.

Let x =
[

xp yp ϕ v1 v2 v3
]T ; we can obtain the following equation by com-

bining (3) with (4):

ẋp = cos(ϕ)v1 − sin(ϕ)v2

ẏp = sin(ϕ)v1 + cos(ϕ)v2

ϕ̇ =v3

v̇1 =a11v1 + a12v2 + a13v3 + b11uF
1 + b12uF

2 + b13uF
3 + b14uF

4 + b15uF
5 + b16uF

6

+ f11 f (t, v1) + f12 f (t, v2) + f13 f (t, v3) + d11d1 + d12d2 + d13d3

v̇2 =a21v1 + a22v2 + a23v3 + b21uF
1 + b22uF

2 + b23uF
3 + b24uF

4 + b25uF
5 + b26uF

6

+ f21 f (t, v1) + f22 f (t, v2) + f23 f (t, v3) + d21d1 + d22d2 + d23d3

v̇3 =a31v1 + a32v2 + a33v3 + b31uF
1 + b32uF

2 + b33uF
3 + b34uF

4 + b35uF
5 + b36uF

6

+ f31 f (t, v1) + f32 f (t, v2) + f33 f (t, v3) + d31d1 + d32d2 + d33d3

(5)

In this study, the yaw angle ϕ(t) is considered as the premise variable, with its variation
range supposed to be −π

6 to π
6 [22]. Denote sin(ϕ), cos(ϕ) as ϖ1, ϖ2, respectively. Then, we

can obtain the T–S fuzzy UMV model below.

Plant Rule i:

IF ϖ1 is Mi1 and ϖ2 is Mi2

THEN
ẋ = Aix + B(ϱu + ςus) + Did + Fi f (t, x)
y = Cix
z = Cix

(6)

where Mi1 and Mi2 are fuzzy sets, i = 1, 2, 3, 4; y, z are the measured output and the

regulated output, respectively; Ci, Ci are known matrices, whileAi =

[
03×3 Ai
03×3 A

]
,

B =

[
03×6
B

]
, Di =

[
03×3
D

]
, Fi =

[
03×3 03×3
03×3 F

]
, A1 =

 1 − 1
2 0

1
2 1 0
0 0 1

, A2 =
√

3
2 − 1

2 0
1
2

√
3

2 0
0 0 1

, A3 =

 1 1
2 0

− 1
2 1 0

0 0 1

, A4 =


√

3
2

1
2 0

− 1
2

√
3

2 0
0 0 1

. Define yd(t), which is a

desired output; then the error is ỹ = y(t)− yd(t). For convenience, let yd(t) = 0, ỹ = y(t).
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According to Formula (6), we have the following:

ẋ =
4
∑

i=1
hi(ϖ)[Aix + B(ϱu + ςus) + Did + Fi f (x)]

y =
4
∑

i=1
hi(ϖ)Cix

z =
4
∑

i=1
hi(ϖ)Cix

(7)

where
4
∑

i=1
hi(ϖ) = 1, hi(ϖ) = κi(ϖ)

4
∑

i=1
κi(ϖ)

⩾ 0, κi(ϖ) = Mi1(ϖ1)Mi2(ϖ2).

2.3. RBFNN Approximation

To approximate the nonlinear term f (x) over a compact set Ω in (7), the RBFNN [50]
is introduced in this paper. Therefore, the following equation can be obtained:

f (x) = ω∗TΞ(x) + φ (8)

where

w∗ = arg min
ŵ

{
sup
x∈Ω

∣∣∣ f (x)− ŵTΞ(x)
∣∣∣} ∈ Rn

denotes the optimal weight vector, in which ŵ represents the estimate of w∗ and n means the
number of the node; Ξ(x) = [ξ1(x), ξ2(x), · · · , ξn(x)] represents the radial basis function
vector, the element ξi(x) of which is usually chosen as the Gaussian function; and φ0 is an
unknown constant, which meets the following:

∥ φ ∥⩽ φ0 (9)

Remark 1. In contrast with [48], this paper employs adaptive RBFNN to approximate the non-
linearity f (x) in (7). This approach simplifies the subsequent stability analysis by handling the
nonlinear term more straightforwardly and enhances adaptability to unmodeled dynamics induced
by complex and dynamic marine environments. It is worth mentioning that although we adopted
the structure of the adaptive RBFNN mentioned above in this article, considering that the state
in this article is not entirely obtainable, we used the estimated value of the state for the input
information in the Gaussian basis function, which is to replace the original value with the estimated
value for estimation; that is, we use f (x) = ω∗TΞ(x̂) + φ to replace f (x) = ω∗TΞ(x) + φ, where
Ξ(x̂) = [ξ1(x̂), ξ2(x̂), · · · , ξn(x̂)].

2.4. Assumptions and Lemmas

Assumption 1. In the event that partial or stuck faults occur in up to p − i(i = 1, 2, · · · , p − 1),
the remaining thrusters are capable of achieving the control target.

Assumption 2. Rank(Bϱ) = Rank(B) = l for all ϱ ∈ ∆ϱt .

Remark 2. Assumption 1 above ensures that the feasible solution exists for the actuator failure
accommodation problem of UMVs [25,48]. Assumption 2 ensures the presence of a feasible solution
to the thruster fault accommodation issue [25,48].

Lemma 1 ([25]). For the full-rank decomposition in Equation (13), there exists µ > 0 for ∀ϱ ∈ ∆ϱt ,
such that

N̄ϱN̄T ≥ µN̄N̄T. (10)
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Lemma 2 ([51]). For any m × n matrices C, D, and any scalars δ > 0, λ > 0, the following
inequalities are valid:

CT D + DTC ⩽ δCTC +
1
δ

DT D (11)[
0 CT D

DTC 0

]
⩽
[

λCTC 0
0 1

λ DT D

]
(12)

3. Output Feedback-Based ISM FTC Strategy

In this section, an output feedback-based ISM surface and a switching-type fault-
tolerant controller for the UMV will be provided. The proposed control scheme is given in
Figure 2.

UMV model with 
nonlinear term Sensor

RBFNN

T-S fuzzy controller

Adaptive 
mechanism

Actuator

Compensator

ISM 
surface

Switching
mechanism

Fault

Figure 2. ISM output feedback-based FTC strategy for T–S UMV model.

3.1. Output ISM Surface Design

Suppose that matrix B can be decomposed into full-rank matrices in the following
form [25]:

B = BvN̄ (13)

The ISM surface is provided as follows:

α(y) = Ḡ[y − y(t0)]−
∫ t

t0

N̄ϱ̂u0(τ)dτ (14)

where Ḡ = (CBv)
† −Y

[
I − (CBv)(CBv)

†
]

is a freely designed matrix and ϱ̂ = diag
{

ϱ̂1, ϱ̂2, . . . , ϱ̂p
}

in (14) is the estimation of ϱ, which is updated by the following projection algorithms:

˙̂ϱi = Proj[ϱ
i
,ϱ̄i ]

{ℶ} =

{
0, if (ϱ̂i = ϱ

i
and ℶ ⩽ 0) or(ϱ̂i = ϱ̄i and ℶ ⩾ 0)

ℶ, otherwise
(15)

where ℶ = γ0αTN̄i
4
∑

j=1
ĥj(ϖ)Kij x̂, in which γ0 is the adjusted parameter, N̄i is the ith column

of N̄, and Kij is the ith row of K in the jth fuzzy rule.

Remark 3. In comparison with [48], this paper adopts output information instead of state informa-
tion when designing the integral sliding surface, thereby reducing the reliance on unmeasurable
state information. Additionally, the construction of the output integral sliding surface involves
the unknown membership functions caused by unknown promise variables, undoubtedly posing
greater challenges to the design of the integral sliding surface. To address this issue, compensators
and controllers based on switching mechanisms will be elaborated in detail in the following text.
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The high gain compensator design is given as follows:
ẇ =

4
∑

i=1
ĥi(ϖ)[(M̄Ai − L1iC)w + Uy + L2i x̂]

U = L1i(I − CBvḠ) + M̄AiBvḠ
x̂ = w + BvḠy

, (16)

where M̄ = I − BvḠC.

Theorem 1. Consider the UMV (7) with satisfying Assumptions 1–2 and assume that the system
is in the integral sliding surface (14). For given positive scalars γd > 0, β1 > 0, if there exists
Pe = PT

e > 0, Px = PT
x > 0, K̄i ∈ Rm×n, that makes the following inequalities hold:

Πi Pe M̄D
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T Pe TT
2 Pe

∗ −γ2
d 0 0

∗ ∗ −I 0
∗ ∗ ∗ −β1

 ≤ 0 (17)

where Πi = Pe M̄Ai + AT
i M̄T Pe − Pe AiCTC −

(
Pe AiCTC

)T . ∆i P−1
x C̄T P−1

x
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T

∗ −I 0
∗ ∗ − 1

β1

 ≤ 0 (18)

where ∆i = M̄AiP−1
x + P−1

x AT
i M̄T + P−1

e C̄TC̄AT
i +

(
P−1

e C̄TC̄AT
i
)T − Bϱ̂K̄i − (Bϱ̂K̄i)

T , and
the proposed dynamic compensator design (16) with the following:

Ki = K̄iPx

L1i = AiCT

L2i = P−1
e CTCAT

i Px

can make the closed-loop system (26) and be asymptotically stable at the beginning and the H∞
performance index is no more than γd.

Proof. The derivative of the ISM surface (14) is derived as follows:

α̇(y) = Gẏ − N̄ϱ̂u0 (19)

Substituting (7) into (19) results in the following:

α̇(y) =
4

∑
i=1

hi(ϖ)[ḠCAix + N̄(ϱ − ϱ̂)u0 + N̄ϱu1 + N̄ςus

+ ḠCDd + N̄E0 f (x)]

(20)

Then we can obtain the following equivalent control: [52]

u1eq =−
4

∑
i=1

hi(ϖ)(N̄ϱ)†[ḠCAix + N̄ϱu0 − N̄ϱ̂u0 + N̄ςus

+ ḠCDd + N̄E0 f (x)]

(21)



J. Mar. Sci. Eng. 2024, 12, 920 10 of 22

Substituting (21) into (7) and using the property that (Nϱ)(Nϱ)† = Il , then we can
have the following equation:

ẋ =
4

∑
i=1

hi(ϖ)
{
(I − BvḠC)[Aix + Dd] + Bϱ̂u0

}
(22)

Let M̄ = I − BvḠC, e = x − x̂; we have the following:

ẋ =
4

∑
i=1

hi(ϖ){M̄Aix + M̄Dd + Bϱ̂u0} (23)

ė = (
4

∑
i=1

hi M̄Ai −
4

∑
i=1

ĥiL1iC)e +
4

∑
i=1

hi M̄Dd

+ (
4

∑
i=1

(
hi − ĥi

)
M̄Ai −

4

∑
i=1

ĥiL2i)x̂,

(24)

˙̂x =
4

∑
i=1

ĥi[(M̄Ai + L2i)x̂ + L1iCe]− Bϱ̂
4

∑
i=1

ĥiKi x̂

=
4

∑
i=1

ĥi[(M̄Ai + L2i − Bϱ̂Ki)x̂ + L1iCe],

(25)

where we defined that xe =

[
x̂
e

]
, Awi =

 M̄Ai + L2i − Bϱ̂Ki L1iC
4
∑

i=1

(
hi − ĥi

)
M̄Ai − L2i

4
∑

i=1
hi M̄Ai − L1iC

,

DM =

[
0
I

]
M̄D =

[
0

M̄D

]
, Cŷ =

[
C 0

]
, Cẑ =

[
C̄ 0

]
; then we have the following:


ẋe =

4
∑

i=1
ĥi{Awixe + DMd}

ŷ = Cŷxe
ẑ = Cẑxe

(26)

Let A1wi =

[
M̄Ai + L2i − Bϱ̂Ki L1iC

−L2i M̄Ai − L1iC

]
, A2wi =

4
∑

i=1

(
hi − ĥi

)[ 0 0
M̄Ai M̄Ai

]
;

then the following equations can be derived:
ẋe =

4
∑

i=1
ĥi{(A1wi + A2wi)xe + DMd}

ŷ = Cŷxe,
ẑ = Cẑxe

(27)

Choosing the following Lyapunov function:

V1 = xT
e Pxe, (28)

then we have the following:

V̇1 = ẋT
e Pxe + xT

e Pẋe

=
4

∑
i=1

ĥi

{
xT

e AT
wi + dT DT

M

}
Pxe + xT

e P
4

∑
i=1

ĥi{Awixe + DMd}

=
4

∑
i=1

ĥi

{
xT

e

(
AT

wiP + PAwi

)
xe + dT DT

MPxe + xT
e PDMd

} (29)
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Due to the following:

dT DT
MPxe + xT

e PDMd ≤ γ−2
d xT

e PDMDT
MPxe + γ2

ddTd, (30)

Thus,

V̇1 + ẑT ẑ − γ2
ddTd

≤
4

∑
i=1

ĥi

{
xT

e

(
AT

1wiP + PA1wi + γ−2
d PDMDT

MP + CT
ẑ Cẑ

)
xe + xT

e

(
AT

2wiP + PA2wi

)
xe

} (31)

Let P =

[
Px 0
0 Pe

]
; then we can get that γ−2

d PDMDT
MP =

[
0 0
0 γ−2

d PeM̄DDT M̄TPe

]
,

CT
ẑ Cẑ =

[
C̄TC̄ 0

0 0

]
, so we can further get the following:

xT
e

(
AT

2wiP + PA2wi

)
xe (32)

=
4

∑
i=1

(
hi − ĥi

)[
x̂T AT

i M̄T Pee + eT Pe M̄Ai x̂ + eT
(

AT
i M̄T Pe + Pe M̄Ai

)
e
]

e =
[

C
Tc

]−1[ C
Tc

]
e =

[
C
Tc

]−1[ Ce
Tce

]
= Tcn

[
y − ŷ
Tce

]
(33)

= T1y − T1ŷ + T2e

where T1 = Tcn

[
I
0

]
, T2 = Tcn

[
0
Tc

]
.

Therefore,

eT Pe M̄Ai x̂ = yTTT
1 Pe M̄Ai x̂ − ŷTTT

1 Pe M̄Ai x̂ + eTTT
2 Pe M̄Ai x̂ (34)

x̂T AT
i M̄T Pee = x̂T AT

i M̄T PeT1y − x̂T AT
i M̄T PeT1ŷ + x̂T AT

i M̄T PeT2e (35)

Let Λi = yTTT
1 Pe M̄Ai x̂ − ŷTTT

1 Pe M̄Ai x̂ + x̂T AT
i M̄T PeT1y − x̂T AT

i M̄T PeT1ŷ,

Ā2wi =

 0
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T PeT2

4
∑

i=1

(
hi − ĥi

)
TT

2 Pe M̄Ai
4
∑

i=1

(
hi − ĥi

)(
AT

i M̄T Pe + Pe M̄Ai
)
,
[

Q11 Q12
QT

12 Q22

]
=

Q = AT
1wiP + PA1wi + γ−2

d PDMDT
MP + CT

ẑ Cẑ + Ā2wi, so we can get the following:

V̇1 + ẑT ẑ − γ2
ddTd ≤ xT

e

4

∑
i=1

ĥiQxe +
4

∑
i=1

ĥ
4

∑
i=1

(
hi − ĥi

)
Λi (36)

Thus, to make V̇1 + ẑT ẑ − γ2
ddTd ≤ 0 hold, simply prove the following:

4
∑

i=1
ĥi

[
Q11 Q12
Q21 Q22

]
≤ 0

ĥi =

{
h̄i, Λi > 0
hi, Λi ≤ 0

, (37)
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where

Q11 = Px M̄Ai + AT
i M̄T Px + PxL2i + LT

2iPx − PxBϱ̂Ki − (PxBϱ̂Ki)
T + C̄TC̄

Q12 = PxL1iC − LT
2iPe +

4

∑
i=1

(
hi − ĥi

)
AT

i M̄T PeT2

Q22 = Pe(M̄Ai − L1iC) + (M̄Ai − L1iC)
T Pe + γ−2

d Pe M̄DDT M̄T Pe

+
4

∑
i=1

(
hi − ĥi

)(
AT

i M̄T Pe + Pe M̄Ai

)
.

Remark 4. Formula (37) provides a switching function to provide estimation information for the
membership function. Compared with the switching mechanism in reference [48], the switching
function provided in this paper can effectively utilize the upper and lower bounds of the membership
function, reducing conservatism.

According to L1i = AiCT , L2i = P−1
e CTCAT

i Px; then Q12 =
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T PeT2.

It follows from Lemma 2 that

[
Q11 Q12
QT

12 Q22

]
=

 Q11
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T PeT2

4
∑

i=1

(
hi − ĥi

)
TT

2 Pe M̄Ai Q22


≤

 Q11 + β1
4
∑

i=1

(
hi − ĥi

)
AT

i M̄T M̄Ai 0

0 Q22 +
1
β1

TT
2 PePeT2


= Q̃ =

[
Q̃11 Q̃12
Q̃T

12 Q̃22

]
, (38)

namely,

Q̃11 =Px M̄Ai + AT
i M̄T Px + PxL2i + LT

2iPx − PxBϱ̂Ki − (PxBϱ̂Ki)
T + C̄TC̄

+ β1

4

∑
i=1

(
hi − ĥi

)
AT

i M̄T M̄Ai

Q̃22 =Pe M̄Ai − Pe AiCTC +
(

Pe M̄Ai − Pe AiCTC
)T

+ γ−2
d Pe M̄DDT M̄T Pe

+
4

∑
i=1

(
hi − ĥi

)(
AT

i M̄T Pe + Pe M̄Ai

)
+

1
β1

TT
2 PePeT2

(39)

To prove Q ≤ 0, as long as Q̃11 ≤ 0 and Q̃22 ≤ 0, it can be inferred through contract
transformation and Schur’s complement lemma that Q̃11 ≤ 0 and Q̃22 ≤ 0 are equivalent
to the following two linear matrix inequalities in Theorem 1.

The proof of Theorem 1 is complete.

3.2. ISM Output Feedback Controller Design

The ISM controller is designed as follows:

u = u0 + u1 (40)

where
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u0 =
4

∑
i=1

ĥi(ϖ)Ki x̂

u1 = −ζµ̂0N̄T α(y)
∥α(y)∥

(41)

where Ki = K̄iPx, K̄i ∈ Rm×n (i = 1, 2, 3, 4), and Px ∈ Rn×n; µ̂0 is an approximation of µ0
with the relation that µ0 = 1

µ , in which the parameter µ is introduced from Lemma 1, while

ζ =
1

λN̄

(
∥N̄∥∥E0∥φ̂0 + ∥N̄∥∥E0∥

M

∑
r=1

ω̂rξr(x̂)

+
m

∑
i=1

∥N̄i∥ς̂i ˆ̄usi +
q

∑
k=1

∥∥ḠCDk
∥∥ ˆ̄dk + ϵ

) (42)

where λN̄ is the smallest eigenvalue of N̄N̄T , ϵ > 0, while φ̂0, ω̂, ς̂, ˆ̄us, and ˆ̄d represent the
estimations of φ0, ω, ς, ūs, and d̄, respectively.

For further analysis, the matrix decomposed forms are given as [37].
In addition, the adaptive laws are shown as follows:

˙̂µ0 = γζλN∥α(y)∥, ˙̄̂dk = γ3k∥α(y)∥
∥∥ḠCDk

∥∥,
˙̄̂usi = γ1i∥α(y)∥∥N̄i∥, ˙̂ωr = γ4r∥α(y)∥∥N̄∥∥E0∥ξr(x̂),
˙̂ςi = γ2i∥α(y)∥∥N̄i∥ ˆ̄usi, ˙̂φ0 = γ5∥α(y)∥∥N̄∥∥E0∥,

µ̂0(0) = µ00, ˆ̄usi(0) = ūsi0, ς̂i(0) = ςi0,
ˆ̄dk(0) = d̄k0, ω̂r(0) = ωr0, φ̂0(0) = φ00.

(43)

where ζ is as shown in (42); µ00, ūsi0, ςi0, ˆ̄dk0, ωr0, and φ00 are bounded initial values of
µ̂0, ˆ̄usi, ς̂i, ˆ̄dk, ω̂r, and φ̂0, respectively. The design parameters γ, γ1i, γ2i, γ3k, γ4r, and γ5 are
positive.

We define the following:

µ̃0 = µ̂0 − µ0, ϱ̃ = ϱ̂ − ϱ, ω̃ = ω̂ − ω,

˜̄us = ˆ̄us − ūs, ˜̄d = ˆ̄d − d̄,

φ̃0 = φ̂0 − φ0, ς̃ = ς̂ − ς.

(44)

Obviously, we can further derive the following:

˙̃µ0 = ˙̂µ0, ˙̃ϱ = ˙̂ϱ, ˙̃ω = ˙̂ω, ˙̄̃us = ˙̄̂us,
˙̄̃d =

˙̄̂d, ˙̃φ0 = ˙̂φ0, ˙̃ς = ˙̂ς.
(45)

Now, the following theorem is given to analyze the reachability of the output ISM.

Theorem 2. Suppose that the linear matrix inequalities (17) and (18) in Theorem 1 have feasible
solutions. Then, the state of the system (7) onto the ISM surface Ω ≜ {y ∈ Rm : α(y) = 0} can be
driven by the ISMC law (41) and the adaptive laws (43).
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Proof. Let α̃ =
[
αT, ϱ̃T, µ̃T

0 , ˜̄uT
s , ς̃T, ˜̄dT

k , ω̃T, φ̃T
0

]T
; then we have the candidate Lyapunov

function below:

V(α̃) =V0 +
1
2

γ−1µµ̃2
0 + ∑

i∈M̄

ϱ̃2
i

2γ0i
+ ∑

i∈M̄

ςiũ2
si

2γ1i

+ ∑
i∈M̄

ς̃2
i

2γ2i
+ ∑

k∈Q̄

˜̄d2
k

2γ3k
+ ∑

r∈P̄

ω̃2
r

2γ4r
+

φ̃2
0

2γ5

(46)

where V0 = (1/2)αT(y)α(y).
Deriving the following derivative of V0 by substituting the system (7):

V̇0 = αT(y)α̇(y) =αT(y)[ḠC
4

∑
i=1

hi(ω)Aix + N̄(ϱ − ϱ̂)u0 + N̄ϱu1

+ N̄ςus + ḠCDd + ḠCF f (x)]

(47)

The following text will abbreviate α(y) as α. According to Assumption 1, it is not
difficult to obtain the following inequalities:

αTḠCDd = ∑
k∈Q̄

αTḠCDkdk ≤ ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥d̄k

αTN̄ςus = ∑
i∈M̄

αTN̄iςiusi ≤ ∑
i∈M̄

∥α∥∥N̄i∥ςi∥usi∥ ≤ ∑
i∈M̄

∥α∥∥N̄i∥ςiūsi
(48)

Based on (47) and (48), we can show the following:

V̇0 ≤αTN̄ϱu1 + αTN̄E0 f (x)− αTN̄ϱ̃u0 + ∑
i∈M̄

∥α∥∥N̄i∥ςiūsi + ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥d̄k

From (41), we can further get the following:

V̇0 ≤− αTN̄ϱζµ̂0N̄T α

∥α∥ + ∑
i∈M̄

∥α∥∥N̄i∥ςiūsi + αTN̄E0 f (x)

+ ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥d̄k − αTN̄ϱ̃
4

∑
i=1

ĥi(ϖ)Ki x̂
(49)

We have the following inequality by substituting (44) into (49) according to [50] the following:

V̇0 ≤− αTN̄ϱζµ̂0N̄T α

∥α∥ + ∑
i∈M̄

∥α∥∥N̄i∥ς̂i ˆ̄usi − ∑
i∈M̄

∥α∥∥N̄i∥ς̃i ˆ̄usi

− ∑
i∈M̄

∥α∥∥N̄i∥ςi ˜̄usi + ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˆ̄dk − ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˜̄dk

− αTN̄ϱ̃
4

∑
i=1

ĥi(ϖ)Ki x̂ + αTN̄E0

(
ωTξ(x) + φ(x)

) (50)

Obviously,

αTN̄E0

(
ωTξ(x) + φ(x)

)
≤ ∥α∥∥N̄∥∥E0∥

(
ωTξ(x) + ∥φ(x)∥

)
≤ ∥α∥∥N̄∥∥E0∥

(
P̄

∑
r=1

ωrξr(x) + φ0

) (51)
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We can achieve the following inequality by combining (50) with (51):

V̇0 ≤− αTN̄ϱζµ̂0N̄T α

∥α∥ + ∑
i∈M̄

∥α∥∥N̄i∥ς̂i ˆ̄usi − ∑
i∈M̄

∥α∥∥N̄i∥ς̃i ˆ̄usi

− ∑
i∈M̄

∥α∥∥N̄i∥ςi ˜̄usi + ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˆ̄dk − ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˜̄dk

−
4

∑
j=1

ĥj(ϖ) ∑
i∈M̄

αTN̄i ϱ̃iKij x̂ + ∥α∥∥N̄∥∥E0∥
(

∑
r∈P̄

ωrξr(x) + φ0

) (52)

From (44) and (52), we can get the following:

V̇0 ≤− αTN̄ϱζµ̂0N̄T α

∥α∥ + ∑
i∈M̄

∥α∥∥N̄i∥ς̂i ˆ̄usi − ∑
i∈M̄

∥α∥∥N̄i∥ς̃i ˆ̄usi

− ∑
i∈M̄

∥α∥∥N̄i∥ςi ˜̄usi + ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˆ̄dk −
4

∑
j=1

ĥj(ϖ) ∑
i∈M̄

αTN̄i ϱ̃iKij x̂

+ ∥α∥∥N̄∥∥E0∥
(

∑
r∈P̄

ω̂rξr(x)− ω̃Tξ(x) + φ̂0 − φ̃0

)
− ∑

k∈Q̄
∥α∥

∥∥ḠCDk
∥∥ ˜̄dk

(53)

Obviously, µ̂0(t) > 0. The following inequality can be derived from Lemma 1:

−ζµ̂0αTNϱNT α

∥α∥ ≤ −ζµ̂0µλN∥α∥

Now, it is easy to get from (53) the following:

V̇0 ≤− ζ(µ̂0 + µ̃0)µλN∥α∥+ ∑
i∈M̄

∥α∥∥N̄i∥ς̂i ˆ̄usi − ∑
i∈M̄

∥α∥∥N̄i∥ς̃i ˆ̄usi

− ∑
i∈M̄

∥α∥∥N̄i∥ςi ˜̄usi + ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˆ̄dk − ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˜̄dk

+ ∥α∥∥N̄∥∥E0∥
(

∑
r∈P̄

ω̂rξr(x)− ω̃Tξ(x) + φ̂0 − φ̃0

)

−
4

∑
j=1

ĥj(ϖ) ∑
i∈M̄

αTN̄i ϱ̃iKij x̂

(54)

Substituting (42) into (54), we get the following:

V̇0 ≤− ϵ∥α∥ − ζµ̃0µλN∥α∥ − ∑
k∈Q̄

∥α∥
∥∥ḠCDk

∥∥ ˜̄dk − ∥α∥∥N̄∥∥E0∥ ∑
r∈P̄

ω̃rξr(x)

− ∥α∥∥N̄∥∥E0∥φ̃0 − ∑
i∈M̄

∥α∥∥N̄i∥ς̃i ˆ̄usi − ∑
i∈M̄

∥α∥∥N̄i∥ςi ˜̄usi

−
4

∑
j=1

ĥj(ϖ) ∑
i∈M̄

αTN̄i ϱ̃iKij x̂

Considering the adaptive laws (43) and (45), we have the following derivative of (46):

V̇(α̃) =V̇0 + ∑
i∈M̄

ϱ̃i ˙̃ϱi
γ0i

+ γ−1µµ̃0 ˙̃µ0 + ∑
i∈M̄

ςi ˜̄usi
˙̄̃usi

γ1i
+

∑
i∈M̄

ς̃i ˙̃ςi
γ2i

+ ∑
k∈Q̄

˜̄dk
˙̄̃dk

γ3k
+ ∑

r∈P̄

ω̃r ˙̃ωr

γ4r
+

φ̃0 ˙̃φ0

γ5

(55)
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From (43), we have −ζµλN µ̃0∥β∥ + γ−1µµ̃0 ˙̃µ0 = 0. Thus, from (55), we can get
V̇(α̃) ≤ −ϵ∥α∥ ≤ 0. Further, V(α̃) ≤ V(α̃(0)) ≜ V0 is valid. Then, we can obtain the
following inequality by simultaneously integrating both the left and right sides of (55):

V − V(0) ≤ −
∫ t

0
ϵ∥α∥dt (56)

From the inequality above, it is obvious that
∫ ∞

0 ϵ∥α∥dt ≤ V0 − V∞ < ∞ is valid, that
is, α ∈ L2

⋂L∞. Hence, utilizing Barbalat’s lemma ensures that the system trajectories are
confined to the ISM surface.

4. Simulation Result

In this section, the results are shown to demonstrate the effectiveness of the proposed
control strategy for UMVs. The parameter matrices R, G, E, N of the UMV model are ob-
tained from [21,22]. The simulated propulsion layout reference is Figure 1.

From [22], we have the following:


d1 = 0.27M1(s)N1(t)N2(t)
d2 = W(t)
d3 = 0.58M2(s)N3(t)N4(t)

where M1(s) =

Kξ1s
s2+2ϵ1ε1s+ε2

1
, Kξ1 = 0.26, ϵ1 = 0.5, ε1 = 1.3, and N1(t) = 2.69. Similarly, M2(s) =

Kξ2
s

s2+2ϵ2ε2s+ε2
2

with Kξ2 = 0.2, ϵ2 = 1.7, ε2 = 0.9, and N3(t) = 1.56, while the specific

values of N2(t),N4(t),W(t) can be found in [37].
We simulate a 40% loss of effectiveness occurring after 30 s for the bow tunnel thruster

and a stuck condition at 0.1sin(2t) for aft tunnel thruster I.
For simulation, Bv is chosen as [37],γ0 = 1 and x(0) = [0.1 − 0.01 − 0.05 0.11 −

0.07 0.07]T , ˆ̄w(0) = [0.5,−0.5, 0.01], µ̂0(0) = 0.1, ˆ̄us(0) = [0.12, 0.1, 0.1, 0.1, 0.1, 0.1], ϱ̂(0) =
[0.05, 0.05, 0.05, 0.05, 0.05, 0.05], ς̂(0) = [0, 0, 0, 0, 0, 0], ω̂(0) = [0.2, 0.1,−0.1, 0.2, 0], φ̂0(0) =
0.1, γ = 10, γ0 = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01], γ1 = [0.001, 0.001, 0.001, 0.001, 0.001, 0.001]
= γ2, γ3 = [0.023, 0.023, 0.023], γ4 = [1, 1, 1, 1, 1, 1], γ5 = 0.01.

The simulation results presented in this paper affirm the effectiveness of the proposed
control approach. Figure 3 illustrates the achieved state responses, demonstrating the con-
vergence of the states to zero over time as proposed. Upon the occurrence of faults starting
from t = 30 s, the states exhibit fluctuations due to the fault influence; however, they swiftly
resume convergence to zero under the action of the fault-tolerant controller. Analysis of
the control signals in Figure 4 further validates the efficacy of the proposed controller. It is
observed that the controller promptly responds to fault occurrences at t = 30 s and adjusts
accordingly. In sharp contrast, the controller design scheme proposed in [22] without
fault tolerance consideration is evident. As depicted in Figures 5 and 6, it is clear that,
after the occurrence of faults at t = 30 s, both the system states and the controller signals
exhibit noticeable divergence. In summary, the control methodology outlined in Section 3
demonstrates commendable control performance. By selecting another set of parameters
for random noise ocean disturbances, Kξ1 = 0.2, ϵ1 = 0.4, ε1 = 0.7, and N1(t) = 3.2.
Similarly, Kξ2 = 0.6, ϵ2 = 1.6, ε2 = 1, and N3(t) = 4.2; we can obtain the result of Figure 7.
In order to further demonstrate the robustness of the controller designed in this paper
to disturbances, this paper further expands the types of disturbances and selects the fol-

lowing sine wave disturbances: d1 =

{
−0.8 sin(1.6t)e−0.15t t ∈ [0 s, 30 s)
−1.2 sin(1.6(t − 30))e−0.15(t−30) otherwise

,

d2 =

{
−0.6 cos(1.6t)e−0.12t t ∈ [0 s, 30 s)
−1.5 cos(1.6t)e−0.12(t−30) otherwise

, d3 =

{
cos(t)e−0.08t t ∈ [0 s, 30 s)
sin(t)e−0.08(t−30) otherwise

.

From Figures 7 and 8, it is not difficult to see that the fault-tolerant control scheme proposed
in this paper can still achieve good control effects under different disturbances. In order
to further quantify the impact of disturbances on the behavior of the control system, this
paper focuses on calculating the steady-state error of the output information starting from
10 s after the fault occurs, which is 40 s later. Table 2 shows the steady-state errors for each
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disturbance scenario. Moreover, under ocean disturbance, our system’s H∞ performance
index of 0.1 indicates better disturbance rejection compared with 0.2 in [48]. These compar-
isons demonstrate the effectiveness and robustness of our control approach. Compared
with the traditional PID disturbance handling method, the control scheme provided in this
article can easily handle disturbances and avoid the complicated process of adjusting PID
parameters based on manual experience. To further explore the fault-tolerant capability of
the fault-tolerant controller designed in this article, we once again simulated the situation
where the bow and aft tunnel thrusters experienced 60% and 50% effectiveness losses
simultaneously after 30 s, respectively. The results are shown in Figure 9.

t

st
at

e

x1
x2
x3
x4
x5
x6

Figure 3. System responses x(t) using the scheme developed in this paper.
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Figure 4. Controller responses u(t) using the scheme developed in this paper.
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Figure 5. System responses x(t) using the scheme developed in [22].
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Figure 6. Controller responses u(t) using the scheme developed [22].
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Figure 7. System responses x(t) using the scheme developed in this paper with another set of
parameters for random noise ocean disturbances.
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Figure 8. System responses x(t) using the scheme developed in this paper with sine wave disturbances.
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Figure 9. System responses x(t) using the scheme developed in this paper with the bow and aft
tunnel thrusters experiencing 60% and 50% effectiveness losses simultaneously.

Table 2. Table of steady-state error.

Type of Disturbance SteadyErrory1 SteadyErrory2 SteadyErrory3

reference [22] 7.35 × 10−05 6.13 × 10−05 4.56 × 10−05

random noise 7.49 × 10−05 6.24 × 10−05 4.65 × 10−05

sine wave 8.83 × 10−05 6.62 × 10−05 6.95 × 10−05

5. Conclusions

In this study, a fault-tolerant output feedback ISMC strategy is devised for T–S fuzzy
UMVs subject to unknown premise variables. Initially, the T–S fuzzy UMV model incor-
porating unknown premise variables and actuator faults is established. Subsequently, to
address the issue of unknown membership functions resulting from unknown premise
variables, a compensator and a fault-tolerant controller based on a switching mechanism
with upper and lower bounds of membership functions are designed. Adaptive RBFNN is
utilized to approximate the nonlinear terms in the T–S fuzzy UMV model. The proposed
method’s effectiveness is confirmed by simulation results. Future research will focus on
investigating delay and event-triggering issues in T–S fuzzy UMV DP systems.
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