Investigation of Crack Propagation and Failure of Liquid-Filled Cylindrical Shells Damaged in High-Pressure Environments
Abstract
:1. Introduction
2. Mathematical Model
2.1. Element Decomposition Method
2.2. Extended Finite Element Method Expansion
2.3. Maximum Principal Stress Criterion (Maxps)
2.4. The Equation of Fluid Motion within a Crack in a Damaged Fluid-Filled Cylindrical Shell
2.5. The Fluid-Structure Interaction Control Equation for a Damaged Fluid-Filled Cylindrical Shell
2.6. The Solution Method for Fluid-Structure Interaction in a Damaged Fluid-Filled Cylindrical Shell
3. Numerical Simulation
3.1. Establishment of the Finite Element Model and Parameter Settings
3.2. Mesh Independence Verification
4. Results and Discussion
4.1. Effect of Crack Initial Angle on the Paths of Crack Propagation in Damaged Fluid-Filled Cylindrical Shells
4.2. Effect of Initial Crack Angle on the Failure Process of Damaged Fluid-Filled Cylindrical Shells
4.3. Analysis of Fluid Flow States in Damaged Fluid-Filled Cylindrical Shells Based on Fluid-Structure Interaction Experiments
5. Experiment on Crack Propagation of Damaged Liquid-Filled Cylindrical Shells
5.1. Experimental Purpose and Plan
5.2. Establishment of an Experimental Platform for Observing Crack Propagation in Damaged Liquid-Filled Cylindrical Shells
5.3. Experimental Results of Crack Propagation in Damaged Liquid-Filled Cylindrical Shells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Wang, C.Y.; Li, L.; Wu, J.F.; Yin, Z.C.; Tan, D.P. Numerical investigation of mesoscale multiphase mass transport mechanism in fibrous porous media. Eng. Appl. Comput. Fluid Mech. 2024; in press. [Google Scholar]
- Ji, R.Q.; Shen, Q.T.; Zhang, L.; Zeng, X.; Qi, H. Novel photocatalysis-assisted mechanical polishing of laser cladding cobalt-based alloy using TiO2 nanoparticles. Powder Technol. 2024; in press. [Google Scholar]
- Yang, X.; Zhang, Z.Y.; Zhang, T.C.; Yao, X.L.; Wang, W.L.; Zhang, Z.Y.; Hou, Y.Y.; Qi, H.; Tang, H.P. Multi-build orientation effects on microstructural evolution and mechanical behavior of truly as-built selective laser melting Ti6Al4V alloys. J. Mater. Res. Technol. 2024, 30, 3967–3976. [Google Scholar] [CrossRef]
- Shen, Q.T.; Chen, F.; Tao, Q.Y.; Ji, R.Q.; Zhang, L.; Cai, D.H.; Saetang, V.; Qi, H. Numerical investigation of various laser-waterjet coupling methods on spot power density distribution. AIP Adv. 2024; in press. [Google Scholar]
- Junior, V.L.J.; Papaelias, M. Design by analysis of deep-sea type III pressure vessel. Int. J. Hydrogen Energy 2021, 46, 10468–10477. [Google Scholar] [CrossRef]
- Wu, J.F.; Li, L.; Li, Z.; Xu, P.; Qi, H.; Wang, C.Y.; Zhang, Y.K.; Xie, Y.S.; Tan, D.P. Multiphase dynamic interfaces and abrasive transport dynamics for abrasive flow machining in shear thickening transition states. Powder Technol. 2024; in press. [Google Scholar]
- Zheng, S.; Yu, Y.; Qiu, M.; Wang, L.; Tan, D.P. A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Appl. Math. Model. 2021, 91, 934–958. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; Lai, C.; Bao, W.; Han, H.; Lin, R.; He, W.; Fan, H. Recent progresses in lightweight carbon fibre reinforced lattice cylindrical shells. Prog. Aerosp. Sci. 2022, 135, 100860. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.F.; Xu, W.X.; Ni, Y.S.; Yang, J.G.; Tan, D.P. Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int. J. Mech. Sci. 2023, 252, 108376. [Google Scholar] [CrossRef]
- Ge, M.; Zheng, G.A. Fluid-solid mixing transfer mechanism and flow patterns of the double-layered impeller stirring tank by the CFD-DEM method. Energies 2024, 17, 1513. [Google Scholar] [CrossRef]
- Yan, Q.; Li, D.; Wang, K.; Zheng, G. Study on the hydrodynamic evolution mechanism and drift flow patterns of pipeline gas-liquid flow. Processes 2024, 12, 695. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Yin, Z.; Li, Z.; Wang, T.; Tan, Y.; Tan, D. Mass transfer mechanism of multiphase shear flows and interphase optimization solving method. Energy 2024, 292, 130475. [Google Scholar] [CrossRef]
- Yin, Z.; Ni, Y.; Li, L.; Wang, T.; Wu, J.; Li, Z.; Tan, D. Numerical modeling and experimental investigation of a two-phase sink vortex and its fluid-solid vibration characteristics. Zhejiang Univ.-Sci. A 2024, 25, 47–62. [Google Scholar] [CrossRef]
- Rabczuk, T.; Gracie, R.; Song, J.H.; Belytschko, T. Immersed particle method for fluid–structure interaction. Immersed Part. Method Fluid–Struct. Interact. 2010, 81, 48–71. [Google Scholar] [CrossRef]
- Tan, Y.F.; Ni, Y.S.; Xu, W.X.; Xie, Y.S.; Li, L.; Tan, D.P. Key technologies and development trends of the soft abrasive flow finishing method. Immersed Part. J. Zhejiang Univ.-Sci. A 2023, 24, 1043–1064. [Google Scholar] [CrossRef]
- Li, L.; Xu, W.X.; Tan, Y.F.; Yang, Y.S.; Yang, J.G.; Tan, D.P. Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method. Mech. Syst. Signal Process. 2023, 189, 110058. [Google Scholar] [CrossRef]
- Zheng, G.A.; Shi, J.L.; Li, L.; Li, Q.H.; Gu, Z.H.; Xu, W.X.; Lu, B. Fluid-solid coupling-based vibration generation mechanism of the multiphase vortex. Processes 2023, 11, 568. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, P.; Li, L.; Fan, X. Investigations of the Formation Mechanism and Pressure Pulsation Characteristics of Pipeline Gas-Liquid Slug Flows. J. Mar. Sci. Eng. 2024, 12, 590. [Google Scholar] [CrossRef]
- Wu, C.T.; Wang, D.; Guo, Y. An immersed particle modeling technique for the three-dimensional large strain simulation of particulate-reinforced metal-matrix composites. Appl. Math. Model. 2016, 40, 2500–2513. [Google Scholar] [CrossRef]
- Wang, T.; Li, L.; Yin, Z.C.; Xie, Z.W.; Wu, J.F.; Zhang, Y.C.; Tan, D.P. Investigation on the flow field regulation characteristics of the right-angled channel by impinging disturbance method. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2022, 236, 11196–11210. [Google Scholar] [CrossRef]
- Ghosh, A.; Kumar, V. Computational studies on fragmentation of brittle materials. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 227, 650–664. [Google Scholar] [CrossRef]
- Weilong, A.; Charles, E.A. An adaptive cracking particle method providing explicit and accurate description of 3D crack surfaces. Int. J. Numer. Methods Eng. 2018, 144, 1291–1309. [Google Scholar]
- Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T. Dual-horizon peridynamics. Int. J. Numer. Methods Eng. 2016, 108, 1451–1476. [Google Scholar] [CrossRef]
- Shahzamanian, M.; Lin, M.; Kainat, M.; Yoosef-Ghodsi, N.; Adeeb, S. Systematic literature review of the application of extended finite element method in failure prediction of pipelines. J. Pipeline Sci. Eng. 2021, 1, 241–251. [Google Scholar] [CrossRef]
- Yang, X.; Song, F.; Zhang, T.C.; Yao, X.L.; Wang, W.L.; Zhang, Z.Y.; Hou, Y.Y.; Qi, H.; Tang, H.P. Surface enhancement by micro-arc oxidation induced TiO2 ceramic coating on additive manufacturing Ti-6Al-4V. Chin. J. Mech. Eng. 2024; in press. [Google Scholar]
- Yan, Q.; Fan, X.H.; Li, L.; Zheng, G.A. Investigations on the mass transfer and flow field disturbance regulation of the gas-liquid-solid flow for hydropower station. J. Mar. Sci. Eng. 2024, 12, 84. [Google Scholar] [CrossRef]
- Yin, Z.C.; Lu, J.F.; Li, L.; Wang, T.; Wang, R.H.; Fan, X.H.; Lin, H.K.; Huang, Y.S.; Tan, D.P. Optimized Scheme for Accelerating the Slagging Reaction and Slag-Metal-Gas Emulsification in a Basic Oxygen Furnace. Appl. Sci. 2020, 10, 5101. [Google Scholar] [CrossRef]
- Li, L.; Lu, B.; Xu, W.X.; Wang, C.Y.; Wu, J.F.; Tan, D.P. Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion. Energy, 2024; in press. [Google Scholar]
- Li, L.; Xu, P.; Xu, W.X.; Wang, C.Y.; Tan, D.P. Multi-field coupling vibration patterns of the multiphase sink vortex and distortion recognition method. Mech. Syst. Signal Process. 2024; in press. [Google Scholar]
- Qin, G.; Cheng, Y.F. Failure pressure prediction by defect assessment and finite element modelling on natural gas pipelines under cyclic loading. J. Nat. Gas Sci. Eng. 2020, 81, 103445. [Google Scholar] [CrossRef]
- Sun, X.; Chai, G.; Bao, Y. Ultimate bearing capacity analysis of a reactor pressure vessel subjected to pressurized thermal shock with XFEM. Eng. Fail. Anal. 2017, 80, 102–111. [Google Scholar] [CrossRef]
- Deng, H.; Yan, B.; Koyanagi, J. Improved XFEM for 3D interfacial crack modeling. Mech. Mater. 2023, 186, 104811. [Google Scholar] [CrossRef]
- Liu, X. Numerical and Experimental Study on Critical Crack Tip Opening Dis-Placement of X80 Pipeline Steel. Mechanics 2017, 23, 204–208. [Google Scholar] [CrossRef]
- Motamedi, D.; Takaffoli, M.; SMilani, A. Nonlinear XFEM Modeling of Mode II Delamination in PPS/Glass Unidirectional Composites with Uncertain Fracture Properties. Materials 2020, 13, 3548. [Google Scholar] [CrossRef] [PubMed]
- Okodi, A.; Lin, M.; Yoosef-Ghodsi, N.; Kainat, M.; Hassanien, S.; Adeeb, S. Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method. Int. J. Press. Vessel. Pip. 2020, 184, 104115. [Google Scholar] [CrossRef]
- Ameli, I.; Asgarian, B.; Lin, M.; Agbo, S.; Cheng, R.; Duan, D.M.; Adeeb, S. Estimation of the CTOD-crack growth curves in SENT specimens using the extended finite element method. Int. J. Press. Vessel. Pip. 2019, 169, 16–25. [Google Scholar] [CrossRef]
- Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S. SPH modeling of fluid–solid interaction for dynamic failure analysis of fluid-filled thin shells. J. Fluids Struct. 2013, 39, 126–153. [Google Scholar] [CrossRef]
- Ozdemir, M.; Tanaka, S.; Sadamoto, S.; Yu, T.; Bui, T. Numerical buckling analysis for flat and cylindrical shells including through crack employing effective reproducing kernel meshfree modeling. Eng. Anal. Bound. Elem. 2018, 97, 55–66. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Zhao, Y. An Element Decomposition Method for Three-Dimensional Solid Mechanics. Int. J. Comput. Methods 2023, 20, 2250063. [Google Scholar] [CrossRef]
- Lin, Y.F.; Zhu, H.H.; Cai, Y.C. A Solid-Shell Element of Partition of Unity-Based Generalized Fem. Mater. Sci. Eng. 2012, 29, 42–49. [Google Scholar]
- Su, Y.; Chen, Q.Y. Numerical simulation of bimaterial interface cracks using extended finite element method. Chin. J. Appl. Mech. 2023, 40, 1308–1314. [Google Scholar]
- Chessa, J.; Belytschko, T. An extended finite element method for two-phase fluids. J. Appl. Mech.-Trans. Asme 2003, 70, 10–17. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, S.H.; Zhao, Z.H. Multi-scale XFEM for Simulating Dynamic Fracture. Mech. Sci. Technol. Aerosp. Eng. 2022, 41, 695–702. [Google Scholar]
- Li, S.G. The Maximum Stress Failure Criterion and the Maximum Strain Failure Criterion: Their Unification and Rationalization. J. Compos. Sci. 2020, 4, 157. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Tan, D.P.; Li, L.; Zheng, S. A Method for Analyzing the Vibration Responses of Thin Liquid-filled Cylindrical Shells with Crack Damage. J. Solid Mech. 2019, 40, 51–73. [Google Scholar]
- Tan, C.; Qian, S.; Zhang, J. Crack Extension Analysis of Atmospheric Stress Corrosion Based on Peridynamics. Appl. Sci. 2022, 12, 10008. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y.; Liu, Z.; Zhang, S.; Wang, X. Evaluations of failure initiation criteria for predicting damages of composite structures under crushing loading. J. Reinf. Plast. Compos. 2018, 37, 1279–1303. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Huang, S.C. Using the extended finite element method to integrate the level-set method to simulate the stress concentration factor at the circular holes near the material boundary of a functionally-graded material plate. J. Mater. Res. Technol. 2022, 21, 4658–4673. [Google Scholar] [CrossRef]
- Amor-Martin, A.; Garcia-Castillo, L.E.; Lee, J.F. Study of accuracy of a non-conformal finite element domain decomposition method. J. Comput. Phys. 2021, 429, 109989. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C.; Ying, J. Application of Extended Finite Element Method for Studying Crack Propagation of Welded Strip Steel in the Cold Rolling Process. Materials 2023, 16, 5870. [Google Scholar] [CrossRef]
- Li, L.; Tan, D.; Yin, Z.; Wang, T.; Fan, X.; Wang, R. Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production. Renew. Energy 2021, 175, 887–909. [Google Scholar] [CrossRef]
- Guo, X.; Ge, H.; Xiao, C.; Ma, H.; Sun, W.; Li, H. Vibration transmission characteristics analysis of the parallel fluid-conveying pipes system: Numerical and experimental studies. Mech. Syst. Signal Process. 2022, 177, 109180. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, J. Analytical method for fluid-solid coupling vibration analysis of hydraulic pipeline system with hinged ends. Shock. Vib. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Muthupandi, V.; Jayachitra, R. Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel. Mater. Sci. Eng. A 2011, 529, 447–451. [Google Scholar] [CrossRef]
- Zheng, H.X.; Luo, Y.; Zang, J.Y.; Jiang, W.C. Comparison of strengthening effect and fatigue properties of SAF2205 cruciform welded joints by ultrasonic impact and cavitation jet peening treatment. Mater. Sci. Eng. A 2022, 852, 143717. [Google Scholar] [CrossRef]
Mechanical Property | Parameter Values (Units) |
---|---|
Intensity | 7.98 (g/cm3) |
Young’s modulus | 550 (MPa) |
Tensile strength | 750 (MPa) |
Poisson’s ratio | 0.3 |
Elastic modulus | 200 (GPa) |
Elongate | 0.25 |
Durometer | 290/30.5 (Brinell/Rockwell) |
Corrosion resistance factor (PREN) | 35.4 |
Element Number | 45,630 (n) | 91,260 (2n) | 136,890 (3n) | 182,520 (4n) |
---|---|---|---|---|
S | 55.404 MPa | 55.503 MPa | 56.105 MPa | 55.902 MPa |
err | −0.89% | −0.71% | 0.36% | / |
Initial Crack Angles | 0° | 15° | 30° | 45° | 60° | 75° |
---|---|---|---|---|---|---|
0.2251 | 0.2694 | 0.2750 | 0.2887 | 0.3127 | 0.3519 | |
0.2455 | 0.2827 | 0.2903 | 0.3088 | 0.3315 | 0.3740 |
Initial Crack Angles | 0° | 15° | 30° | 45° | 60° | 75° |
---|---|---|---|---|---|---|
88.903 | 102.732 | 110.435 | 119.584 | 126.001 | 135.255 | |
99.172 | 113.620 | 122.941 | 129.092 | 136.217 | 147.308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Tan, D.; Xu, S.; Hu, T.; Qi, H.; Li, L. Investigation of Crack Propagation and Failure of Liquid-Filled Cylindrical Shells Damaged in High-Pressure Environments. J. Mar. Sci. Eng. 2024, 12, 921. https://doi.org/10.3390/jmse12060921
Zhang H, Tan D, Xu S, Hu T, Qi H, Li L. Investigation of Crack Propagation and Failure of Liquid-Filled Cylindrical Shells Damaged in High-Pressure Environments. Journal of Marine Science and Engineering. 2024; 12(6):921. https://doi.org/10.3390/jmse12060921
Chicago/Turabian StyleZhang, Hongshuo, Dapeng Tan, Shicheng Xu, Tiancheng Hu, Huan Qi, and Lin Li. 2024. "Investigation of Crack Propagation and Failure of Liquid-Filled Cylindrical Shells Damaged in High-Pressure Environments" Journal of Marine Science and Engineering 12, no. 6: 921. https://doi.org/10.3390/jmse12060921
APA StyleZhang, H., Tan, D., Xu, S., Hu, T., Qi, H., & Li, L. (2024). Investigation of Crack Propagation and Failure of Liquid-Filled Cylindrical Shells Damaged in High-Pressure Environments. Journal of Marine Science and Engineering, 12(6), 921. https://doi.org/10.3390/jmse12060921