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Abstract: Port congestion significantly impacts the reliability of container ship schedules. However,
the existing research often treats vessel time in port as a random variable, failing to systematically
consider the complex impact of port congestion on ship schedules. This study addresses the issue of
container ship schedule design under port congestion. Vessel waiting times in ports are predicted
and quantified by queueing theory, along with information on vessel schedules, cargo handling vol-
umes, and available port operating time windows. We propose a mechanism for selecting container
handling efficiencies for arriving vessels, thereby determining their in-port handling times. By jointly
considering the uncertainty of vessel waiting and handling times in port, we establish a mixed-integer
nonlinear programming model aimed at minimizing the total cost of liner transportation services.
We linearize the model and solve it using CPLEX, ultimately devising a robust ship schedule. A
simulation analysis is conducted on a real liner shipping route from Asia to the Mediterranean,
revealing that extreme weather events, geopolitical conflicts, and other factors can lead to severe con-
gestion at certain ports, necessitating timely adjustments to vessel schedules by shipping companies.
Moreover, such events can impact the marine fuel market, prompting shipping companies to adopt
strategies such as increasing vessel numbers and reducing vessel speeds in response to high fuel
prices. Additionally, the container handling efficiency selection mechanism based on information
sharing enables shipping companies to flexibly design liner schedules, balancing the economic costs
and service reliability of container liner transportation.

Keywords: container liner shipping; liner schedule design; port congestion; container handling
efficiency selection mechanism

1. Introduction

Liner shipping handles over 80% of the transportation of finished products in world
trade [1]. Liner vessels operate container transportation services along fixed routes, calling
at designated ports in a predetermined sequence, adhering to a published schedule, and
charging relatively fixed freight rates. Typically, liner companies announce their schedules
for various regions 3–6 months in advance [2]. Shippers, such as global manufacturers, then
plan their production and transportation schedules accordingly. However, recent years
have seen a significant escalation in the frequency and severity of port congestion. For
instance, the ports of Los Angeles and Long Beach in the United States have been grappling
with prolonged and severe congestion since October 2020, with 109 vessels backlogged
as of 9 January 2022 [3]. This discrepancy between planned and actual vessel arrivals
and departures disrupts the delivery timelines of maritime shipments and undermines
the reliability of vessel schedules. Consequently, unreliable schedules compel shippers
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to maintain substantial safety stocks, hindering the implementation of efficient just-in-
time production plans and posing challenges to the security and stability of global supply
chains [4].

Liner schedule punctuality reflects a liner company’s capability in route planning,
port cooperation, and risk management, serving as a crucial factor for shippers when
selecting maritime service providers. Notteboom [5] investigated the primary reasons
for low liner punctuality, finding that over 93.8% of schedule delays were related to port
operations, with congestion causing 65.5% of the unexpected waiting time before cargo
handling and port infrastructure capacity limitations accounting for 20.6%. Scholars [6,7]
have extensively studied port congestion using methods like stochastic programming,
robust optimization, and variational inequality model. However, since late 2023, events
such as the significant container backlog at ports in Durban and Cape Town, drought-
induced low water levels in the Panama Canal, and geopolitical conflicts in the Red Sea
have led to frequent disruptions, maintaining the severity of global port congestion and
undermining container liner schedule punctuality. The global mainline punctuality index
released by the Shanghai Shipping Exchange in February 2024 stood at a mere 32.48%,
plummeting by 16.16% compared to February 2023. Addressing the real challenges of
port congestion while considering the uncertainties of vessel waiting and handling times
in ports (where waiting time refers to the time ships spend at anchor after arrival, and
handling time refers to the time spent handling containers by terminal cranes), as well as
designing reliable liner schedules, presents a significant opportunity for liner companies to
attract customers and seize market share.

On the one hand, port congestion primarily affects the waiting time for vessels before
entering berths, known as the in-port waiting time. However, the existing literature
often treats in-port waiting time as a uniform random variable [8–11]. In reality, vessel
berthing patterns and transit times vary significantly across different ports. Queueing
theory, recognized as a crucial analytical tool for congestion studies, has found applications
in optimizing berth allocation and describing port performance, proving to be a highly
effective method for quantifying port congestion. It allows for the estimation of critical
parameters such as average vessel waiting time, queue length, and average number of
vessels in port. Therefore, leveraging queueing theory models can effectively address the
uncertainty of vessel in-port waiting time.

On the other hand, shipping companies and ports have also made collaborative efforts
to address port congestion [12–14]. Before opening a new route, shipping companies engage
in information sharing with port operators, including vessel details (especially vessel
length and draft) and the range of container handling volumes. Port operators, considering
port throughput capacity and expected handling requirements, share available container
handling time windows and average handling efficiency data with liner companies and
offer multiple options for container handling efficiency at a higher-than-normal level, along
with additional charges for this “VIP” service. Then, shipping companies predict in-port
waiting times due to port congestion, determine vessel arrival and departure times at each
port, and select suitable container handling efficiency based on a comprehensive evaluation
of their schedules, available port operation time windows, and container handling plans,
thus determining the vessel’s in-port operation time [15]. This mechanism for selecting
container handling efficiency is a win-win strategy, enhancing the reliability and stability of
shipping company schedules, while also optimizing port revenue and reducing congestion
issues without compromising port operator interests. However, this will also make the
vessel handling time in port uncertain, thus increasing the difficulty of the design of the
shipping schedule.

Therefore, this study addresses the liner schedule design in the context of port con-
gestion. It utilizes queueing theory to predict and quantify vessel waiting times in port,
integrating vessel schedules, cargo handling volumes, and available port operation time
windows; proposing a container handling efficiency selection mechanism for inbound ves-
sels; and determining vessel handling times in port. By jointly considering the uncertainty
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of vessel waiting and handling times, a mixed-integer nonlinear programming model is
developed, aiming to minimize the total cost of shipping services. The model undergoes
linearization and is solved using CPLEX to devise a reliable shipping schedule. Finally, an
experiment analysis is conducted on a real-world Asia-to-Mediterranean shipping route.
Our study makes the following contributions:

(1) This paper addresses the issue of liner schedule design, considering the uncer-
tainties of vessel waiting and handling times caused by port congestion. It determines
the vessel deployment quantities on the route, vessel speeds on segments, and arrival
and departure times at each call port. This comprehensive framework for handling port
congestion can be extended to other types of emergencies, such as disruption.

(2) In maritime logistics, the existing literature often treats vessel time in port as
a uniform random variable, overlooking significant differences in vessel berthing and
container handling across different ports. This paper treats vessel operations upon arrival
as a queueing system and employs queueing theory models to predict and quantify vessel
waiting times in port. In fact, this model can also be applied to terminal operations and
truck-to-port transfers.

(3) We propose a port handling efficiency selection mechanism. Numerical simulations
confirm that this information-sharing mechanism not only enhances the flexibility and
reliability of liner shipping services but also increases profitability for both liner companies
and ports. This mechanism offers a new approach to collaboration and information sharing
in maritime logistics.

(4) A simulation analysis on a real Asia-to-Mediterranean liner shipping route demon-
strates that extreme weather events and geopolitical conflicts can cause severe congestion
at certain ports. Liner companies must adjust vessel schedule promptly in response. Addi-
tionally, such events can impact the marine fuel market, necessitating strategies such as
increasing vessel operations and reducing vessel speeds under high fuel prices.

The remainder of this paper is organized as follows. Section 2 presents related studies
on liner schedule design, application of queueing theory in maritime operations, and port
handling efficiency selection mechanism. Section 3 develops a mixed-integer nonlinear
programming model. Section 4 linearizes the model and utilizes commercial solver CPLEX
to solve. Section 5 describes computational experiments, illustrates the result analysis, and
derives managerial insights. Section 6 provides conclusions.

2. Literature Review

This study primarily addresses the schedule design in maritime shipping, taking into
account port congestion. By utilizing queueing theory models to quantify and predict
vessel berth times and proposing a port handling efficiency selection mechanism based
on port–harbor cooperation agreements, it aims to determine the deployment quantities
of liners on routes, vessel speeds on various segments, and arrival and departure times
at each call port. The following literature review delves into liner schedule design, the
application of queueing theory in maritime operations, and the implementation of the port
handling efficiency selection mechanism.

2.1. Liner Schedule Design

For liner companies, schedule design constitutes a mid-term tactical decision. At this
stage, the ports of call along the route are predetermined, requiring the determination of
service frequencies, vessel deployment quantities, planned arrival and departure times at
each port, and estimated speeds for each segment [16]. Initially, scholars exploring schedule
design typically studied it in conjunction with port operating time window constraints
or cargo transshipment requirements, without considering uncertain factors like adverse
weather or port congestion [17–19]. Fagerholt [20] introduced soft time windows for
port operations in schedule design, imposing penalty costs on vessels unable to arrive
at ports within the designated time, aiming to enhance schedule reliability and reduce
transportation costs by controlling port time windows. Wang et al. [21] and Alharbi
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et al. [22], respectively, studied schedule optimization problems considering port time
windows for single routes and liner shipping networks. Their findings indicate that port
time windows, port handling efficiency, and fuel prices influence total transportation costs,
vessel configurations, and schedule plans.

However, in reality, vessels encounter various unexpected situations, such as adverse
weather and port congestion during navigation and port operations [23]. Notteboom [5]
first explored the reasons for low schedule adherence rates, finding that over 93.8% of
delays were related to port operations, and proposed strategies for reschedule port calls
and port skipping to resume interrupted services. Scholars continuously attempt to incor-
porate uncertain factors into schedule design problems through modeling, simulation, and
quantitative analysis to enhance the practical value of theoretical models. Song et al. [24]
considered the joint tactical planning problem of vessel deployment quantity, planned
maximum speed, and liner service frequency, optimizing vessel operating costs, service
reliability, and vessel emissions under port time uncertainty. Wang and Meng [11,25]
incorporated port-to-port transshipment time, sea accident time, and port time uncertainty
into schedule design, modeling vessel speed as a function related to sea accident time to
determine vessel arrival times at each port along the route and speeds for each segment.
The uncertainty here is divided into two parts: uncertainty in waiting time caused by
port congestion and uncertainty in container handling time. Subsequently, to improve the
accuracy of schedule design, scholars often separately consider these uncertainties [26].

2.2. Application of Queueing Theory in Maritime Operations

Port congestion is a primary factor affecting liner schedule adherence. Existing studies
generally treat the waiting time for vessels at ports as a random variable. For example,
Zhang [10] used common mean and variance-based distribution functions to represent
the uncertainty of port waiting times and incorporates liner reliability objectives into the
schedule design. Wang et al. [11] assumed vessel waiting time and port operation time
follow a truncated normal distribution and designed a robust liner schedule accordingly.
However, these variables are closely related to the number of arriving vessels and the port’s
handling capacity [27–29]. Queueing theory, a key analytical tool for studying congestion,
has been applied to optimize berth quantities and describe port performance [30].

As early as 1978, Edmond and Maggs [31] applied queueing theory to berth construc-
tion and investment decisions regarding cargo-handling equipment. Dragović et al. [32]
utilized simulation and queueing theory to calculate parameters such as berth utilization,
average number of ships in queues, and average waiting time for ships, thereby evaluating
operational efficiency and processes at berth stages. Subsequently, some scholars optimized
port berth quantities using real port data. El-Naggar [33] aimed to minimize total costs,
optimizing berth quantities at the Port of Alexandria using queueing theory, confirming
that the ship arrival pattern followed a Poisson distribution. Saeed and Larsen [34] uti-
lized queueing theory to minimize ship waiting time costs and berth construction costs,
assessing whether the berth quantity at the container terminal of the Port of Manila in the
Philippines was sufficient. Zheng et al. [35] designed a three-stage optimization method
based on queueing theory and cooperative game theory, exploring the optimal allocation
and distribution of berth resources in multi-port regions.

2.3. Port Container Handling Efficiency Selection Mechanism

With the deepening integration of port and shipping, the relationship between port
operators and liner companies has become closer [36,37]. Although the average container
handling efficiency of the port is relatively fixed [38], due to the temptation of the liner en-
terprise to pay extra costs, the port operator can provide more efficient container handling
efficiency for the arrival vessels. Liner companies can negotiate handling rates and higher
efficiencies with container terminal operators to reduce the overall vessel turnaround
time. Pasha et al. [39] suggested that, in tactical liner transportation decisions—such as
determining service frequency, fleet deployment, optimizing vessel speed, and designing



J. Mar. Sci. Eng. 2024, 12, 951 5 of 19

schedules—vessels can be serviced by various operators with different handling efficien-
cies upon arrival at the terminal. Choosing operators with higher handling efficiency
reduces vessel loading and unloading time and fuel consumption but increases container
handling costs.

Therefore, some scholars [21,40] have considered the impact of port and shipping
cooperation agreements on liner schedule optimization design, proposing that ports can
offer multiple optional operation time windows and container handling efficiencies to liner
companies. Liu et al. [15] explored the influence of shipping companies requesting higher
container handling efficiency from ports after paying certain costs on schedule design,
aiming to reduce vessel turnaround time and fuel consumption by decreasing vessel speeds.
Building upon this, Dulebenets et al. [41] proposed a more comprehensive collaborative
mechanism where port operators can offer multiple options for arrival time windows,
multiple start and end times for available time windows, and multiple handling efficiencies,
calculating potential benefits for liner companies under comprehensive cooperation agree-
ments. Yu et al. [42] examined how information sharing, communication, and feedback
between shipping companies and terminal operators enable the sharing of updated vessel
arrival times. This dynamic information exchange allows for the planning of critical berth
and quay crane allocations based on the updated arrival times.

2.4. Summary

Research on schedule optimization design has evolved from deterministic to uncertain
factors, with some scholars integrating uncertain factors with constraints such as operation
time windows and acceleration strategies. As port container throughput continues to rise,
vessel queueing at ports for service has become common. However, the existing literature
often treats vessel time at port as a uniform random variable during the schedule design
stage, overlooking the distinct vessel docking and container handling situations at different
ports. Moreover, statistical studies indicate that vessel arrival at ports follows a Poisson
distribution, and vessel berth occupation time generally follows a negative exponential
distribution. Therefore, this paper studies vessel operations at ports as a queueing system,
employing queueing theory to compute vessel waiting times at ports. Additionally, in
the context of port and shipping collaborative development, the relationship between
shipping companies and terminal operators has become closer, with increased transparency
of information. Scholars propose that ports can offer multiple optional operation time
windows and container handling efficiencies to liner companies under cooperation agree-
ments to enhance the schedule reliability of container liners and promote the interests of
multiple parties.

Considering these factors, this study fully takes into account the uncertainty of vessel
waiting times and handling times at ports under real port congestion conditions, estab-
lishing a nonlinear mixed-integer programming model for schedule design. This aims
to mitigate the adverse effects of port congestion on liner transportation operations and
service quality.

3. Model Formulation
3.1. Problem Description

The current global port congestion significantly impacts liner schedule punctuality,
necessitating consideration of port congestion uncertainty in schedule design. Vessels
adhere to predetermined port call schedules, sequentially visiting port i ∈ I, I = {1, . . . , N}
during each voyage, and they need to arrive at the port within designated time windows
[TWstart

i , TWend
i ] for operations. However, in the context of port congestion, vessel time in

port is affected by waiting for berths and container handling, thus introducing significant
uncertainty. To address the uncertainty of waiting for berths, we utilize queueing theory
models to predict and quantify vessel berth times. By considering factors such as the daily
vessel arrivals number, λi; available berths number, ci; and average number of vessels
served per berth, µi, we calculate the queue service intensity, ρi, at port i. Subsequently, we
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determine the actual wait times, θwait
i , for vessels at port i by comparing the relationship of

queue times, θ
queu
i ; arrival times, θarr

i ; and available service windows.
To address the uncertainty of handling times, we propose a container handling effi-

ciency selection mechanism. This allows vessels to choose one of several container handling
efficiency options, Hi, at port i based on their specific needs. We introduce a decision vari-
able, xi,h, to represent vessel choices, determining container handling efficiency, πi,h, at
port i. Subsequently, considering container quantity, δ

port
i , and unit port service costs, chand

i,h ,
we calculate the total container handling fees that vessels need to pay at each port and
determine vessel berth times, θhand

i , accordingly.
After addressing vessel berth and handling uncertainties, vessels decide their sailing

speeds, vi, based on segment distances, Di; departure times, θ
depart
i−1 , from previous ports;

and vessel speed ranges, [Vmin, Vmax], calculating sailing times, θsail
i , for each segment.

Fuel costs, determined by unit fuel costs, c f uel ; fuel coefficients, α, γ; unit fuel consumption,
φi; and segment distances, Di, is incurred during voyages, in addition to and container
inventory costs, cinv, based on container quantities, δ

seg
i , and sailing times, θsail

i , per segment.
If vessels fail to complete operations within specified time windows, we impose a penalty
cost based on delay duration, θlate

i , and unit penalty cost, clate
i , aiming to enhance liner

service quality.
Last, shipping companies need to deploy m vessels on the route, each incurring fixed

operational costs, cope, per voyage to meet weekly service requirements. The number
of vessels available for deployment has an upper bound, M. In summary, this study
establishes an optimization model minimizing total costs by considering vessel operational,
fuel consumption, container handling, inventory, and delay penalty costs.

3.2. Assumptions

(1) Vessel berth time is primarily determined by waiting and container handling,
without considering time spent on other activities [26].

(2) The sequence and ports of call along the route are known, with liner companies
offering weekly service frequencies [43].

(3) The study focuses solely on optimizing schedules for a single route, excluding
transshipment issues [25].

(4) Similar vessel types are deployed on the route, sharing identical technical charac-
teristics, and only the fuel consumption of main engines is considered [25].

(5) The import process of vessel arrivals at ports follow a Poisson distribution [44,45],
while berth occupancy times adhere to an exponential distribution [46].

(6) It is assumed that vessels adhere to a first-come, first-served principle at ports.
If vessels arrive before the available berth window, they must wait at anchor. Given
predetermined port calls at a strategic level, liner companies exhibit patience in queueing
without departing or diverting mid-route [47].

3.3. Symbol Specification

Before formulating the model for this problem, we list the notation as follows.
Indices and sets:
I: set of liner line call port or line segment; that is, the ith call port corresponds to the

ith section, i ∈ I.
Hi: set of container handling efficiency in port i, h ∈ Hi.
Parameters:
N: number of ports of call.
cope: fixed operating costs (USD/week).
cinv: unit inventory cost of containerized goods (USD/(TEU × hour)).
clate

i : unit penalty cost of vessel delay in port i (USD/hour).
c f uel : unit fuel cost (USD/ton).
chand

i,h : vessel unit service cost when selecting container handling efficiency, h, at port
i (USD/TEU).
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πi,h: container handling efficiency, h, at port i (TEU/hour).
Vmin: minimum vessel speed (knot).
Vmax: maximum vessel speed (knot).
Di: distance of segment i (n mile).
TWstart

i : start time of port i’s available time window (hour).
TWend

i : end time of port i’s available time window (hour).
α, γ: correlation coefficients of fuel consumption function.
δ

seg
i : number of containers transported by the vessel in segment i (TEU).

δ
port
i : number of containers handled at port i (TEU).

M: maximum number of vessels that can be deployed on the route (ship).
λi: average number of vessels arriving at port i per day (ship).
µi: average number of vessels serviced per day by a berth in port i (ship).
ci: number of berths available in port i.
Intermediate variables:
φi: Unit fuel consumption of the vessel in segment i (ton/n mile).
θarr

i : Arrival time of the vessel at port i (hour).
θhand

i : Container handling time of the vessel at port i (hour).

θ
depart
i : Departure time of the vessel from port i (hour).

θsail
i : Sailing time of the vessel in segment i (hour).

θlate
i : Delay time of the vessel at port i (hour).

θ
queu
i : Queueing time of the vessel at port i (hour).

θwait
i : Waiting time of the vessel at port i (hour).

ρi: Queue service intensity of port i (ship).
Variables:
vi: speed of vessel on segment i (knot).
xi,h: 0–1 variable, 1 if the vessel selects the hth container handling efficiency, πi,h, in

port i; otherwise, 0.
m: Number of vessels deployed on the route (ship).
Regarding the abbreviations used in this paper, TEU stands for Twenty-Foot Equivalent

Unit, USD represents United States Dollar, and n mile denotes Nautical Mile. We use these
abbreviations consistently throughout the text.

3.4. Mixed-Integer Nonlinear Programming Model

Based on the above description, the first liner schedule design model (M1) is estab-
lished with the goal of minimizing the total costs of liner services as follows:

Min z = cope · m + c f uel · ∑
i∈I

Di · φi + ∑
i∈I

∑
h∈Hi

chand
i,h · δ

port
i · xi,h + ∑

i∈I
cinv · δ

seg
i ·θsail

i + ∑
i∈I

clate
i · θlate

i (1)

Equation (1) represents the objective function of the model, aiming to minimize the
total costs of liner services. The first term pertains to vessel operating costs, which are
contingent upon the number of vessels deployed along the route. The second term accounts
for fuel costs, determined by vessel speed and distance traveled. The third term reflects
port handling costs, influenced by container handling volumes and efficiency. The fourth
term represents container inventory costs, primarily linked to the duration of containers
on board. Lastly, the fifth term denotes penalties for vessel delays, contingent upon the
duration of container delays.

3.4.1. Waiting Time Prediction Model Based on Queueing Theory

Initially, we quantify the queueing time for vessels waiting for berthing in port due to
port congestion. When vessels randomly dock at any public berth at a port, their arrivals
follow the M/M/c multi-server queueing system. As this study involves multiple time
points related to port availability windows, Figure 1 elucidates the interrelationships among
these time points.
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Figure 1. Queueing scenarios for ships arriving at the port.

In Figure 1, the vessel departs from port i at time θ
depart
i , after traveling for θsail

i+1 units
of time in segment i + 1 (from port i to port i + 1) and arriving at the port i + 1 at time θarr

i+1.
The start and end times of the available time window at port i + 1 are TWstart

i+1 and TWend
i+1,

respectively. As the queueing time for the vessel at port i + 1 is uncertain and subject to
variation within the green matrix, three scenarios can occur:

(1) The vessel completes queueing before the start of the available time window,
TWstart

i+1 , at port i + 1. In this case, the waiting time for berthing is TWstart
i+1 − θarr

i+1.
(2) The vessel completes queueing precisely between the start time, TWstart

i+1 , and the
end time, TWend

i+1, of the available time window at port i + 1 (including these two time
points). Here, the waiting time for berthing is θ

queu
i+1 .

(3) Vessels complete queueing after the end of the available time window TWend
i+1

at port i + 1. Despite being unable to avail port services at this point, there is still an
opportunity cost for waiting, and the waiting time for berthing is θ

queu
i+1 . Certainly, this

scenario corresponds to ρi > 1; that is, the number of vessels exceeds the port’s service
capacity for the day, theoretically resulting in prolonged queueing. For instance, since
October 2023, Durban Port on the South African East Coast has experienced extreme
weather conditions and equipment malfunctions by the port operator, Transnet. This
has led to over 100,000 containers being stranded, with more than 100 container vessels
becoming stuck, causing significant delays in liner schedules. Experts estimated that the
backlog would not be cleared until February 2024. Opting to skip the port would be the
optimal choice for liner companies during such circumstances. However, as these events are
extreme emergencies beyond schedule design considerations, this study does not account
for them. Hence, we assume that vessels always arrive before the end of the available time
window at the port.

The waiting time prediction model based on queueing theory is as follows:

ρi =
λi

ci · µi
, ∀i ∈ I (2)

P0
i =

[
ci−1

∑
n=0

1
n!

· (λi
µi
)

n
+

1
ci!

1
1 − ρi

(
λi
µi
)

]ci−1

, ∀i ∈ I, i f ρi < 1 (3)

Pi =
1

(ci!) · (1 − ρi)

(
λi
µi

)ci

· P0
i , ∀i ∈ I (4)

Lq
i =

(
λi
µi

)ci · ρi

(ci!) · (1 − ρi)
2 · P0

i , ∀i ∈ I (5)

θ
queu
i =

Lq
i

λi
, ∀i ∈ I (6)

θwait
i+1 = Max

{
TWstart

i+1 − θarr
i+1, θ

queu
i+1

}
∀i ∈ I, 0 ≤ i < N (7)

Formulas (2)–(7) quantify the vessel’s berth waiting time at port i using queueing the-
ory, with a progressive relationship between them. Equation (2) computes the queue service
intensity, ρi, at port i. Furthermore, when the service intensity is ρi < 1, Equation (3) calcu-
lates the probability, P0

i , of no vessels arriving at port i. Building upon Equations (3) and (4),
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we assess the probability, Pi, of the vessel needing to queue at port i when n vessels arrive
and n ≥ ci. Equation (5) determines the queue length, Lq

i , of the vessel waiting for service
at port i. Equation (6) computes the waiting time, θ

queu
i , of the vessel at port i. Additionally,

Equation (7) calculates the waiting time of the vessel at port i. Given the closed-loop nature
of liner shipping, this waiting time is contingent upon the departure time from the last port
of the previous loop and the sailing time to the first port of the current loop.

3.4.2. Liner Schedule Design Model

For liner enterprises, schedule design involves determining vessel arrival and depar-
ture times of vessels at various ports along established routes or shipping networks. Before
finalizing these times, liner companies need to gather information about available working
hours, container handling capacity, vessel turnaround times at ports, distances and weather
conditions along route segments, cargo volume between ports, and constraints related to
vessel attributes and quantity on the route. Based on this information, parameters are set
according to principles of minimizing costs or optimizing service. With these parameters,
round-trip voyage times can be calculated. This refers to the time that vessels spend travel-
ing from the originating port, visiting all ports in sequence, and returning to the originating
port, encompassing both sailing and port waiting and operation times. The calculation
formulas and constraints of the model are provided below.

∑
h∈Hi

xi,h = 1, ∀i ∈ I (8)

θsail
i =

Di
vi

, ∀i ∈ I (9)

φi =
γ · (vi)

24

α−1

, ∀i ∈ I (10)

∑
i∈I

(θsail
i + θwait

i + θhand
i ) = 168 · m (11)

θ
depart
i = θarr

i + θwait
i + θhand

i , ∀i ∈ I (12)

θarr
1 = θ

depart
N + θsail

N − 168 · m (13)

θarr
i+1 = θ

depart
i + θsail

i , ∀i ∈ I, i < N (14)

θlate
i = Max

{
θ

depart
i − TWend

i , 0
}

, i ∈ I (15)

θhand
i = ∑

h∈Hi

δ
port
i

πi,h
xi,h, ∀i ∈ I (16)

m ≤ M (17)

Vmin ≤ vi ≤ Vmax, ∀i ∈ I (18)

Formula (8) indicates that the vessel must select one container handling efficiency
scheme at each port. Formula (9) calculates the sailing time for each route segment.
Formula (10) computes the fuel consumption per unit distance based on the vessel sailing
speed for each segment. Formula (11) ensures that the deployed vessel quantity maintains
a weekly port service frequency. The left side represents the total time for a vessel to
complete one voyage, including sailing, handling, and waiting times, while the right side
is the product of the total hours in a week (168 = 7 × 24(hour)) and the vessel quantity,
m, needed to be deployed. Formula (12) calculates the departure time of the vessel from
port i based on arrival, waiting, and handling times. Formulas (13) and (14) determine
the arrival times at the first port and subsequent ports. Formula (15) calculates the delay
time for the vessel at each port. Formula (16) computes the handling time for the vessel at
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each port. Formula (17) restricts the deployed vessel quantity on the route in order to not
exceed the maximum available vessel quantity. Formula (18) sets the constraint for vessel
sailing speed.

4. Model Solving

The model’s constraints (9) and (10) involve reciprocal and power functions of vessel
sailing speed, vi, i ∈ I, making it a mixed-integer nonlinear programming problem. To
facilitate solving, the model needs linearization.

For Formula (9), we replace vessel speed, vi, with its reciprocal, vrec
i = 1/vi, to linearize

the constraint.
Regarding the model, the liner speed is a continuous variable within a certain range,

meaning the unit fuel consumption calculated using Formula (10) can be any rational
number within that range. Various methods have been proposed in the liner transportation
literature to address this nonlinearity.

(1) Enumerative method: assuming constant vessel speeds for route segments, mini-
mizing the total service cost to solve vessel schedule.

(2) Discretization method: discretizing vessel speed reciprocals, estimating fuel con-
sumption for each discretized reciprocal speed, and simplifying vessel schedule into a
mixed-integer linear problem.

(3) Dynamic programming method: simplifying vessel schedule into a shortest-path
problem in a spatiotemporal network, with time as the horizontal axis (usually in days)
and ports as the vertical axis.

(4) Customized method: substituting nonlinear fuel consumption functions with
approximate functions (e.g., sets of tangent or secant lines) to simplify vessel schedule into
a mixed-integer linear problem.

(5) Second-order cone programming method: transforming the original mixed-integer
nonlinear schedule model into a mixed-integer second-order cone programming model [48].

Among these methods, dynamic programming, discretization, and customized meth-
ods usually more effectively approximate nonlinear fuel consumption functions [49]. This
paper focuses on liner schedule design, a static problem determined before the ship’s
voyage. This static nature distinguishes it from dynamic scheduling problems that dynamic
programming typically addresses. Therefore, dynamic programming is not suitable for
our context. On the other hand, discretization can set appropriate speed precision for liner
ships based on the shipping company’s expectations and is frequently used in schedule
design and ship scheduling. Thus, we employed the discretization method.

According to this method, vessel speed reciprocals are discretized into a finite set of
values, K = {1, . . . , e}. Let vval

k be the reciprocal vessel speed at the discretization point, k.

Then, φval
k = γ(vval

k )
−(α−1)

/24 denotes the unit fuel consumption when using the reciprocal
vessel speed value at the discretization point, k. The degree of discretization, k, increases
the precision of approximating the fuel consumption function but also increases the number
of variables in the model, potentially leading to longer solution times. Further discussion
on this is provided in the Section 5.2. We introduce a new parameter, βi,k, which equals 1
if the vessel’s fuel consumption value for segment i is estimated using the discretization
point, k, and it is 0 otherwise. The impact of different discretization precisions (i.e., speed
selection ranges) on the unit fuel consumption is illustrated in Figure 2.

Figure 2 shows the results for four different speed discretization scenarios. In each
scenario, we selected one point with the same x-coordinate, where the reciprocal of the
vessel speed, 1/vi, is 0.054750. The y-coordinates (unit fuel consumption φi) vary due to the
different ranges of speed options available. In the first scenario (k = 5), the speed selection
range includes only five options, resulting in an approximated unit fuel consumption
coefficient, φi, of 0.173774. In contrast, in the fourth scenario (k = 20), with twenty speed
options, the approximated unit fuel consumption coefficient, φi, is 0.172868, yielding a
precision difference of 0.524%. Although this difference in precision is not significantly
large, it can substantially affect the final fuel costs. For instance, consider the example from



J. Mar. Sci. Eng. 2024, 12, 951 11 of 19

Section 5.1, where the total voyage distance is 20,948 n miles, the vessel speed is assumed to
be 20 knots, and the fuel price is 300 USD/ton. The calculated fuel cost difference between
the first and fourth scenarios is USD 125,688. Given that the precision of the discretization
method significantly impacts the quality and computation time of the final results, we
provide a more detailed analysis in Section 5.4.
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At this point, the original nonlinear model (M1) is converted to a mixed-integer linear
programming model (M2):

Objective function:

Min z = cope · m + c f uel · ∑
i∈I

Di · φi + ∑
i∈I

∑
h∈Hi

chand
i,h · δ

port
i · xi,h + ∑

i∈I
cinv · δ

seg
i ·θsail

i + ∑
i∈I

clate
i · θlate

i (19)

Constraints:
Formulas (2), (3), (6)–(8), and (11)–(17).

∑
k∈K

βi,k = 1, ∀i ∈ I (20)

vrec
i = ∑

k∈K
βi,k · vval

k , ∀i ∈ I (21)

φi = ∑
k∈K

βi,k · φval
k , ∀i ∈ I (22)

θsail
i = Di · vrec

i , ∀i ∈ I (23)

1
Vmax ≤ vrec

i ≤ 1
Vmin , ∀i ∈ I (24)

Objective function (19) aims to minimize the total operational, fuel, port handling,
container inventory, and vessel delay penalty costs. Formula (20) ensures selecting only one
discretization point for estimating fuel consumption on each route segment. Formula (21)
dictates the selection of discretization points for calculating vessel speed reciprocals on
each route segment. Formula (22) computes vessel fuel consumption using the chosen
discretization points on each route segment. Formula (23) calculates the sailing time for
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vessels on each route segment. Formula (24) imposes constraints on the vessel speed
reciprocal values.

At this stage, M2 becomes a mixed-integer linear programming model, solvable using
commercial solvers like CPLEX.

5. Numerical Experiments
5.1. Study Case

According to the existing liner shipping references [41], this study takes an Asia–
Mediterranean container liner transport route as the research object. This route comprises
17 ports (N = 17), namely [1] Busan (535) → [2] Shanghai (87) → [3] Ningbo (915) → [4]
Shekou (18) → [5] Hong Kong (1460) → [6] Singapore (4685) → [7] Jeddah (760) → [8] Suez
(1842) → [9] Genoa (51) → [10] La Spezia (228) → [11] Fos-sur-Mer (185) → [12] Barcelona
(164) → [13] Valencia (1973) → [14] Suez (760) → [15] Jeddah (4685) → [16] Singapore (1460)
→ [17] Hong Kong (1140) → [1] Busan. Port sequences are denoted within square brackets,
and the distances between consecutive ports are provided in parentheses. For instance, [1]
Busan (535) → [2] Shanghai (87) indicates that the liner’s first port is Busan port, and the
second port is Shanghai port, with a distance of 535 nautical miles between them.

Based on the research of Dulebenets [41], we determined the relevant cost coefficients,
vessel coefficients, and fuel coefficients. Considering the practical factors, such as the
fluctuation of the demand for container freight between the affiliated ports, the uniform
distribution is used to randomly generate several ship arrival data [50]. Port operators
allocate available operation time windows to vessels based on liner schedules. These time
windows vary but generally do not exceed 3 days. Therefore, this study assumes time
window durations ranging from 1 to 3 days, denoted by (TWend

i − TWstart
i ) ∼ U[24, 72].

The start time of the first port’s (Busan port) time window is set at 0, with subsequent ports’
window start times calculated based on the previous port’s window end time, the distance
between consecutive ports, and the vessel speed limit, denoted as TWstart

i+1 = TWend
i +

Di/U[Vmin, Vmax]. Additionally, we specified that the discretized decision variable, vi, has
30 nodes. Specific parameter values are provided in Table 1.

Table 1. Relevant cost coefficients, vessel coefficients, and fuel coefficients.

Symbol cope(USD/ton) [Vmin, Vmax](knot) cinv(USD/(TEU × hour)) c f uel(USD/ton) M(ship)
value 300,000 [15,20] 0.5 300 15

Symbol clate
i (USD/hour) δ

seg
i (TEU) δ

port
i (TEU) µi(ship) ci

value U[5000, 10, 000] U[8000, 15, 000] U[200, 2000] U[2, 3] U[4, 6]

Symbol λi(ship) TWend
i − TWstart

i (hour) α γ -
value U[11, 13]/U[4, 8] U[24, 72] 3 0.012 -

Assuming each port offers four selectable container handling rate schemes, the average
handling efficiency is calculated using the formula πi,h = πi,h +∆πi,h, where πi,h represents
the average handling efficiency, and ∆πi,h represents the variable handling efficiency for
each port. Similarly, the unit container handling cost corresponding to each handling rate is
calculated using the formula chand

i,h = ci,h + ∆ci,h, where ci,h represents the average handling
cost, and ∆ci,h represents the variable handling costs for each port. Detailed container
handling efficiency selection plans are listed in Table 2.

Table 2. Container handling efficiency selection plans.

Port Shanghai Ningbo Singapore Hong Kong Others

πi,h(TEU/hour) {160,210,260,310} {160,180,210,240}
∆πi,h(TEU/hour) U[0, 10]
ci,h(USD/TEU) {100,150,200,250}

∆ci,h(USD/TEU) U[0, 10]
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5.2. General Results

Table 3 reveals that vessels on this route depart from Busan Port and navigate through
numerous ports, including Shanghai Port, Ningbo Port, and so on, before returning to
Busan Port, completing a round of liner shipping service totaling 1512 h (9 weeks). Thus,
to maintain a weekly liner service frequency, at least nine vessels are required on this route,
denoted by the decision variable, m = 9. This computation aligns with the requirement for
the deployment of liner vessels.

Table 3. Schedule for container liner vessel round-trip voyages.

Sequence Port Segment (n Mile) Speed (Knot) Arrival Time
(Hour)

Departure Time
(Hour)

1 Busan Busan → Shanghai (535) 21.53 0 36
2 Shanghai Shanghai → Ningbo (87) 21.53 61 93
3 Ningbo Ningbo → Shekou (915) 21.12 97 127
4 Shekou Shekou → Hong Kong (18) 20.33 170 199
5 Hong Kong Hong Kong → Singapore (1460) 21.97 200 233
6 Singapore Singapore → Jeddah (4685) 21.97 300 330
7 Jeddah Jeddah → Suez (760) 21.53 543 576
8 Suez Suez → Genoa (1842) 21.53 611 638
9 Genoa Genoa → La Spezia (51) 20.71 723 766

10 La Spezia La Spezia → Fos-sur-Mer (228) 21.12 768 801
11 Fos-sur-Mer Fos-sur-Mer → Barcelona (185) 21.12 812 835
12 Barcelona Barcelona → Valencia (164) 20.33 844 877
13 Valencia Valencia → Suez (1973) 19.95 885 916
14 Suez Suez → Jeddah (760) 19.95 1015 1039
15 Jeddah Jeddah → Singapore (4685) 21.12 1077 1105
16 Singapore Singapore → Hong Kong (1460) 20.71 1326 1359
17 Hong Kong Hong Kong → Busan (1140) 18.91 1430 1452
1 Busan - - 1512 -

5.3. Sensitivity Analyses

The specific schedule scheme and related costs within the planning horizon are in-
fluenced by factors such as the container handling efficiency selection mechanism, fuel
price, port service intensity, and port time window interval length. To further analyze the
impact of these factors on the schedule plan, numerical experiments were conducted using
the previous example as a benchmark, and sensitivity analyses were performed for each
category of factors.

5.3.1. Impact of Container Handling Efficiency Selection Mechanism

In the context of port–harbor information sharing, port operators can offer container
handling services with more options and higher efficiency, provided a certain fee is charged.
Therefore, we devised a mechanism for selecting container handling efficiency based on
collaborative information sharing, taking into account the availability of port operation
time windows. This mechanism addresses the liner schedule design problem considering
berth operation time window constraints and optional container handling efficiency. To
explore the impact of this mechanism on vessel operating costs, we conducted a ratio-
nal comparative analysis. M2 incorporates the container handling efficiency selection
mechanism, while M3 does not consider operation time window restrictions and optional
handling efficiency. Detailed comparative analysis results are presented in Table 4.

Table 4. Comparison of costs of the container handling efficiency selection mechanism (103(USD)).

Model Total Costs Fuel Costs Operational Costs Handling Costs Inventory Costs Penalty Costs

M2 14,618 1404 2700 4390 5767 357
M3 15,476 1689 2700 4274 6124 689
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According to Table 5, the container handling efficiency selection mechanism can reduce
total costs by 5.54%, primarily seen in fuel and penalty costs. This is because the mechanism
offers liner companies multiple optional time windows and handling efficiencies, enabling
vessels to employ strategies like slow steaming during voyages. This flexibility allows for
the reduction of fuel and penalty costs by selecting arrival times and handling efficiencies,
demonstrating the scheme’s high flexibility and robustness.

Table 5. The impact of port time window interval length on different performance indexes.

Time Window
Interval

Total Costs
103(USD)

Fuel Costs
103(USD)

Handling Costs
103(USD)

Penalty Costs
103(USD)

Average Speed
(knot)

Vessel Number
(ship)

(18,24) 15,157 1542 4835 396 20.23 9
(24,30) 15,169 1540 4835 388 20.34 9
(30,36) 15,036 1544 4801 367 20.43 9
(36,42) 14,913 1559 4801 349 20.48 9
(42,48) 14,885 1570 4786 324 20.48 9
(48,54) 14,796 1576 4786 311 20.55 9
(54,60) 14,732 1578 4786 302 20.56 9

5.3.2. Impact of Fuel Price

Fuel costs are a significant component of liner company operational expenses, closely
tied to international fuel prices. In recent years, volatile fluctuations in fuel prices have
influenced parameters in liner schedules. Thus, this study conducts a sensitivity analysis
on fuel prices, ranging from 300 to 600 (USD/ton). The impact of fuel price on operational
costs and vessel deployment can be seen in Figure 3.
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As Figure 3 depicts, an increase in fuel prices from 300 (USD/ton) to 600 (USD/ton)
leads to a corresponding rise in operational costs. While within a certain range ([300, 400]
or [450, 600]), there is no change in the number of vessels deployed, overall, an increase
in fuel prices results in more vessels being allocated to the route. This is because fuel
consumption is exponentially related to vessel speed. A slight speed increase significantly
boosts fuel consumption and costs. To mitigate this, vessels may employ slow steaming to
reduce fuel consumption. However, this strategy prolongs shipping times, necessitating
the deployment of more vessels to maintain weekly service frequency. Moreover, when
fuel prices remain below 450 (USD/ton), liner companies deploy nine vessels on the
route. Despite higher fuel costs due to relatively faster vessel speeds, the increase is
lower than deploying an additional vessel; hence, there is no change in vessel allocation.
Conversely, when fuel prices exceed 500 (USD/ton), the cost increase surpasses deploying
an extra vessel, prompting companies to lower vessel speeds and increase vessel allocation.
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Therefore, amid global events like extreme weather or geopolitical conflicts impacting the
fuel market, liner companies should increase vessel numbers and reduce speeds when fuel
prices are high.

5.3.3. Impact of Port Service Intensity

In the international container shipping market, route density and container demand
are dynamic, leading to fluctuating vessel numbers at ports and consequently impacting
vessel queueing times. This study quantifies port busyness using port service intensity and
conducts a sensitivity analysis to explore its influence on schedule design. Assuming that
other parameters remain constant, we analyze the sensitivity of schedule indicators when
port service intensity varies from 0.5 to 1.5 times the baseline. The impact of port service
intensity on vessel average speed and total costs can be seen Figure 4.
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According to Figure 4, as port service intensity increases, more vessels arrive at ports,
prolonging vessel queueing times. To maintain weekly service frequency, liner companies
must increase vessel speeds to minimize sea transit time and expedite port service reception.
Alternatively, they may opt for higher port handling efficiency to reduce port operation
time. And both strategies result in increased overall operational costs.

5.3.4. Impact of Port Time Window Interval Length

In the operational phase of vessels, the duration of available port working time win-
dows directly influences decisions regarding vessel speed and container loading/unloading
efficiency. This, in turn, affects fuel costs and handling costs and ultimately leads to ad-
justments in schedule design. In this section, we analyze the impact of the length of
port working time window intervals on schedule indicators, varying the window length
uniformly from (18,24) to (54,60), as shown in Table 5.

According to Table 5, in all seven scenarios, the number of vessels deployed on the
route remains at nine, indicating that the increase in the length of available port working
time windows does not significantly affect vessel deployment. This is primarily because
the length of available port working time windows mainly affects the current rotation of
liner services and generally does not impact subsequent rotations unless the window is
too small. However, other schedule indicators show some degree of variation. Specifically,
vessel average speed gradually increases, leading to higher fuel costs, while handling
costs and penalty costs decrease gradually. This is mainly because, with the extension of
available port working time intervals, vessels have more time for container loading and
unloading. Consequently, vessels opt for lower loading and unloading efficiency to reduce
handling costs, and the increased loading and unloading time results in reduced sea transit
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time, thereby increasing vessel speed. Overall, the reduction in handling and penalty costs
outweighs the increase in fuel costs, resulting in a downward trend in total service costs.

5.4. Performance of Solution Methods

Typically, the performance of solution methods is demonstrated through benchmark
examples and comparisons with results from other researchers or algorithms. However,
traditional studies often treat waiting time as a random variable without accounting for the
systematic impact of port queueing mechanisms, such as the studies by Cheon et al. [8],
Liu et al. [9], Zhang et al. [10], and Wang and Meng [11]. In contrast, our research uses
observable ship arrival data and a queueing theory model to predict waiting times. This
novel approach results in no direct comparability with existing studies, leading to a lack
of benchmark data for comparison. In addition, since we employ the commercial solver
CPLEX to solve the linearized model, the results obtained are exact optimal solutions.
Therefore, we need to consider only whether our method can effectively solve problems on
a realistic scale within ideal time.

In M1, the liner’s sailing speed is a continuous variable within a range, which causes
the commercial solver CPLEX to be unable to solve the problem directly. Therefore,
in Section 4, we approximated the sailing speed by discretizing it into several points,
K = {1, . . . , e}, within the range. The choice of the number of points significantly affects
CPLEX’s solving time. To demonstrate the effectiveness of our solution approach and
mitigate potential instability caused by the random nature of some parameters, we used
the real-world case from Section 5.1. We varied the discretization levels from 5 to 50 points
and generated 10 parameter scenarios. The solving times for these 10 scenarios are shown
in Table 6.

Table 6. Model solving time under different examples.

Scenario Discrete Points of
the Fuel Function

Model Solving
Time (s) Scenario Discrete Points of

the Fuel Function
Model Solving

Time (s)

1 5 0.1830 6 30 0.2085
2 10 0.1945 7 35 0.2275
3 15 0.1995 8 40 0.2385
4 20 0.2023 9 45 0.2586
5 25 0.2054 10 50 0.2878

Increasing the discretization levels from 5 to 50 resulted in a 57.3% rise in computa-
tional time, from 0.1830 s to 0.2878 s. The case we used was based on a real-world route
scenario, and even at the highest discretization level of 50 points, the computational time
remained under 1 s. This demonstrates that our solving method can effectively handle
most real-world scenarios.

6. Conclusions

The uncertainty in vessel waiting and port handling times affects the stability of liner
schedules. Current research typically treats vessel port times as random variables, failing
to accurately predict port congestion based on observable factors, like vessel arrivals and
port operations capacity. This study addresses the issue of liner schedule design under port
congestion. We employ queueing theory models to describe vessel waiting time uncertainty
and propose a container handling efficiency selection mechanism for arriving vessels to
determine their port handling time. By jointly considering these two uncertainties, a robust
liner schedule design model is established and solved using the CPLEX.

Numerical simulations on an Asia-to-Mediterranean liner route reveal that extreme
weather events or geopolitical conflicts may cause severe port congestion, affecting vessel
punctuality and requiring timely adjustments to vessel schedules. Additionally, such events
impact the international maritime fuel market, prompting liner companies to consider
strategies like increasing vessel operations and reducing vessel speed under high fuel
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prices. The container handling efficiency selection mechanism allows liner companies to
flexibly design schedules, while balancing economic costs and service reliability.

Future studies can be conducted in the following areas. (1) Enhanced data accuracy:
This study references Dulebenets’ study [50] for simplifying vessel arrival data, employing
queueing theory to predict port congestion and designing a robust liner schedule. However,
real-world vessel arrivals are subject to uncertainties caused by events like COVID-19 or
the Red Sea crisis, which can disrupt normal patterns. To further enhance the robustness
of liner schedules, future work could involve using extensive port historical data to train
queueing models for each port and utilizing automatic identification systems to track real-
time vessel locations near ports, thus enhancing data accuracy. (2) Cooperative strategies
among heterogeneous fleets: By coordinating schedules and operations, fleets can better
manage uncertainties and optimize resource utilization, leading to a more resilient and
efficient schedule. (3) Collaborative agreements between adjacent terminal operators: Such
agreements can facilitate workload sharing and improve overall port efficiency, reducing
congestion and delays. (4) Incorporation of carbon emission costs: Incorporating these
costs into the scheduling model can help liner companies balance economic efficiency with
environmental sustainability, promoting greener shipping practices.
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