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Abstract: Accurate positioning is the necessary basis for autonomous underwater vehicles (AUV) to
perform safe navigation in underwater tasks, such as port environment monitoring, target search, and
seabed exploration. The position estimates of underwater navigation systems usually suffer from an
error accumulation problem, which makes the AUVs difficult use to perform long-term and accurate
underwater tasks. Underwater simultaneous localization and mapping (SLAM) approaches based on
multibeam-bathymetric data have attracted much attention for being able to obtain error-bounded
position estimates. Two problems limit the use of multibeam bathymetric SLAM in many scenarios.
The first is that the loop closures only occur in the AUV path intersection areas. The second is that
the data association is prone to failure in areas with gentle topographic changes. To overcome these
problems, a joint graph-based underwater SLAM approach that fuses bathymetric and magnetic-
beacon measurements is proposed in this paper. In the front-end, a robust dual-stage bathymetric
data-association method is used to first detect loop closures on the multibeam bathymetric data.
Then, a magnetic-beacon-detection method using Euler-deconvolution and optimization algorithms
is designed to localize the magnetic beacons using a magnetic measurement sequence on the path.
The loop closures obtained from both bathymetric and magnetic-beacon observations are fused to
build a joint-factor graph. In the back-end, a diagnosis method is introduced to identify the potential
false factors in the graph, thus improving the robustness of the joint SLAM system to outliers in
the measurement data. Experiments based on field bathymetric datasets are performed to test the
performance of the proposed approach. Compared with classic bathymetric SLAM algorithms, the
proposed algorithm can improve the data-association accuracy by 50%, and the average positioning
error after optimization converges to less than 10 m.

Keywords: underwater SLAM; magnetic beacon; bathymetric data association; Joint-factor graph;
robust optimizer

1. Introduction

The underwater navigation system is critical in order for underwater vehicles to per-
form activities that require long-duration and accurate positioning [1,2]. Given the absence
of Global Navigation Satellite System (GNSS) signals underwater, the principal navigation
systems predominantly rely on the Inertial Navigation System (INS), complemented by
Doppler Velocity Log (DVL), underwater acoustic transponders, and geophysical field
data [3,4]. The INS provides autonomous position estimation but is susceptible to error
accumulation due to its integral solution method. DVL can help to reduce the INS accumu-
lated error greatly, but the navigation output still contains approximate linear-growth errors.
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Acoustic positioning systems, such as long baseline, short baseline, and ultra-short baseline
systems, offer precise positions within their working ranges. Nonetheless, their deployment
necessitates intricate advance preparation and is quite costly and time-consuming.

Geophysical field-aided navigation methods have garnered significant interest for
enhancing the reliability of underwater navigation systems [5–7]. In areas where prior
geophysical field maps are available, the positioning errors can be bounded through data-
matching approaches. Conversely, in unknown environments, a Simultaneous Localization
and Mapping (SLAM) approach is usually taken to correct the accumulated errors through
data association based on the measured data in real time. Several studies involving the
utilization of bathymetric data for underwater navigation have been conducted to evaluate
practical performance. The Norwegian Defense Research Establishment has carried out
a series of simulations and experimental works on terrain-matching algorithms using
the HUGIN AUV [8–10]. Stanford University and the Monterey Bay Aquarium Research
Institute collaborated on the development of a long-range and low-cost AUV terrain
navigation system [11,12]. By using low-precision dead-reckoning (DR) and filtering
algorithms, a positioning accuracy of 4–10 m is achieved. Roman C and Singh H proposed
an improved SLAM approach for multibeam seafloor mapping [13,14]. To create more
accurate topographic maps, the multibeam-sonar data is divided into submaps that are
used for registration. Meanwhile, the delayed state extended Kalman filter (EKF) is used to
re-navigate vehicle trajectories.

The research into geomagnetic field-aided navigation methods for marine vehicles has
garnered significant attention. Huang et al. proposed a method for long-range navigation
of underwater autonomous underwater vehicles using magnetic anomalies generated by
magnetic dipoles [15]. In their study, the magnetic-gradient tensor and the draft depth
are used to achieve continuous underwater positioning. The relative positioning error
is less than 4% on average in simulation experiments. Alimi et al. demonstrated the
viability of using passive magnets for underwater navigation, estimating the position of
the sensor with a relative error of 1% to 3% through real-world systematic studies [16].
Chang et al. proposed a magnetic beacon-based simultaneous localization and mapping
(SLAM) approach [17,18]. This approach based on particle filter is designed to correct the
vehicle-position errors by identifying magnetic beacons in unknown background magnetic
fields. Du et al. devised a program to track a mobile-magnetic-dipole target and estimated
its magnetic moments using measurements from multiple scalar magnetometers. This
program enables rapid detection of the direction, velocity, elevation angle, and magnetic
moment of the target [19]. Wu and Yao proposed an adaptive SLAM-based method for
magnetic-gradient-aided navigation [20]. The magnetic-gradient values of landmarks are
measured by magnetometers that are installed on an underwater vehicle. Subsequently, an
adaptive-unscented-Kalman filter-SLAM method is applied to derive optimal estimations
of the vehicle poses.

In underwater SLAM systems, the AUVs detect the seabed using sonar or cameras.
The images or bathymetric data obtained are then used to make data associations for
positioning-error correction [21,22]. The main steps include the following: (1) accurate
environmental-data observation; (2) effective data association; and (3) robust state esti-
mation. Magnetic SLAM is mainly based on the magnetic-dipole model, and in order
to establish the observation equation, the measurements used are usually magnetic-field
intensity or magnetic-field gradient. Lee et al. used the gradient-based magnetic tensor
to identify and locate ferromagnetic objects in the environment. Two different types of
dense objects are used to verify the effectiveness and accuracy of a proposed method [23].
In bathymetric SLAM, the multibeam echo sonar (MBES) method is used to collect bathy-
metric data in pings, and the iterative closest point (ICP) method is commonly employed
for data association. Palomer et al. used MBES to collect three-dimensional bathymetric
point clouds and used heuristic ICP to eliminate the influence of point cloud uncertainty on
registration accuracy [24,25]. Jung et al. proposed a regularized ICP method by re-scaling
bathymetric values to improve the data-association accuracy in areas with poor topographic
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features [26]. Bichucher et al. proposed an xy-alignment generalized ICP (GICP) algorithm
to create registration between bathymetric submaps [27]. This proposed algorithm aims to
enforce consistent bathymetric structures and constrain long-term navigation drift.

The SLAM solutions can be broadly categorized into filter-based and graph-based
methods. Filtering methods primarily comprise extended Kalman filter (EKF) and particle
filter (PF) methods [28,29]. For instance, Callmer et al. presented a silent underwater
SLAM scheme employing triaxial magnetometers as sensors to locate a vessel with a
known magnetic dipole, with trajectory and sensor positions estimated simultaneously
using an extended Kalman filter (EKF) [30]. Torroba et al. proposed a Rao-Blackwellized
particle filter (RBPF) SLAM solution for online large-scale SLAM in an embedded platform,
incorporating implicit data association for terrain-loop closure detection and utilizing
the particle filter to fuse terrain constraints and estimate AUV poses [31]. Additionally,
He et al. integrated the particle swarm optimization (PSO) method into Fast SLAM to
enhance AUV pose estimation accuracy, adapting PSO to optimize particles and prevent
particle degeneracy and impoverishment [32]. The filtering methods often have a high
computational complexity when the state vector is of high dimension, and their accuracy
can be easily affected by unstable measurement noises. The graph-based SLAM approach
utilizes factor graphs to represent the relationships between nodes in the SLAM system,
where vehicle poses and observed objects are represented as nodes and odometry and loop
closures are represented as edges. The optimization of trajectories and maps is achieved
using a cost function composed of the edges in the factor graph [33]. Graph optimization
methods have been applied in BSLAM and magnetic-beacon SLAM studies. Ling et al. used
a sparse pseudo-input Gauss process (SPGP) to establish weak data association between
adjacent moments and used a terrain-matching method to obtain closed loops among
survey moments, and the underwater vehicle positions were estimated using a graph
optimization method [34]. In order to solve the effect of invalid loop closures on SLAM
results, some robust algorithms have been proposed. Sunderhauf and Protzel added switch
variables to the objective function to obtain a robust solution for pose graph SLAM. The
switch variables can enable or disable the factors associated with them [35]. Latif et al.
proposed a realizing, reversing, and recovering (RRR) algorithm based on the consensus
that correct loop closures tend to agree among themselves and agree with the sequential
constraints from odometry, to create robust loop closures in SLAM [36].

This paper proposes a joint graph-based underwater SLAM approach that fuses
bathymetric and magnetic beacon measurements. In the front-end, magnetic beacon
observations and bathymetric loop closures are generated based on the Euler-deconvolution
method and the dual-stage-data-association method, respectively; in the back-end, the
generated constraints in the front-end are used to construct the factor graph, and a robust
optimizer is used to estimate the AUV path and construct a bathymetric map. The main
contributions are as follows:

1. A novel dual-stage bathymetric data-association method is introduced. The curvature
feature vectors on different scales are used to make robust transformations in the first
stage, and the GICP algorithm is taken to make fine registrations in the second stage.

2. Magnetic beacons are used to aid bathymetric data to give better SLAM performance.
Also, a new approach that combines Euler-deconvolution and clustering methods is
presented that can be used to locate the magnetic beacons accurately in real time.

3. A false loop-closure-factor-diagnosis mechanism that considers positioning uncer-
tainty, heading, and bathymetric consistency is designed and introduced to the novel
back-end optimizer. The robustness of the SLAM system to bad data-association
results is subsequently improved.

The remaining sections of the paper are organized as below. The robust dual-stage
multibeam-bathymetric-point-cloud-registration method is introduced in Section 2, fol-
lowed by the magnetic-beacon-detection approach introduced in Section 3. The back-end
graph optimizer with a false loop-closure-diagnosis-mechanism design is introduced in
Section 4. Last of all, experiments and analysis are given in Section 5.
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2. Dual-Stage Bathymetric Registration Using Curvature-Based Method and GICP

There are usually some outliers in the multibeam bathymetric dataset. To perform
bathymetric SLAM in real time, a denoising method is introduced first in this section. At
the same time, to improve the data-association accuracy using bathymetric point clouds,
the Gaussian-process-regression method is used to model and resample the topographic
data. On the basis of this, a dual-stage bathymetric registration approach is presented to
make data associations between bathymetric point clouds.

2.1. Denoising and Down-Sampling of Multibeam-Bathymetric Data
2.1.1. Denoising of Bathymetric Point Clouds

A statistical method is used to remove the outliers from the bathymetric point cloud
by detecting the bathymetric difference among neighbor points. For each bathymetric point
in the cloud, the mean u and standard deviation σ of the K-nearest neighbors is calculated.
If a bathymetric point differs from u by greater than 3σ, then it will be taken as an outlier.
Specific steps are as follows:

(1) Read the bathymetric point cloud S = {bi, i = 1, 2, . . . , n};
(2) Use the k-dimensional tree to index the bathymetric points in the cloud to speed

up the searching efficiency for the closest points.
(3) Search the K-nearest neighbors for each bathymetric point bi ∈ S and put them in

a set Nb(bi).
(4) Calculate the bathymetric difference Dmid between bi and the mean value of Nb(bi) as

in Equation (1).

Dmid(bi) =

∣∣∣∣∣∣bi,z −
1
K ∑

bk∈Nb(bi)

bk,z

∣∣∣∣∣∣ (1)

If Dmid(bi) > 3σ, then bi will be taken as an outlier and removed. Otherwise, it will
be retained.

(5) Repeat steps (3) and (4) for all bathymetric points in the cloud.

2.1.2. Bathymetric Down-Sampling Using Gaussian Process Regression

The purpose of bathymetric down-sampling is to reduce the density of the points
without reducing the matching suitability. Gaussian process regression (GPR) is a non-
parametric model that uses Gaussian process priors to perform regression analysis [37].
Assuming that the bathymetric points obey the multidimensional Gaussian distribution,
the GPR can achieve high-precision and uniform down-sampling on the bathymetric point
cloud. Let zi indicate the bathymetric value of the point xi =

{
bi,x, bi,y

}
. The fitted function

between xi and zi can be expressed as Equation (2).

zi = f(xi) +N
(

0, σ2
n

)
(2)

where f(x) = GP(m(x), k(x, x′)) is the Gaussian process with known mean and variance,
and σ2

n is the variance of measurement noise. k(x, x′) is the kernel function that computes
the covariance between two bathymetric points x and x′ as,

k(x, x′) = σ2
f exp

[
−(x − x′)2

2l2

]
+ σ2

nδ(x, x′) (3)

where the first term on the right side represents the square exponential covariance kernel
function, and the second term represents the Kronecker delta function. The l, σf, and σn val-
ues are the hyperparameters of the kernel function.

Using the disordered bathymetric point cloud as the training set to find the optimal
hyperparameters, the coordinate x∗ of an interpolation point is input into the model, and
the depths z∗ can be estimated.
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The joint distribution of the training data z and estimated value z∗ is expressed as[
z

z∗

]
∼ N

(
0,

[
k(x, x) k(x∗, x)⊤

k(x∗, x) k(x∗, x∗)

])
= N

(
0,
[

C C⊤
∗

C∗ C∗∗

])
(4)

where C is the covariance matrix of training data x, C∗ is the covariance matrix between
the train data x and the interpolation points x∗, and C∗∗ is the covariance matrix of x∗.
The z∗ can then be estimated as shown in Equation (5),

p(z∗|x∗ ) = N (m(z∗), cov(z∗)) (5)

In which
m(z∗) = C∗C−1z (6)

cov(z∗) = C∗∗ − C∗C−1C⊤
∗ (7)

An example of the denoising and down-sampling of a multibeam bathymetric dataset
is shown in Figure 1.
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Figure 1. Denoising and down-sampling of bathymetric point cloud. (a) Origin bathymetric point
cloud; (b) denoising result; and (c) down-sampling result.

2.2. Dual-Stage Bathymetric Data Association

The initial position of two bathymetric point clouds strongly affects the iterative closest
point (ICP) results [38], especially for bathymetric maps with low overlap ratio and low
matching suitability. To achieve accurate data association, a rough registration method
based on feature vectors is proposed in the first stage. Then, in the second stage, the
generalized ICP (GICP) is used to obtain accurate loop closure. The detailed process is
shown in Algorithm 1.

2.2.1. Coarse Registration Based on Multi-Scale Feature Vectors

A curvature is selected to represent the topographic change between adjacent bathy-
metric points. First, the multi-scale curvature feature vectors are established for the points.
For each point, the k-nearest neighbor points form a surface S : z = z(x, y). With a def-
inition

→
r ≜ {x, y, z(x, y)}, the first-order and second-order partial derivative of

→
r with

respect to x and y can be calculated as
→
r x = {1, 0, ∂z/∂x},

→
r y = {1, 0, ∂z/∂y},

→
r xx =(

0, 0, ∂2z/∂x2
)

,
→
r xy =

(
0, 0, ∂2z/∂x∂y

)
,
→
r yy =

(
0, 0, ∂2z/∂y2

)
. The unit vector of the

principal normal to the surface is

→
n =

(→
r x ×

→
r y

)
∣∣∣→r x ·

→
r y

∣∣∣ (8)
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Denoted by E =
→
r x ·

→
r x, F =

→
r x ·

→
r y, G =

→
r y · →r y, L =

→
r xx ·

→
n , M =

→
r xy · →n ,

and N =
→
r yy ·

→
n , the average curvature H and Gaussian curvature K of surface S can be

calculated by Equations (9) and (10), respectively.

H =
EG + GL − 2FM

2(EG − F2)
= k1 · k2 (9)

K =
LN − M2

EG − F2 =
1
2
(k1 + k2) (10)

where k1 and k2 are the maximum and minimum curvatures of the surface S, also called
the principal curvature. They can be calculated using Equations (11) and (12), respectively.

k1 = H +
√

H2 − K (11)

k2 = H −
√

H2 − K (12)

Then, the Gaussian curvature, mean curvature, and principal curvature form a feature
vector c as

c = [H, K, k1, k2] (13)

With each bathymetric point as a center, three different-scale square windows are
created that contain n1, n2, and n3 bathymetric points, respectively, as shown in Figure 2.
The feature vector F is formed as Equation (14).

F = [cn1 , cn2 , cn3 ] (14)

where cni can be computed using Equation (13). n1, n2, and n3 are set to 9, 16, and 25 in
this research, respectively. The cosine similarity is used to evaluate the similarity of two
bathymetric point clouds, as shown in Equation (15)

S
(

FP, FQ
)
=

FP · FQ∥∥FP
∥∥× ∥∥FQ

∥∥ =
∑n

i=1

(
FP

i × FQ
i

)
√

∑n
i=1 FP

i
2 ×

√
∑n

i=1 FQ
i

2
(15)
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Figure 2. Schematic diagram of scale selection. scale_i (i = 1, 2, 3) indicates the length of the i-th
square window.

P and Q are used to indicate the source and target bathymetric point clouds, respec-
tively. n is the number of bathymetric points in a cloud. S

(
FP, FQ) is the cosine value of the

angle between two n-dimensional vectors. The Random Sample Consensus (RANSAC)
algorithm [39] is used to select the best transformation between the two clouds. Specific
steps are given as follows:
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(1) Randomly select a translation ti between two matched points, between which the
curvature feature vectors have the highest similarity.

(2) Use ti to transform the source point clouds P.
(3) Find the closest point pairs in between Q and P, and count the number of point pairs

with bathymetric differences less than the consistency threshold τ.
(4) Repeat steps (1)–(3) until enough iterations are performed. Then, the translation t∗ with

the largest n is selected as the final transformation.

This method is illustrated in Figure 3.
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2.2.2. Fine Registration Based on GICP

Generalized ICP (GICP) is an extension of the traditional ICP algorithm. GICP im-
proves the distance metric of the ICP algorithm with a probability model and is more
suitable for dealing with noisy point cloud registration problems [40].

Base on the coarse registration result, the closest point pairs between the source point
cloud P =

{
bP

i

}
i=1,...,N

and target point cloud Q =
{

bQ
i

}
i=1,...,N

can be determined as an

initialization for the fine registration.
The transformation between P and Q can be established as in Equation (16).

bP
i = R·bQ

i + t =
(

R t
0 1

)
·bQ

i = T·bQ
i (16)

The bathymetric values of the source points and target points are supposed to obey

Gaussian distribution, as bP
i ∼ N

(
b̂

P
i , CP

i

)
, bQ

i ∼ N
(

b̂
Q
i , CQ

i

)
. Denoting the true transfor-

mation by bP
i = T∗·bQ

i , the transformation error of T can be calculated as in Equation (17),
and the probabilistic distribution can be represented as in Equation (18).

d(T)
i = bP

i − T·bQ
i (17)

d(T)
i = N

(
b̂

Q
i − T∗b̂

Q
i , CQ

i + (T∗)CP
i (T

∗)⊤
)
= N

(
0, CQ

i + (T∗)CP
i (T

∗)⊤
)

(18)

The optimal transformation is obtained by minimizing the transformation error.
The T can be calculated using maximum likelihood estimation

T = argmax
T

∏
i

p
(

d(T)
i

)
= argmax

T
∏

i
log
(

p
(

d(T)
i

))
= argmin

T
∑

i

(
d(T)

i

)⊤(
CQ

i + (T∗)CP
i (T

∗)⊤
)−1

d(T)
i (19)

The complete dual-stage bathymetric data-association approach is summarized in
Algorithm 1 below.
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Algorithm 1: Bathymetric point cloud registration

Input: Source bathymetric submap P, target bathymetric submap Q
Output: Transformation [R∗, t∗∗]
Step1: Denoising and down-sampling

P, Q = preprocess(P, Q)
Step2: Establishing curvature feature vectors

cP, cQ = curvature(P, Q)

FP =
[
cP

scale1, cP
scale2, cP

scale3
]
, FQ =

[
cQ

scale1, cQ
scale2, cQ

scale3

]
Step3: Computing the similarity use cosine distance, and using KNN algorithm to select the best
match

index = KNNsearch
(
FP, FQ, ′cosine′

)
Step4: Selecting the best transform with RANSAC

t = FP(index)− FQ

t∗ = RANSAC(P, Q, t)
FP∗ = FP − t∗

Step5: Using GICP for fine registration
[R∗, t∗∗] = GICP

(
FP∗, FQ)

3. Detection of Magnetic Beacons

To use the magnetic beacons as landmarks to obtain more loop closures in SLAM,
an accurate detection method is essential in order to obtain relative localizations of the
beacons. A new magnetic-beacon-detection method is proposed in this paper. First, the
Euler-deconvolution method is utilized to obtain the general location of potential beacons
near the AUV track. Second, the Euler-deconvolution results are taken as initializations for
the nonlinear optimization approach, which is used to obtain the accurate positions of the
beacons simultaneously. The detailed process is given in Algorithm 2.

Algorithm 2: Optimization of magnetic-beacon positions

Input: AUV pose x = {x1, x2, . . . , xn}, Magnetometer observation B = {B1, B2, . . . , Bn}
Output: Magnetic beacon location m={m1, m2, . . . , mm}, Observation z
Step1: Calculating magnetic-field gradient, and setting observations interval are taken as k

G = gradient(B)
for i = 1 : k : n − k

xseg
i = {xi+1, xi+2, . . . , xi+k}

Bseg
i = {Bi+1, Bi+2, . . . , Bi+k}

Gseg
i = {Gi+1, Gi+2, . . . , Gi+k}

Step2: Locating the relative positions of the magnetic beacons and clustering the locations of
magnetic beacons

for j = 1 : k

rj = −3Gseg
j

−1(
Bseg

j − Be
)

mini = DBSCAN
(

xseg
j + rj

)
end

Step3: Multi-objective joint optimization

eB =
[
Bseg

i − b(mini)− Bb

]
Ω−1

B

[
Bseg

i − b(mini)− Bb

]⊤
eG =

[
Gseg

i − g(mini)
]
Ω−1

G

[
Gseg

i − g(mini)
]⊤

m∗
opt = argmin

mini

(
eB + eG)

Step4: Updating the set of magnetic beacons and logging magnetic-beacon observations
for m∗

k in m∗
opt
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Algorithm 2: Optimization of magnetic-beacon positions

if m∗
k not in M
m =

{
m, m∗

k
}

end
z=[z;i, k, xseg

i − m∗
k (1 : 3)]

end
end

3.1. Fast Identification Using Euler-Deconvolution and Clustering Methods

As the distances between the vehicle and magnetic beacons deployed on seabed are
much larger than the beacon size, the beacons can be treated as magnetic dipoles [41].
Placing the magnetic beacon on the coordinate origin, the magnetic field it generates at
point P(x, y, z) can be simplified as Equation (20)Bx

By
Bz

 =
µ

4πr5

3x2 − ∥r∥2 3xy 3xz
3xy 3y2 − ∥r∥2 3yz
3zx 3yz 3z2 − ∥r∥2


mx

my
mz

 (20)

where Bx, By and Bz are magnetic-field component of the beacons in the x, y and z directions,
respectively. µ is the permeability of the medium, and µ0 = 4π × 10−7V·s/(A·m) in
vacuum. r is the vector from the beacon to point P, and ∥r∥ =

√
x2 + y2 + z2.

The magnetic-gradient tensor G describes the changes of Bx, By, and Bz in the x, y and
z directions, as shown in Equation (21).

G =


∂Bx
∂x

∂By
∂x

∂Bz
∂x

∂Bx
∂y

∂By
∂y

∂Bz
∂y

∂Bx
∂z

∂By
∂z

∂Bz
∂z

 ≜

gxx gyx gzx
gxy gyy gzy
gxz gyz gzz

 (21)

When the AUV navigates in the magnetic-beacon deployment area, the magnetic
strength and gradient it measures are the sum of the magnetic fields of the Earth the and
beacons, as shown in Equations (22) and (23).

B ≜
[
Bx By Bz

]T
=
[

Bb
x Bb

y Bb
z

]T
+
[

Be
x Be

y Be
z

]T
(22)

G ≜
[
Gx Gy Gz

]T
= Gb + Ge (23)

where the superscripts b and e indicate the beacon and Earth, respectively. The Be ≜[
Be

x Be
y Be

z

]T
can be computed from global or local magnetic models accurately. Due to

the weak spatial change of the Earth’s magnetic field, Ge is much smaller than Gb and thus
can be neglected.

The tensor Euler-deconvolution (TED) method [42] can be used by AUVs to estimate
the position of the magnetic sources. The magnetic anomaly field satisfies the homogeneous
Euler equations

x
∂B
∂x

+ y
∂B
∂y

+ z
∂B
∂z

= −n(B − Be) (24)

where n is the structure index of the source. For magnetic-dipole sources, n = 3. Then,
we obtain

r = −3G−1(B − Be) (25)

Furthermore, to improve the robustness of TED against measurement noise in source
localization, the Eigen analysis of the magnetic-gradient tensor (EGT) is used together
with TED to improve the location accuracy. As G is a real symmetrical matrix, the
eigenvector set {b1, b2, b3} of G can be obtained. The b3 corresponds to the small-
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est eigenvalue and is perpendicular to the plane m − r, in which m is the magnetic
moment vector of the beacon. This means that the r to be solved is orthogonal to b3.
Let b3 =

[
b3x b3y b3z

]T and r =
[
rx ry rz

]T, then

b3x·rx + b3y·ry + b3z·rz = 0 (26)

Then, we obtain Equation (27) by combining Equations (25) and (26). Compared with
Equation (25), the solution space of r is significantly reduced and can be solved with the
least square method. 

gxx gyx gzx
gxy gyy gzy
gxz gyz gzz
b3x b3y b3z


rx

ry
rz

 = −3


Bb

x
Bb

y
Bb

z
0

 (27)

The measurement noise also affects the TED+EGT performance greatly. With an in-
crease in distance between the vehicle and magnetic beacons, the influence of measurement
noise on inversion results increases. For each beacon, the inversion results obtained from
the vehicle positions close to it show obvious convergence, whereas those obtained from
far vehicle positions contain large errors and differ from each other greatly. We use the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [43] method to
cluster the estimated locations of the beacons.

Supposing there are n beacon locations R= {r1,r2,. . . ,rn}, the distance between ri and rj can
be computed as

Dist
(
ri, rj

)
=
√(

ri,x − rj,x
)2

+
(
ri,y − rj,y

)2
+
(
ri,z − rj,z

)2 (28)

For a location ri, the points in R that are shorter than ε from the location form a
set N (ri), as in Equation (29)

N (ri) =
{

rj ∈ R
∣∣Dist

(
ri, rj

)
≤ ε
}

(29)

If the number of elements in N (ri) is larger than a given threshold, then ri will be
taken as a core point and a new cluster N (ri) is formed. Then, each element in N (ri) will
be taken as a core point for cluster expansion. All of the locations in R should be processed
in this way and those do not fall into any clusters will be neglected. The centers of the
clusters will be taken as initial locations of potential magnetic beacons.

3.2. Fine Detection with Nonlinear Optimization

The magnetic beacon location and magnetic moments of the beacons are contained in
a variable vector m = [m1m2 . . . mn . . . mN ], in which mn =

[
xn, yn, zn, Mx,n, My,n, Mz,n

]
,

and
[
Mx,n, My,n, Mz,n

]
is the magnetic moment vector of the beacon. The m is to be solved

using optimization methods.
Given a section of AUV path x =

[
x1x2 . . . xj . . . xJ

]
, the magnetic strength and gradient

data are used as measurements for optimization, as shown in Equations (30) and (31)

B =
[
B1B2 . . . Bj . . . BJ

]
(30)

G =
[
G1 G2 . . . Gj . . . GJ

]
(31)

where Bj =
[
Bx,j By,j Bz,j

]
and Gj =

[
Gxx,j Gxy,j Gxz,j Gyy,j Gyz,j

]
represent

the magnetic strength vector and magnetic-gradient tensor measured by the AUV at
the j-th position.

Then, the objective function can be built for optimization using the measurements above

eB = [B − b(m)− Bb]Ω
−1
B [B − b(m)− Bb]

⊤
(32)
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eG = [G − g(m)]Ω−1
G [G − g(m)]⊤ (33)

m∗ = argmin
m

(
eB + eG

)
(34)

where b(m) is the function to calculate the magnetic strength vector at the measurement
point as Equation (20), and g(m) represents the function to calculate the magnetic-gradient
vector at the measurement point as Equation (21). ΩB and ΩG are noise covariance ma-
trixes. Bb is the background magnetic-field strength obtained by consulting the World
Magnetic Model (WMM).

4. Joint-Factor-Graph Construction and Robust Optimization
4.1. Joint-Factor-Graph Construction

There are two main kinds of nodes in the joint graph, which are the AUV pose
nodes x = {xi, i = 1, 2, . . . , I} and the magnetic-beacon nodes m =

{
mj, j = 1, 2, . . . , J

}
.

There are three kinds of factors among the nodes, which are the dead-reckoning (DR) fac-
tors ur between temporally successive AUV pose nodes, the magnetic-beacon-observation
factors um between AUV pose nodes and magnetic-beacon nodes, and the bathymetric loop-
closure factors uc obtained from multibeam-bathymetric-data association, as illustrated in
Figure 4.
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The DR factors are obtained from the AUV autonomous navigation systems and the
objective function is

Jr = ∑
i
∥xi + ur

i − xi+1∥2
Σr

i
(35)

where Jr represents the DR factor, ur
i = xDR

i+1 − xDR
i is the DR increment between time i and i+

1, ∥·∥2 represents the 2-norm of the factor error vector, and Σr
i is the covariance matrix of

the motion-model noise.
The bathymetric loop-closure factors are obtained using the dual-stage bathymetric

data-association approach described in Section 2 and the objective function is shown in
Equation (36).

Jc = ∑
ij

∥∥∥xi + uc
ij − xj

∥∥∥2

Σc
i

(36)

where uc
ij is the loop-closure measurement, Σc

i is the covariance matrix of the loop-closure-
observation model’s noise. The computation of a bathymetric loop-closure factor is illus-
trated in Figure 5 and formulated in Equation (37).
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uc
ij = xDR

j − x′i =
(

xDR
j − cQ

)
+
(

cQ − R∗ × cP + t∗∗
)
+
(

cP − xDR
i

)
(37)

The xDR
i and xDR

j are the AUV positions at moments i and j, respectively. The cP and cQ are

the centers of the source and target submaps. The xi′ and cP′ are the AUV position and center
of the source submap after registration, respectively.

The magnetic beacon observation factors can be obtained by the magnetic-beacon-
location approach described in Section 3, and the corresponding objective function is given
in Equation (38).

Jm = ∑
ik
∥xi + um

ik − mk∥2
Σm

i
(38)

where um
ik = mopt

k − xDR
j is the relative position of the magnetic beacons to the vehicle pose

nodes. Σm
i is the covariance matrix of the magnetic beacon observation noise. mk Indicates

the position of the k-th magnetic beacon that will be optimized together with the AUV
poses in the back-end.

By combining the three kinds of factors together, the general objective function for
back-end optimization can be achieved as

x∗, m∗ = argmin
x,m

(Jr + Jm + Jc) (39)

4.2. Robust Back-End Optimizer

The bathymetric-loop closures and magnetic-beacon observations generated in the
front-end form the observation factor set F = {f1, f2, . . . , fm}. To identify and exclude
potential false factors in F , a diagnosis mechanism is designed and introduced into the
back-end optimizer to make it able to detect false factors during optimization. First, some
symbols should be defined for clear explanation.

tn: the moment that the n-th observation factor (bathymetric or magnetic-beacon
observation) is obtained.

Ln: the whole optimized path obtained at tn using the first n observation factors.
L−

n : the whole optimized path obtained at tn using only the first n− 1 observation factors.
L−

n−1,n: the dead-reckoning path obtained between tn−1 and tn.
Ln−1,n: the optimized path section between tn−1 and tn.
Pn: the vehicle position at tn on Ln.
P−

n : the vehicle position at tn on L−
n .

Pj,−
n−1,n: the j-th position of the vehicle on L−

n−1,n.

Pj
n−1,n: the j-th position of the vehicle on Ln−1,n.

E(P): the error ellipse of P.
b1

i,z, b2
i,z: the bathymetric values of the i-th closest point pair in the overlapped area of

a bathymetric loop-closure.
On the basis of this, a robust back-end optimizer for the joint SLAM is introduced.

Once a new observation factor is added into the factor graph and the optimization is
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updated, a diagnosis mechanism with three conditions will be performed to determine
whether the new factor is true and should be reserved. The conditions are given below and
illustrated in Figure 6.

Condition 1: E(P) ∩ E
(
P−

n
)
̸= ∅

Condition 2:
∣∣∣θ(Pj,−

n−1,n

)
− θ
(

Pj
n−1,n

)∣∣∣ < θT for all point pairs on L−
n−1,n and Ln−1,n.

The θ(∗) indicates the heading angle at a vehicle position on the path. θT is the threshold to
judge the heading consistency at points.

Condition 3: (1/n)·∑n
i=1

∣∣∣b1
i,z − b2

i,z

∣∣∣ < β for all bathymetric loop-closure areas. n is
the number of closest point pairs in a bathymetric loop-closure area and β is the threshold
used to judge the bathymetric consistency in an overlapped area after optimization
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The first condition is to guarantee that the new factor optimizes the DR path in the
uncertainty range. If the optimization result is completely outside the error ellipse of the DR
estimate, then it is probably a false factor that results in extra errors. The second condition
is based on the fact that the underwater navigation systems of AUVs usually have good
accuracy. The heading angles of the optimized path should be consistent with the DR path.
Otherwise, the path must have been seriously distorted by the newly added factor. The
third condition follows the truth that the bathymetric data observed on different paths
in a specific area should have strong consistency. False factors lead to wrong positioning
estimates and make bad bathymetric consistency at path-cross areas. In summary, only
when all of the three conditions are satisfied can the new observation factor be determined
as true, and the optimization will be saved for later SLAM solution.

5. Experiment and Analysis

Simulation experiments based on field-multibeam-bathymetric data are conducted to
test the joint SLAM approach above. The bathymetric data were surveyed by the authors’
group using a ship equipped with a SONIC 2024 multibeam echo sounder (R2 SONIC,
Austin, TX, USA) and a differential GPS receiver (Hi-Target, Guangzhou, China). The GPS
path is about 20 km long and include 2868 poses, as shown in Figure 7. In this experiment,
the AUV bathymetric survey process and dead-reckoning estimates are simulated using
the bathymetric dataset and GPS path.



J. Mar. Sci. Eng. 2024, 12, 954 14 of 21

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 21 
 

 

experiment area in simulation, as shown in Figure 7. The magnetic moments of the bea-
cons are 𝑀௫ = 10A · mଶ, 𝑀௬ = 2 ∗ 10ହA · mଶ, and 𝑀௭ = 10ହA · mଶ . The magnetic strength 
and gradient data generated by the beacons in the area can be computed using Equations 
(20) and (21). The magnetometer and gradiometer make measurement at 1 Hz and the 
measurement noise is set to 𝑁(0, 0.1ଶ)nT. 

 
Figure 7. Bathymetric map and magnetic-beacon distribution. 

5.1. Joint-Factor-Graph Construction 
During AUV navigation, the magnetic beacons are detected in real time. The mag-

netic-beacon-location results and the magnetic-beacon-observation factors are shown in 
Figure 8a,b, respectively. The nine sub-frames in Figure 8a are used to show the magnetic-
beacon-detection results clearly. The clustering method based on Euler deconvolution 
makes good estimations and the optimization approach can further improve the location 
accuracy. In total, 158 magnetic-beacon observations are reserved in the factor graph and 
will be taken for back-end optimization. 

  
(a) (b) 

Figure 8. Data association by magnetic-beacon observations. The nine sub-frames in (a) are used to 
show the relative positions of magnetic-beacon-detection results in enlarged views. (a) Magnetic-
beacon-location result; and (b) the magnetic-beacon-observation factors. 

The multibeam bathymetric strips are divided into 125 submaps, as shown in Figure 
9. The minimum submap length 𝐿୫୧୬ and the maximum submap length 𝐿୫ୟ୶ are set to 100 
m and 300 m, respectively. The variance of curvature at all bathymetric points in a submap 
is used to measure the matching suitability 𝛼. During the multibeam survey, once the 

4.175 4.18 4.185 4.19 4.195 4.2 4.205 4.21
East(m) 105

4.159

4.1595

4.16

4.1605

4.161

4.1615 106

True position Clustering result Optimization result

−2 0 2
Error(m)

0

2

4

−2 0 2
Error(m)

−4
−2

0

−2 0 2
Error(m)

0

2

4

0 2 4
Error(m)

0
1
2

−5 0 5
Error(m)

−8
−6
−4
−2

0

−0.2 0 0.2
Error(m)

−0.2
−0.1

0

−2 0 2
Error(m)

0

2

4

−4 −2 0
Error(m)

−3
−2
−1

0

−0.4 0
Error(m)

0

0.5

N
or

th
(m

)

Figure 7. Bathymetric map and magnetic-beacon distribution.

An ideal AUV DR path is generated first to follow the GPS path, as shown in Equation (40).
Then, velocity noise N

(
0, 0.22)m/s and heading angle noise N

(
0, 0.022) rad/s are added to

simulate an DR path with accumulated errors.

xk = xk−1 + vk

[
cosφk
sinφk

]
·∆t (40)

where xk, vk and φk represent the position, velocity, and heading angle of the AUV at
the k-th moment, respectively. ∆t is the sampling interval and is set to 1 s.

The multibeam-bathymetric data used in simulation is surveyed by us using a SONIC
2024 multibeam echo sounder in a 2 km × 2 km area in the Huanghai Sea, China. The
water-depth range of the data set is 5.2~69.8 m and the bathymetric point resolution is
about 5 m. Multibeam sonar collects a ping every second and the bathymetric survey
process is simulated correspondingly. Nine magnetic beacons are placed in the experi-
ment area in simulation, as shown in Figure 7. The magnetic moments of the beacons are
Mx = 106 A·m2, My = 2 ∗ 105 A·m2, and Mz = 105 A·m2. The magnetic strength and gradi-
ent data generated by the beacons in the area can be computed using Equations (20) and (21).
The magnetometer and gradiometer make measurement at 1 Hz and the measurement noise
is set to N

(
0, 0.12)nT.

5.1. Joint-Factor-Graph Construction

During AUV navigation, the magnetic beacons are detected in real time. The magnetic-
beacon-location results and the magnetic-beacon-observation factors are shown in Figure 8a,b,
respectively. The nine sub-frames in Figure 8a are used to show the magnetic-beacon-detection
results clearly. The clustering method based on Euler deconvolution makes good estima-
tions and the optimization approach can further improve the location accuracy. In total,
158 magnetic-beacon observations are reserved in the factor graph and will be taken for
back-end optimization.
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Figure 8. Data association by magnetic-beacon observations. The nine sub-frames in (a) are used to
show the relative positions of magnetic-beacon-detection results in enlarged views. (a) Magnetic-
beacon-location result; and (b) the magnetic-beacon-observation factors.

The multibeam bathymetric strips are divided into 125 submaps, as shown in Figure 9.
The minimum submap length Lmin and the maximum submap length Lmax are set to 100 m
and 300 m, respectively. The variance of curvature at all bathymetric points in a submap
is used to measure the matching suitability α. During the multibeam survey, once the
submap length satisfies Lmin ≤ L ≤ Lmax and the matching suitability α is larger than a
threshold αthd the submap construction is completed. The αthd is set to 0.01 in this research.
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Figure 9. Multibeam submaps and data association. The symbols 1⃝ to 10⃝ indicate the numbers of
loop closures.

Two bathymetric loop closures are taken as examples to show the effectiveness of the
dual-stage data-association method. The pure GICP method is taken for comparison here.
The loop closures labeled with 1⃝, 4⃝, 7⃝ and 9⃝ in Figure 9 are taken to show the data-
association results in Figure 10. The green and blue point clouds indicate the true positions
of target and source bathymetric submaps, respectively. The red point cloud represents the
registration results obtained using corresponding approaches. Obviously, the closer the red
point cloud is to the green point cloud, the higher the bathymetric registration accuracy.
For the four loop-closure areas, the dual-stage data-association errors are 4.2 m, 4.8 m,
2.6 m, and 1.5 m, respectively, which are much smaller than those for the GICP results.
Then, 100 Monte Carlo data-association experiments are made on the ten submap pairs.
The average matching errors of GICP, coarse registration, and dual-stage data-association
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methods are 14.2 m, 9.1 m, and 4.4 m, respectively. Compared with GICP, the proposed
dual-stage method improves the data-association accuracy by 51.7%.

Figure 10. Bathymetric data-association example. The subfigures (a,d,g,j) are the coarse registration
results of the loop closures 1⃝, 4⃝, 7⃝ and 9⃝ in Figure 9. Correspondingly, the subfigures (b,e,h,k) are
the fine registration results, and (c,f,I,l) are the registration results using the GICP method.

5.2. Back-End Optimization Results

There are 2868 pose nodes, 10 bathymetric loop-closure factors, 2867 DR factors, and
158 magnetic-beacon-observation factors in the factor graph. To verify the significance of
magnetic beacons, the factor graph is optimized in two situations. First, all of the factors
and nodes in the joint graph are put into the optimizer designed in Section 4.2. Second,
only the bathymetric loop-closure and DR factors are used for back-end optimization of
pose nodes. The optimization results and errors computed are shown in Figure 11a,b. It
can be seen that both situations can give good optimization results that are much closer to
the truth than is the DR result. The magnetic beacons can further improve the optimization
accuracy compared with the case of using only bathymetric loop closures.

The RRR method [36] and Fast SLAM algorithm [44] are compared at last to evaluate
the accuracy and efficiency of the proposed algorithm. Fast SLAM uses 100 particles for
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filtering estimation. Both the Fast SLAM and RRR methods are performed using the same
factor graph with the proposed algorithm. The optimized paths and positioning errors of
the three methods are shown in Figure 12. The Fast SLAM method can reduce the DR error
to a great extent, but the overall error tends to diverge. The RRR method is able to detect
and exclude bad loop closures and has a better performance than Fast SLAM but is inferior
to the proposed algorithm. The path estimated by proposed method is the closest to the
truth and the average error is less than 10 m. Statistics of the running time of three methods
are also made on the computer that has 16G RAM and Intel i7-11700 CPU with 2.5 GHz
main frequency. The running time of the proposed SLAM, RRR, and Fast SLAM methods
were 521.4 s, 665.6 s, and 752.0 s, respectively.
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Figure 11. Comparison of back-end results with and without magnetic beacons. (a) Comparison of
optimized path; and (b) comparison of path errors.
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Figure 12. Comparison of AUV paths using different SLAM methods. (a) Comparison of optimized
paths; (b) Comparison of path errors.

With the true bathymetric map of the research area shown in Figure 13a as a reference,
the mapping errors for pure DR, RRR, Fast SLAM, and the proposed algorithm are com-
puted and shown in Figure 13b–e, respectively. It is obvious that the proposed method has
the highest mapping accuracy.
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6. Conclusions

To overcome the shortcomings of using pure seabed topographic data in underwater
navigation in unknown environments, a joint graph-based underwater SLAM approach
that fuses bathymetric and magnetic-beacon observations is proposed in this paper. In
the dual-stage bathymetric data association method, the coarse registration method can
provide good initialization for the fine registration method using the GICP algorithm.
More accurate bathymetric loop closures have been obtained compared with using pure
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GICP. The combination of Euler-deconvolution method and clustering algorithms make
the vehicle able to identify and localize the magnetic beacons deployed on the seafloor
accurately. A robust back-end optimizer is also designed to identify the false loop closures
in the factor graph. Experiments verified that much better SLAM estimates can be achieved
using the proposed joint-factor graph than using classic bathymetric methods. However,
there are still some limitations in the paper that need further exploration. The first is that the
magnetic-beacon detection is sensitive to environmental noise. Shielding the environmental
magnetic-field noise generated by the AUV electronic devices is a challenge. The second is
that as the magnetic-field strength decays rapidly with the increase of vehicle-to-beacon
distance, it will be difficult to use this method in very large sea areas. We will focus
on two works in the near future. The first is combining the geomagnetic anomaly field
and magnetic beacons to further enrich the factor graph. The second is improving the
robustness of the magnetic-beacon-detection algorithm against environment noises.
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