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Abstract: Offshore structures and ships can be progressively damaged due to repeated mass impacts
induced by contacts with ships, ice floes, and dropped and/or floating other objects while in service.
This paper aims to predict the residual deflection evolution of the marine structures under such
impact repetitions. The side hull structures of the general ice-class vessels were selected for this study.
The numerical simulations were performed to predict the deflection response of repeatedly impacted
stiffened plates by using the software package Abaqus 6.13. For the simulations, the strain hardening
of the relevant ice-class steel grade was adopted using the proposed constitutive equations, and the
strain-rate hardening effects were taken into account by employing the existing formulations. The
developed numerical model was substantiated against tests available in the open literature. Based on
the validated model, a parametric study on various stiffened plates was performed. The evolution of
the residual deflection of the repeatedly impacted plates with actual scantlings and various impact
scenarios was investigated. A practical formula for the prediction of the residual deflection evolution
of the plates under repeated mass impacts was proposed based on the regression analysis of the
parametric study results. The reliability and accuracy of the proposed formula were confirmed
through comparisons with numerical simulations and existing analytical formulations. It is expected
that the proposed formula can be efficiently employed as a quick-hand tool for the reliable prediction
of the residual deflection evolution incurred by repeated mass impacts.

Keywords: repeated impact loading; steel stiffened plate; residual deflection evolution; finite element
analysis; empirical formulation

1. Introduction

While in service, marine engineering structures, including offshore structures and
ships, are exposed to various types of repeated loads, including repeated mass impacts
induced by contacts with other objects (floating objects, dropped objects, and/or ice floes. . .)
and repeated impulsive pressures arising from slamming, sloshing, and green water. Such
repeated impacts can damage the structure progressively, possibly leading to the loss of the
crew’s life and property. As an example, the damages of the repeatedly impacted marine
structures due to noticed ice collisions can be found in Figure 1. The prediction of such
damage to structures has become an essential task for structural design against repeated
impacts. This paper focuses on the prediction of the residual deformation evolution of the
repeatedly mass-impacted plates with actual scantling used in marine structures.

Many studies have focused on the plastic response of simple structural components
to repeated mass impacts [1–23]. Zhu and Faulkner [1] experimentally investigated the
structural responses of clamped unstiffened plates under repeated impacts, in which steel
and aluminum alloys were used for the testing plates, and they also proposed a theoretical
method for the estimation of damage extents. Later, the repeated impact response of a
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clamped square and circular plates was studied experimentally by Huang et al. [2], and
the conditions for the pseudo-shakedown state occurrence, which was first introduced by
Jones [24], were discussed accordingly. By utilizing the theoretical analysis for repeated
impacts from the previous studies (i.e., not retaining the masses) reported by Zhu and
Faulkner [1], Jones [4] studied the effect of the remaining masses on a plate surface after
each impact on the accumulation of structural damage, and the phenomenon of the pseudo-
shakedown was examined accordingly.
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Figure 1. (a) A ship on ice-covered sea and (b) damages to MV Patriot’s hull (see the red circles) due 
to repeated ice floe impacts. 
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repeated mass impacts, considering low-temperature effects by several tests and numeri-
cal simulations. Truong et al. [6,7] extended the previous study [5] by considering various 
structure configurations (beams, grillages), materials, and striking body shapes. Conse-
quently, a discussion on the effects of repeated impacts and a low temperature with more 
realistic impact conditions, structures, and material types on structural impact response 
was reported. Zhu et al. [8] performed several repeated impact tests to examine the de-
flection accumulation of the small-scaled steel stiffened plates, and an analytical method 
was proposed and validated with simulations. Later, in a series investigating the repeated 
impact response, several repeated impact tests on aluminum foam sandwich plates were 
further conducted by Zhu et al. [9] and Guo et al. [10,11], in which the effect of a low 
temperature was explored by Zhu et al. [9].  

Duan et al. [12] and Zeng et al. [13] investigated the behavior of circular aluminum 
alloy plates with initial small cracks to repeated mass impacts and the effect of the crack 
size (depth and length) on the impact response of the plate was discussed based on only 
the numerical and experimental results. They concluded that the effect of surface cracks 
on the structural response was considerable. Robbins [14] conducted repeated mass rigid 
impacts on the steel stiffened plate of a navy ship, and numerical simulations were per-
formed for various impact scenarios. By carrying out a series of repeated impact tests, 
Zhang et al. [15] studied the behavior and energy absorption of honeycomb sandwich 
panels made of aluminum alloys subjected to repeated impacts; they also performed nu-
merical simulations to evaluate the accumulation processes of the plastic deformation of 
the tested models.  

He and Guedes Soares [16–18,22] and He et al. [20] presented investigation results of 
the repeated impact response of small structural components, i.e., beams and plates, in 

Figure 1. (a) A ship on ice-covered sea and (b) damages to MV Patriot’s hull (see the red circles) due
to repeated ice floe impacts.

Unlike the previous studies that considered room temperature only when evaluating
the effect of load repetition, Cho et al. [5] explored the plastic response of steel beams to
repeated mass impacts, considering low-temperature effects by several tests and numerical
simulations. Truong et al. [6,7] extended the previous study [5] by considering various
structure configurations (beams, grillages), materials, and striking body shapes. Conse-
quently, a discussion on the effects of repeated impacts and a low temperature with more
realistic impact conditions, structures, and material types on structural impact response
was reported. Zhu et al. [8] performed several repeated impact tests to examine the de-
flection accumulation of the small-scaled steel stiffened plates, and an analytical method
was proposed and validated with simulations. Later, in a series investigating the repeated
impact response, several repeated impact tests on aluminum foam sandwich plates were
further conducted by Zhu et al. [9] and Guo et al. [10,11], in which the effect of a low
temperature was explored by Zhu et al. [9].

Duan et al. [12] and Zeng et al. [13] investigated the behavior of circular aluminum
alloy plates with initial small cracks to repeated mass impacts and the effect of the crack
size (depth and length) on the impact response of the plate was discussed based on only the
numerical and experimental results. They concluded that the effect of surface cracks on the
structural response was considerable. Robbins [14] conducted repeated mass rigid impacts
on the steel stiffened plate of a navy ship, and numerical simulations were performed for
various impact scenarios. By carrying out a series of repeated impact tests, Zhang et al. [15]
studied the behavior and energy absorption of honeycomb sandwich panels made of
aluminum alloys subjected to repeated impacts; they also performed numerical simulations
to evaluate the accumulation processes of the plastic deformation of the tested models.

He and Guedes Soares [16–18,22] and He et al. [20] presented investigation results
of the repeated impact response of small structural components, i.e., beams and plates,
in which the pseudo-shakedown state was evaluated based on the experimental and
numerical simulation results. Unlike the usage of the rigid striker in studying the repeated
mass impact response in the previous studies, Cai et al. [19] adopted a deformable striker
made of laboratory-made ice blocks to examine the behaviors of steel plates subjected
to repeated ice impacts; with consideration for the crushable and failure behavior of the
ice striker, the effect of the rigidity level of the striking body on the structural response
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was discussed. Based on the previous studies [9], Zhu et al. [21] also performed further
repeated impact tests on the unstiffened steel plate with different indenter shapes, and the
effect of the indenter shape on the pseudo-shakedown of the tested plates was investigated
experimentally and theoretically. Recently, Xu et al. [23] proposed a simplified method for
the prediction of the deformations of the small stiffened steel plates having initial cracks
due to repeated impacts; the effect of the initial cracks on the impact resistance is examined
through numerical simulations and experiments.

It is apparent from the above-mentioned survey that studies on the prediction of
the dynamic response of structures under repeated mass impacts include experiments,
theoretical investigations, and simulations. Nevertheless, in most of those cases, the
structural analysis models considered were small and even, if not representative of full-
impact loadings as collisions arising from contact with ice floes or contact with attendant
service vessels; in fact, actual impacts are characterized by the heavy mass of a striking body,
which is considerable with respect to the structural components. As a result, the existing
methods either seem inefficient or may not directly be adopted for design purposes against
such actual impact loads. Moreover, thanks to its simplicity, the analytical method is widely
used to predict the extent of damage to repeatedly impacted structures. Nevertheless,
the prediction by the analytical method is less accurate due to many assumptions for
simplification [4,6,8,23].

In an earlier study, regarding the repeated impulsive pressures induced by slamming,
Truong et al. [25] proposed several empirical formulae to predict the damage extents of
steel plates used for marine vessels. However, the damages to the structures resulting from
the repeated impulsive loads were, in fact, significantly different from those caused by the
repeated mass impacts; unlike the damages due to slamming loads, the deformation is
highly local by the point load of mass impacts, which is a distinctive feature of collision
events. It is evident that though these formulae are useful in designing marine structures
against slamming, they would not be suitable for the case of repeated mass impacts due
to differences in those two types of loading characteristic consequences. Therefore, it
was decided to propose simple yet accurate formulations for the reliable prediction of
the residual deflection of stiffened steel plates having actual scantlings under repeated
mass impacts.

In this study, a practical approach for the prediction of the residual deformation of
stiffened steel plates due to repeated mass impacts, which can be efficiently employed
for the structural design, is proposed. For this, the plastic deflection response of stiffened
plates having actual scantlings used in marine applications under repeated mass impacts
is investigated. Since only a few experimental data of the deformation for such actual
structures are available, numerical simulations are adopted to generate the repeated impact
response deformation of the stiffened plates. The validity of the numerical analysis model is
confirmed through a comparison with the relevant published test data. A parametric study
is performed on various plate scantlings to predict the structural deformation considering
the main structure design parameters and mass impact loading conditions. Finally, an
empirical formula is derived to predict the residual deflection evolution of the steel plate
structures due to repeated mass impacts. To the best authors’ knowledge, it seems that no
formulation for the prediction of the plastic damage evolution of stiffened steel plates with
actual scantlings due to such repeated impacts has been introduced so far. It is expected
that the formula proposed in this study will be efficiently employed as a quick tool for the
prediction of residual deflection evolution incurred from repeated impacts.

This paper proceeds as follows. Section 2 describes the methodology for the prediction
of the residual deflection of marine-graded stiffened steel plates due to repeated mass
impacts; the main parameters are also presented in this section for the parametric study.
Section 3 presents the validation of the numerical analysis model by comparison with
relevant test data. In Section 4, typical numerical results obtained from the parametric
study for the dynamic response of the repeatedly impacted steel plates having actual
scantlings used in ice-class vessels are described. Section 5 illustrates the proposed formula



J. Mar. Sci. Eng. 2024, 12, 956 4 of 25

for the prediction of the residual deflection evolution of stiffened steel plates under repeated
mass impacts. Finally, a summary of the main findings of the study and anticipative future
work are given in Section 6.

2. Methodology
2.1. Selection of Stiffened Plates and Striking Object

In this study, various stiffened steel plates which have actual scantlings of a hull’s side
of ice-class vessels are selected for rigorous parametric studies, and their configuration
is indicated in Figure 2. The assumption that strong bulkheads or girders surround the
type of unidirectionally stiffened plate is considered. Here, each analyzing plate model
was generated from the actual range of the design parameters of the aspect ratio α, plate
slenderness ratio β, and column slenderness ratio λ, as defined in Equations (1)–(6), where
a, b, and tp are the length, stiffener spacing, and thickness of the stiffened plate, respectively,
I is the inertia moment of a stiffener with its attached plating, z0 is the distance between
neutral axis and outer surface of plates–tiffener combination, A is cross-sectional area of
stiffener with attached plating, σY is the yield strength, and E is Young’s modulus. The
selected range of α was 5 to 10, and the ranges of β and λ are 0.418 to 2.607 and 0.127 to
0.444, respectively. The scantlings of the stiffened plates applied for the parametric study
are generally similar to what were adopted by Daley and Kim [26]. The configuration of
the stiffened plates is indicated in Table 1.
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Table 1. Geometry of the stiffened plates and selected load scenarios.

No.

Stiffened Plate
Striker

Plate Stiffener

B
[mm]

a
[mm]

b
[mm]

tp
[mm] α β

hw
[mm]

tw
[mm]

bf
[mm]

tf
[mm] λ

Ds
[m]

Ms
[t]

V0
[m/s]

1 2800 2000 400 25 5 2.607 300 20 150 25 0.198

0.4,
0.8,
1.2

10, 15 3, 6

2 2800 4000 400 25 10 0.669 300 20 150 25 0.396
3 4200 2000 600 25 6.667 1.003 300 20 150 25 0.208
4 4200 4000 600 25 6.667 1.003 300 20 150 25 0.416
5 2800 2000 400 40 5 0.418 300 20 150 25 0.205
6 2800 4000 400 40 10 0.418 300 20 150 25 0.409
7 4200 2000 600 40 3.333 0.627 300 20 150 25 0.222
8 4200 4000 600 40 6.667 0.627 300 20 150 25 0.444
9 2800 2000 400 25 5 0.669 500 20 150 25 0.127
10 2800 4000 400 25 10 0.669 500 20 150 25 0.254
11 4200 2000 600 25 3.333 1.003 500 20 150 25 0.130
12 4200 4000 600 25 6.667 1.003 500 20 150 25 0.261
13 2800 2000 400 40 5 0.418 500 20 150 25 0.129
14 2800 4000 400 40 10 0.418 500 20 150 25 0.258
15 4200 2000 600 40 3.333 0.627 500 20 150 25 0.137
16 4200 4000 600 40 6.667 0.627 500 20 150 25 0.274

It is noted that the striking body, in reality, can sometimes be damaged during collision
events. However, for simplicity and conservativeness, a rigid body is considered in this
study. In addition, considering possible extreme loading cases, the rigid striker’s header
shape is assumed to be the semi-sphere with three cases of the diameter Ds = 0.4 m, 0.8 m,
and 1.2 m. The initial impact velocity (V0) is selected in a range of 3.0 m/s to 6.0 m/s,
corresponding to the actual velocity of marine vessels at the impact movement that occurred.
To achieve severe plastic deformation, sufficient impact energy should be defined, in which
the mass of the striker (Ms) is chosen from 10 tons to 15 tons.

2.2. Finite Element Modeling

The finite element (FE) software package Abaqus 6.13 is utilized for the modeling
and analysis. The FE model contains two components: a stiffened plate and a striker, as
displayed in Figure 3, in which the former is uniformly meshed with the shell element
with reduced integration and hourglassing control (S4R). The optimum mesh size with an
element’s edge length of twice the plating thickness, regardless of the plate dimensions,
is sufficient for capturing local and global deformations of the impacted plate. Note that
using this mesh size is also in line with the observations of other scholars [25,27]. The
striker is modeled with rigid elements (R3D4) from the Abaqus 6.13 library.

The boundary conditions of the stiffened plates are assumed to be full clamping,
marked with the dash-line in blue, as indicated in Figure 3. Owing to its symmetry
condition, a quarter FE model is adopted in order to reduce computation time and save
resources. The mass and initial impact velocity of the striker are assigned to the referent
point (RP) (see Figure 3). The striker is allowed to freely move in the vertical translation only.

The coefficient of friction for the contact between the stiffened plate and the striker is
assumed as 0.3 to account for the slipping between two bodies [6,28,29].

2.3. Definition of Material Properties

High-tensile steel (HTS) with a yield strength of 360 MPa, which is commonly used
in a range of ice-class marine structures from IACS PC2 to PC4 [26], is used in this study.
For simplicity, the same material is assumed for both the plate and the stiffeners. The
mechanical properties of the material are listed in Table 2. The structural response involving
large plastic deformations depends on the definition of plastic behavior including strain-
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hardening and strain-rate hardening models [30]. To realistically reflect the deformation of
the impacted plate, the strain hardening model is herein adopted. To do this, the equations
proposed by Cho et al. [31] are successfully adopted for constructing the corresponding
parameters of the engineering stress–strain curve [25], as in Equations (7)–(9), where σT is
the ultimate stress, εT is the ultimate strain, εHS is the hardening start strain, as follows:

σT = σY

[
1 + 1.3

(
E

1000σY

)2.5
]

(7)

εT =
320σY

E

(
E

1000σY

)1.76
(8)

εHS = εT

[
0.352

(
εY
εT

)4.38
]

(9)
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Table 2. Mechanical properties of stiffened plate material adopted in the present parametric study.

Yield
Strength,

σY
[MPa]

Hardening
Start

Strain, εHS

Ultimate
Stress, σT

[MPa]

Ultimate
Strain, εT

Young’s
Modulus,

E
[MPa]

Density, ρ
[kg/m3]

Poisson
Ratio, ν

Cowper–Symonds
Material Coefficient

D
[/s] q

360 0.0229 476 0.2094 206,000 7850 0.3 3200 5

Next, the resulting engineering values are converted to the true stress–strain data
using Equations (10) and (11), where σe is the engineering stress, σtr is the true stress, εe is
the engineering strain, and εtr is the true strain:

σtr = σe(εe + 1) (10)

εtr = ln(εe + 1) (11)

Substituting the calculated true stress–strain values into Equations (12)–(16) [31], the
relation of true stress and true strain can be formed [7].

σtr = Eεtr when 0 < εtr ≤ εY,tr (12)

σtr = σY,tr +
εtr − εY,tr

εHS,tr − εY,tr
(σHS,tr − σY,tr) when εY,tr < εtr ≤ εHS,tr (13)
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σtr = σHS,tr + (εtr − εHS,tr)
nK when εHS,tr < εtr (14)

K =
σT,tr − σHS,tr

(εT,tr − εHS,tr)
n (15)

n =
σT,tr

σT,tr − σHS,tr
(εT,tr − εHS,tr) (16)

where σHS,tr and σT,tr are the true values for the hardening start stress and the ultimate
stress, respectively, and εHS,tr and εT,tr are the true hardening start strain and true ultimate
strain, respectively. Additionally, for the numerical model, the true plastic strain value
should be introduced, which is calculated by Equation (17). The calculated true stress–
plastic strain curve adopted in this study is shown in Figure 4.

εpl,tr = εtr −
σtr

E
(17)
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To take account for the strain rate effect, Equation (18), proposed by Cowper–
Symonds [32], is adopted, where σYD is the dynamic yield stress and

.
εp is the strain

rate. The constants D and q therein are reasonably assumed as 3200/s and 5, respectively,
for high-tensile steel material [7]. In this study, no fracture criterion is defined because only
the plastic deflection mode is considered.

σYD = σY

1 +

( .
εp

D

)1/q
 (18)

2.4. Definition of Repeated Impact Scenario

The repeated impact loadings are defined by multiple steps, in which identical impact
energy (the remaining impact velocity and mass) is applied to each impact event. In
particular, after the completion of the first impact simulation with the permanent stage,
the same mass and velocity are re-introduced for the striker, and the simulation of the
next impact event is started. The residual stresses and strains resulting from the previous
impacts are preserved as the initial state of the model for the currently restarted analyses.
Each stiffened plate is repeatedly loaded with five identical kinetic energies. With the
above-noted impact energies, i.e., the striker velocity and mass and scantlings mentioned
above, 192 cases are analyzed. The duration time of each impact simulation is set as
0.1 s to sufficiently capture the peak response and the permanent state of the impacted
stiffened plate.
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3. Repeated Mass Impact Tests on Structural Components for Validation

Numerous experimental studies on the effect of load repetition induced by slam-
ming or collisions on the response of marine structural components have been performed.
Therein, only a few repeated impact test data for stiffened plates with actual scantlings have
been reported; these test data would be useful for the validation purposes of other methods
such as analytical and numerical methods for the prediction of the residual deflection
of marine structures subjected to repeated impacts. In this study, therefore, the results
of the repeated rigid mass impact tests on large-scale stiffened steel plates conducted by
Robbins [14] are employed to validate the current numerical analysis models. The experi-
mental conditions are reflected in the numerical analyses, and the residual deflection data
measured at the center of the plates, i.e., the maximum residual deflection, are utilized for
the validations.

3.1. Brief Description of Repeated Mass Impact Tests

In the experiments [14], four consecutive impact tests were carried out using a large
pendulum apparatus, as shown in Figure 5a. The testing machine was designed with a dual
pendulum for conveniently producing repeatable mass impacts on a structural component,
where one side of the pendulum, connected to a striker, hit the test model mounted on a
strong support frame hung on the right of the pendulum. A pillow-block-bearing tool was
used to keep the test frame top. The setting allowed each pendulum mass to freely swing
with its horizontal orientation relative to the other. The test model was a stiffened plate that
was fabricated as the scaled model of midship structures, and its scantling is illustrated in
Figure 5b. Mild steel was used for both the plate and stiffeners; the mechanical properties
of the plate model materials which were obtained from tensile coupon tests are listed in
Table 3. The striker was a rigid spherical indenter made of HS-100 steel. Both the stiffened
plate and the striker mounted on the pendulum arms were released simultaneously from a
50◦ angle and impacted each other horizontally at the bottom of the pendulum arc length.
The FARO arm system was used to measure the residual deflection of the tested plate. The
impact test conditions and measured deflection results are indicated in Table 4. A detailed
description of the experimental setup can be found in Robbins [14].
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Table 3. Mechanical properties of the material of the tested plate model.

Yield
Strength, σY

[MPa]

Ultimate
Stress, σT

[MPa]

Failure
Strain, εf

Young’s
Modulus, E

[MPa]

Density, ρ
[kg/m3]

Poisson
Ratio, ν

Cowper–Symonds Material
Coefficient

D
[/s] q

414 483.7 0.323 206,000 7850 * 0.3 * 40.4 * 5 *

* denotes the assumed values adopted in the numerical-validated simulations.

Table 4. Repeated impact test conditions and results.

Impact Mass
[ton]

Dual-Pendulum
Closing Velocity

[m/s]

Equivalent Impact Velocity
(1 Moving Carriage)

[m/s]

Maximum Residual Deflection
[mm]

Experimental Numerical

1 4.711 3.744 5.295 90.10 87.49
2 4.711 3.744 5.096 * 117.70 115.00
3 4.711 3.744 5.034 * 128.60 135.40
4 4.711 3.744 5.010 * 138.72 152.30

* denotes the adjusted impact velocity with consideration of swinging further along their respective arcs due to
plate deformation of the previous impacts.

3.2. Numerical Simulations

The experimental works by Robbins [14] are simulated, in which the boundary condi-
tions are reflected as close as in the tests. The numerical simulations are performed using
the Abaqus software 6.13. The FE model consists of the striker and the stiffened plate. The
stiffened plate is modeled using shell elements S4R with a mesh size of approximately
15 mm × 15 mm based on the convergence test, while the striker is modeled as a rigid
surface. The mechanical properties of the material (Table 3) and the impact test conditions
(Table 4) are introduced in the numerical analysis model. The definition of the rest of
the numerical model (i.e., the contact algorithm, material, and boundary conditions) is
generally similar to what is described in Section 2. Note that the strain rate effect was also
considered by using the Cowper–Symonds constitutive equation [32], (see Equation (18)),
in which the constants D and q are set as 40.4/s and 5, respectively. The simulation duration
time of each impact is set as 0.05 s.

The comparison of the numerical prediction and test results for the maximum residual
deflections (i.e., measured at the plate center) is shown in Figure 6, and the results are
also given in Table 4. It can be seen that a good correlation between the numerical results
and experimental data is obtained. Figure 7 shows the deformed shape of the tested plate
model after the 4th impact, in which maximum deflection was visually captured at the plate
center, and the stiffeners in both methods experienced a slight deformation. In addition,
there was no fracture or tripping in the simulation, which was the same as in the tests,
meaning there was considerable agreement between the residual deformation shapes from
the test and the simulation. It is concluded that the accuracy of the numerical analysis
model is satisfactory. For further validation, by using the same simulation techniques,
several experimental works in the previous studies conducted by the author group [3,6,7]
were numerically reproduced, and satisfactorily predicted residual deflection evolution of
the unstiffened plates [3], grillages [6], and beams [7] under repeated mass impacts was
also obtained. Therefore, it can be concluded that the numerical model developed in this
study can be used to predict the structural response for marine structures under repeated
impact conditions. A discussion on the parametric study results and the derived empirical
formulation will be presented in the following sections.
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4. Calculation Results and Discussion

The numerically obtained results for the maximum deflection of the stiffened plates
are listed in Table 1, and the impact force and striker velocity time history are discussed. For
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readability, only typical results will be presented for evaluating the influence of geometry
and loading parameters on the structural response; this will be helpful for the development
of a practical method for predicting the residual deflections of the repeatedly impacted
structures. As discussed in the following subsections, the normalized residual deflection
(wr/tp) is plotted with the impact number and with combination parameters to represent the
damage evolution of the stiffened plates. Finally, a simple practical formula for predicting
the wr/tp of the stiffened plates due to repeated impacts is empirically derived.

4.1. Plastic Strain Distribution and Damage Extent

Figure 8 indicates the typical equivalent plastic strain distribution and deformed
shape, for example, of stiffened plates No. 1, No. 2, and No. 3 after the impact load of
15 tons in mass and 3.0 m/s in impact velocity with a striker diameter of 0.8 m throughout
five identical impacts. Note that models No. 1 and No. 3 are the same in length, but they
differ in width, while the length of model No. 2 is twice (see Table 1); all the analyzing
models consist of six stiffeners. It can be seen that the maximum plastic strain occurred at
the intersections of the stiffener and middle plate around the impact areas, as well as at the
middle plate center for all three models No. 1, No. 2, and No. 3, for the later stage of each
impact event. It is apparent that the plastic strain increases, and its distribution spreads
out when the impact number increases, regardless of the plate scantlings. In addition, the
deformation of the plate after each impact event mainly occurred at the impact location, and
it accumulated with the impact number; the stiffener near the impact location is deformed
when the impact load is repeated, as noticed in Figure 8.
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Figure 8. Equivalent plastic strain distribution (Left) and deformed shape (Right) of quarter stiffened
plate models (a) No. 1, (b) No. 2, and (c) No. 3 after 1st impact and 5th impact with the impact
condition M15V3 (M15V3 means the striker mass Ms = 15 tons, initial impact velocity V0 = 3.0 m/s).

The typical maximum deflection time histories at the plate’s center of models No. 1,
No. 2, and No. 3, throughout five impacts with two cases M15V3 and M15V6 (i.e., striker
mass of 15 tons and two impact velocity cases of 3.0 m/s and 6.0 m/s), are shown in Figure 9.
The structural response feature of the stiffened plates under five impacts is presented, in
which during each impact event, the impacted plate experiences a peak response first, and
then it rebounds (spring-back) before observing a permanent response, regardless of the
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model geometry and impact energy. It is seen that the deflection increased with the impact
number, while its increment reduced accordingly; it, as expected, also increased with the
higher impact energy, while the response time that reached the peak deformations of model
No. 1 was shorter than those of models No. 2 and No. 3, having either a longer span (a)
or a wider stiffener spacing (b), and this response time decreased when a higher impact
velocity was applied throughout all impacts regardless of the scantlings. As also seen in
the figures, it is not surprising that the deformation of model No. 3 is greater than that of
models No. 1 and No. 2, which has a higher stiffness (a smaller stiffener spacing (No. 1), a
longer span (No. 2)), and the vibration after the peak response increased with a reduction
in the plate stiffness.
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4.2. Impact Force and Striker Velocity Time History

Figure 10 shows the time histories of the impact force and impact velocity during
five impacts with an impact case, M15V3, having a striker diameter of 0.8 m. It can be
seen that the peak impact force increases while the impact duration decreases with the
number of impacts (see Figure 10a), suggesting that the material can recover the elasticity
when the impact number rises. This observation is in line with that from the previous
research, for example, [5–7,16,22]. As a typical time history of the striker velocity, as shown
in Figure 10b, for example, for models No. 1, No. 2, and No. 3, there is a slight increase
in the rebound velocity when increasing the impact number; this is due to the plate’s
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elastic energy capacity which increases with the finite deflections [22], indicating the higher
rebound velocity found for model No. 2.
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5. Derivation of Empirical Formulation for Prediction of Residual Deflection Evolution
5.1. General Procedure

For the design of ice-class vessels, the reliable prediction of the residual deflection
evolution of plates subjected to repeated impacts induced by ice collisions is necessary.
Several formulae for estimating the damage extents of plates caused by the type of single-
impact load have been reported, for example, in Reference [33]. However, as mentioned
earlier, while in service, ice-class structures are inherently exposed to repeated impact loads,
inferring that the single load may not be a suitable representation of realistic ice impact
loads. Several studies [4,6,8,23] developed the analytical method for the prediction of the
deflection of structural components due to repeated impacts, but this method seems less
accurate because a lot of assumptions for simplicity are inherently made. Truong et al. [25]
proposed formulations for the prediction of the residual deflection evolution of steel plates
subjected to repeated impact pressures arising from slamming; those formulations could
be useful for the design of marine vessels under slamming loads, but might not be suitably
applied in solving the same problem for repeated mass impact loadings. Therefore, it is
decided to develop formulations for a more reliable prediction of the residual deflection
evolution. Here, the parametric study results presented in Section 4 will be used for
the derivation of the empirical formulations by regression analysis. The procedure of
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deriving the formula is summarized in Figure 11; it should be noted that a generally similar
procedure of the formulation deviation can be found in Reference [25].
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5.2. Derivation of Empirical Formulation

Before deriving the formula, the tendency of the residual deflection with the key
non-dimensional parameters is examined based on the results of the parametric study
presented in Section 4. Figure 12 shows the tendency of wr/tp with various non-dimensional
combination parameters for all of the analysis data. Note that the strongly influenced
parameters, including stiffened plate scantlings (i.e., a, b, tp, hw, teq, and r), the mass of
the stiffened plate (Mstruct), the striker diameter (Ds), striker mass (Ms), kinetic energy
(Ek), and strain energy absorption capacity (Ep) are used to introduce the non-dimensional
parameters with combination forms (Rm, Rp, Rs, and Rstr). The relationship between wr/tp
and the combining parameter and impact number (N) is defined. This step is taken to
analyze the appropriate dependent non-dimensional parameter to derive the formulation.
As can be observed from the figure, the residual deflection of the stiffened plates (wr/tp)
is monotonically increased or decreased with the non-dimensional combined parameters,
except for wr/tp against the number of impacts. When the impact number is increased, the
increment of the residual deflection is reduced gradually, i.e., the residual deflection tends
to approach certain values; as a result, the equation form for the prediction of the residual
deflection against N can be selected as Equation (19) and its modification factors can serve
on other parameters. Note that this form has been used in several studies [25,34] for the
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derivation of formulations for predicting the residual deflection of aluminum alloy and
steel plates under a single impulse or repeated impact pressures.

f (x) =
x√

1 + x2
(19)

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 26 
 

 

on other parameters. Note that this form has been used in several studies [25,34] for the 
derivation of formulations for predicting the residual deflection of aluminum alloy and 
steel plates under a single impulse or repeated impact pressures. 

2
( )

1
xf x
x

=
+

 (19) 

 

 

 

Figure 12. Cont.



J. Mar. Sci. Eng. 2024, 12, 956 17 of 25
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 18 of 26 
 

 

 

 
Figure 12. Tendencies of wr/tp with parameters: (a) N, (b) Rm, (c) Rp, (d) Rs, and (e) Rstr. The blue 
dotted line denotes the trendline. 

Through the nonlinear regression analysis, a set of equations is proposed to predict 
the residual deflection evolution of stiffened plates under repeated mass impacts, which 
is expressed as a function of five parameters, including plate scantlings, impact character-
istics, and the number of impacts. With the consideration of the strain rate hardening effect 
in the numerical analysis model, the proposed formula would implicitly comprise the 
strain rate hardening effect arising from dynamic impacts. 

( ) ( ) ( ) ( )
0.394

0.010.148 0.4 0.18

2
0.351 0.458

1 0.001
r

m p s str
p

w N R R R R
t N

− 
= −  + 

   (20) 

where Rm, Rp, Rs, and Rstr are the design parameters which are determined by the following 
equations: 

2
s

m
struct eq p

M bR
M t t

=     for a range of 108.03–1551.09 (21) 

k
p

p eq

E bR
M t

=     for a range of 0.15–5.14 (22) 

2
k w

s
p p

E h abR
E t r

=    for a range of 1.37–41.69 (23) 

Figure 12. Tendencies of wr/tp with parameters: (a) N, (b) Rm, (c) Rp, (d) Rs, and (e) Rstr. The blue
dotted line denotes the trendline.

Through the nonlinear regression analysis, a set of equations is proposed to predict
the residual deflection evolution of stiffened plates under repeated mass impacts, which is
expressed as a function of five parameters, including plate scantlings, impact characteristics,
and the number of impacts. With the consideration of the strain rate hardening effect in the
numerical analysis model, the proposed formula would implicitly comprise the strain rate
hardening effect arising from dynamic impacts.

wr

tp
= 0.351

(
N√

1 + 0.001N2

)0.394

(Rm)
0.148(Rp

)0.01
(Rs)

0.4(Rstr)
−0.18 − 0.458 (20)

where Rm, Rp, Rs, and Rstr are the design parameters which are determined by the following
equations:

Rm =
Ms

Mstruct

b2

teqtp
for a range of 108.03–1551.09 (21)

Rp =
Ek
Mp

b
teq

for a range of 0.15–5.14 (22)

Rs =
Ek
Ep

hwab
t2

pr
for a range of 1.37–41.69 (23)
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Rstr =
Ds

b
for a range of 0.667–3.000 (24)

r =

√
I
A

(25)

Mstruct = ρVstruct (26)

Ek = 0.5MsV2
0 (27)

Ep =

(
σY + σT

2

)
εTVstruct (28)

teq =
Ns

(
hwtw + b f t f

)
+ Btp

B
(29)

where Vstruct is the volume of the stiffened plate and Ns is the number of stiffeners. Note
that σT and εT can be calculated by Equations (7) and (8) [31], respectively.

5.3. Verification of Empirical Formulation

To evaluate the skewness of the predictions, a cross-validation chart is plotted from the
derived formulae against numerical results, as illustrated in Figure 13. The diagnostics for
the derived formula are further made by plotting Xm (i.e., the ratio of the numerical results
to the proposed formulation results) with all of the parameters, as shown in Figure 14. It is
evident that no apparent skewness and no trend line of sharpness are found. In addition,
the correlation between the residual deflection predicted from the proposed formula and
the numerical method is close to unity together with a COV (coefficient of variation) of
10.0%. This observation indicates that the proposed formula can be used as an alternative
practical way for numerical simulations. With the proposed one, the residual deflection
evolution of stiffened plates with actual scantlings subjected to repeated mass impacts
can be conveniently and quickly predicted without any extreme efforts in simulations, as
mentioned earlier.
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5.4. Accuracy of Proposed Formulation

To verify the accuracy of the proposed formula, comparisons of existing methods
and numerical simulations with the proposed formula in predicting residual deflection
are conducted.

5.4.1. Comparison with Existing Formulations

A comparison of the results obtained from the derived formula with those from
published formulations related to the repeated mass impact-induced residual deflection
of actual marine structures would be preferable. Nevertheless, it seems that no related
formulations for the prediction of the residual deflections of stiffened plates are available.
The simplified analytical method proposed by Jones [4], even for unstiffened plates (with
supported and fully clamped conditions), is herein referred to as an early validation. Note
that Jones’s equations [4], Equations (30)–(33), were based on an assumption of rigid,
perfectly plastic material for unstiffened plates, and the strain rate hardening effect was not
taken into account for those existing formulations. Figure 15 shows the comparison of the
results calculated from Jones’s equations and those from the proposed empirical formula.

wr

tp
=

(
1 + m

2

)√√√√1 +
N4β J(1 + 6γ)Ω

3γ(1 + 1/3γ)2(1 + m)2
(

1 + β2
J

) − 1

 (30)
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where N is the impact number, m is the boundary condition (i.e., m = 0, and m = 1 are
for the simply supported condition and the fully clamped condition, respectively), Ω is
the non-dimensional initial kinetic energy, γ is the mass ratio, and βJ is the aspect ratio
(0 < βJ ≤ 1); these variables are defined as in Equations (30)–(33) [4].

Ω =
MsV2

0

4σYt3
p

, (31)

γ =
Ms

ρtpab
, (32)

β J =
b
a

(33)
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As shown in Figure 15, although the material behavior used in both methods is differ-
ent (i.e., Jones [4] adopted a rigid, perfectly plastic material without strain rate hardening
effect, while the current formulation implicitly considers both the strain hardening and
strain rate effect which were already considered in FEM), Jones’s formulations with the
simply supported condition show a somewhat accurate prediction of the residual deflection
of stiffened plates, especially for the lower deflection range. Nevertheless, a large uncer-
tainty (i.e., high COV) is observed, and a significant variation in the tendency of deflection
evolution when it becomes more serious (high-impact energy cases) is also noticed. In the
case of using the fully clamped condition, a less accurate solution is detected, indicating
the large mean and COV values. It should be noted that these existing formulations were
derived only for unstiffened plates, and the ideal boundary conditions (fully clamped or
simply supported) are quite different from those of the stiffened plate where the interaction
of stiffeners with plates is provided. Recall that Jones’s formulations were derived using a
rigid, perfectly plastic material, neglecting the strain rate effect. The omission of the strain
hardening and strain rate effect probably caused a large variation in the estimated plastic
response of the marine steel structures subjected to high dynamic loadings (i.e., impacts or
impulse). This suggests that Jones’s formulations were not sufficiently validated in pre-
dicting the residual deflection evolution of steel structures due to repeated impacts, since
the important feature of the steel material was not fully reflected. Furthermore, unlike the
formulations proposed in this study, Jones’s formulations could not consider a wide range
of strikers, which may vary in size in reality. It is revealed that conducting experimental
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tests on actual scantling models with realistic impact scenarios is extremely arduous; hence,
the numerical simulation method is often promisingly preferable for the further validation
of the derived formulations.

5.4.2. Comparison with Numerical Simulations

Since experimental residual deflection data for actual stiffened plates subjected to
repeated mass impacts are still limited, specific configurations that have scantlings of actual
polar class vessels, listed in Table 5, are used to further verify the proposed formula through
the numerical simulations using the Abaqus software. A total of three stiffened plates (see
Table 5) were analyzed. Two 0.8 m-diameter striker masses of 12 tons and 20 tons and
two initial impact velocities of 5.0 m/s and 7.0 m/s are considered. Five identical impacts
for each stiffened plate are performed. The numerical modeling technique described in
Section 2, involving the type and size of elements, material properties, boundary conditions,
and computation time, is generally applied to the current validation simulations.

Table 5. Scantling of stiffened plates and load conditions for verification of the proposed formula.

No.

Stiffened Plate
Striker

Plate Stiffener

B
[mm]

a
[mm]

b
[mm]

tp
[mm] α β Type hw

[mm]
tw

[mm]
bf

[mm]
tf

[mm] λ
Ds
[m]

Ms
[t]

V0
[m/s]

1 3500 3000 500 25 6 0.836 T 300 20 150 25 0.304
0.8 20 52 3850 3500 550 30 6.364 0.766 T 350 20 150 25 0.318

3 4200 4000 600 40 6.667 0.627 T 400 20 150 25 0.339

1 3500 3000 500 25 6 0.836 T 300 20 150 25 0.304
0.8 12 72 3850 3500 550 30 6.364 0.766 T 350 20 150 25 0.318

3 4200 4000 600 40 6.667 0.627 T 400 20 150 25 0.339

The residual deflection results obtained from the numerical analyses and the proposed
formula for all cases are shown in Figure 16. As seen from the figure, the value of Xm is close
to unity together with a COV of 3.6% for all residual deflections, while larger uncertainty
is found when the existing formulations are used. Therefore, it can be inferred that the
proposed formula delivered good accuracy and its reliability is confirmed.
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6. Conclusions

In this study, a practical formula was developed to predict the residual deflection
evolution of stiffened steel plates in marine vessels against repeated mass impacts. The
numerical analysis model was first developed and substantiated against published relevant
test data. A parametric study was performed for various stiffened plates with actual
scantlings with different impact load scenarios, and subsequently, the numerically obtained
residual deflection results were utilized to propose the empirical formula. The proposed
formula was validated through comparison with existing formulations and numerical
simulations. Based on the results of the study, the following conclusions can be drawn:

• The numerical simulation results showed that the deformation after each impact
mainly occurred at the impact location, and the stiffeners near the impact location
progressively deformed when the impact number rose. The residual deflection of
the stiffened steel plates due to the first impact was the most significant and after
consecutive impacts, the deflection tended to approach a certain value regardless of
the plate scantlings, impact energy, or stiffener shapes. The peak impact force and the
rebound velocity of the striker increased, whereas the impact duration reduced with
the number of impacts.

• The accuracy and reliability of the newly proposed formula were verified using rel-
evant existing formulations and numerical simulations. The proposed formula is
expected to reliably estimate the residual deflection of steel-stiffened plates due to
repeated impacts induced by contact with floating objects or ice floes. The formula
can be conveniently used in the early marine structure design stage without the need
for any numerical simulations or analytical works.

• Furthermore, the proposed numerical simulation techniques, validated with existing
test data, are capable of estimating the deflection accumulation of stiffened plates
under repeated mass impacts with reasonable accuracy and reliability. Hence, the
techniques may be confidently applied for further research on relevant structures in
damage-collision assessments.

Comparisons with the existing formulae demonstrate that the proposed method is
better, but it might be valid only for the range of the scantlings and loadings considered
in this study. Further studies seem to be required to widen the range of validity of the
proposed formula, especially for the effects of impact loads involving shapes and rigidity
of the striking body, as well as different boundary conditions (i.e., more complicated
structure scantlings containing adjacent structural components), benefitting a more reliable
assessment method for the marine structural design.
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