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Abstract: The stability performance of the buoy is an important parameter that should be taken
into account when designing marine buoys. This paper introduces a theoretical and numerical
analysis method to examine the stability of marine buoys, including analysis of the initial stability
and large inclination stability by calculating the natural period, metacentric height, static stability,
and dynamic stability, deriving the calculation process of the static stability lever in detail to obtain
the righting moment, and so on, showing that the designed buoy in this paper has sufficient stability
performance with theoretically excellent resistance performance to the wind and waves. Additionally,
the hydrodynamic performance of the buoy at different heights is also further analyzed for structural
optimization, which concluded that the buoy would have a more balanced stability performance
when the buoy’s width-to-height ratio is 0.375–0.5, hoping that the computational model and ideas
used in this paper can provide a reference for the theoretical stability analysis and buoy design of
other types of buoys.

Keywords: marine buoy; stability performance; structural optimization; width-to-height ratio

1. Introduction

Long-term and real-time monitoring of the marine environment using marine mon-
itoring buoys for marine environmental parameter data has obvious advantages, such
as not being affected by the sea weather to a certain extent and carrying out sustainable
marine monitoring activities. It could not only collect a variety of hydrometeorological
elements but also obtain marine ecological environment, seawater materialization, and
other parameters by carrying a variety of physical and chemical sensors to realize compre-
hensive monitoring of the overall water layer [1]. Obviously, long-term, multi-parameter
profile and multi-layer observation and collection of marine environmental data can be
achieved by anchoring the buoy in the characteristic sea area, which can provide necessary
data support for marine environmental monitoring and protection, marine fishery resource
development, marine engineering, and oceanographic research [2]. However, due to the
changeable weather and complex sea conditions, the buoy is prone to swaying under the
combined action of wind, waves, and currents, which have been shown to interact with
one another to produce complex environmental conditions that would result in errors in
the data collection of the sensors [3]. In a severe environment, the violent movement of
the buoy will aggravate the fatigue of the buoy material and may even cause the buoy to
overturn, which greatly affects the performance and life of the buoy system [4]. In addition,
the deployment and maintenance of buoys need to consider large costs, so one of the most
important problems when designing marine monitoring buoys is calculating the stability
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of the buoy. The structure should be designed with good performance to cope with the sea
environment, which can be used for better observation and data collection [5].

The stability of the marine buoy mainly refers to the ability of the buoy to deviate
from the equilibrium position of the upright floating under the action of an external force
and return to the equilibrium position of the initial positive floating after the external
force disappears [6]. Generally, it can be studied by methods such as theoretical analysis,
numerical simulation, and sea test experiments. When designing buoys, many scholars
would not only apply theoretical calculations to obtain the stability parameters but also
use numerical simulation to study the hydrodynamic stability performance of buoys under
actual sea conditions, which is simulated on commercial software such as AWQA 14.0,
Fluent, and CFD [7]. The former belongs to the category of statics, while the latter belongs
to dynamics, and the combination of these two methods could more comprehensively
analyze the movement of marine buoys at sea [8]. Since the buoy selected in this paper
is still in the design stage, the theoretical stability performance of the selected buoy is
studied by the analytical method of theoretical numerical calculation. In this way, not
only the performance parameters of the designed buoy body can be found out, but also
further optimization and improvement of the design scheme of the buoy can be proposed
according to the calculation results.

2. Designed Parameters of the Buoy
2.1. The Basic Situation of the Buoy

The marine buoy designed in this paper is a cylindrical buoy, and the structure mainly
includes the upper tower, the main floating body, the cabin, and the lower bracket, as
shown in Figure 1. The design diagram is as follows: The main floating body is similar to a
hollow cylinder with two ends open, with an outer diameter of 1.6 m, an inner diameter of
0.4 m, and a height of 0.6 m. It is mainly made of PE material, and the exterior is coated
with a new type of anticorrosion material, epoxy resin coating, to avoid seawater corrosion.
The hollow area with an inner diameter of 0.4 m in the middle of the main floating body
can be used as a cabin to store instruments and batteries, and the height is slightly higher
than that of the main floating body. The total weight of the equipment carried by the main
floating body and the cabin is 400 kg.
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The upper tower is mainly equipped with various hydrometeorological sensors, with
a total weight of 30 kg. It is mainly made of aluminum alloy that has good support strength
and good corrosion resistance, is low density, and is lightweight, which will not increase
the overall center of gravity and enhance the stability of the buoy. The underwater part
of the tower is made of stainless steel with a higher density and weighs 30 kg. There are
two weights at the bottom welded to the fixed plate of the lower bracket and also equipped
with sacrificial anode material, an anchorage connection ring, and other devices; the overall
weight is up to 60 kg. In this way, the upper bracket is light and the lower bracket is heavy,
which can further reduce the center of gravity and enhance the stability of the buoy.

2.2. Calculation of Various Buoy Parameters
2.2.1. Buoy Gravity Center, Waterline, and Buoyancy Center

Before starting to analyze the stability of the buoy, it is necessary to calculate some
inherent properties of the buoy, including the center of gravity, the center of buoyancy, the
position of the waterline and the displacement volume at equilibrium, the inherent rolling
period, and the moment of inertia. The cylindrical buoy designed in this paper has good
symmetry; it can be determined that the center of gravity is located on the central axis of
the buoy, while the position of the center of gravity does not change with the change in the
set coordinate system. Therefore, it is assumed that the bottom of the main floating body
of the buoy is the datum plane, and after calculating the waterline surface at the initial
balance, the waterline surface is used as the XOY plane, the central axis of the buoy at the
time of balance is set as the Z axis, and the intersection of the line and the plane is the origin
O, establishing the coordinate system for calculation.

Assuming that the total mass of the entire ocean buoy is M, for the convenience of
calculation, the cabin and the main floating body are regarded as a whole with the same
height, so their mass is M1. The center of gravity of the upper tower M2 and the lower
tower M3 could be regarded as distributed in the center of the component, and if the weight
at the bottom is M4, then the total mass M of the buoy and the position of the center of
gravity of the whole Zg are calculated as follows:

M = M1 + M2 + M3 + M4 = ∑4
i=1 Mi (1)

Zg =
∑4

i=1 Mi × Zi

∑4
i=1 Mi

=
30 × 105 − 30 × 56 − 60 × 112 + 400 × 30

520
∼= 13 cm (2)

Zi is the distance from each component to the base plane of the bottom of the main
floating body, the unit is cm; after bringing in the numerical value, it is obtained that the
center of gravity Zg is approximately 13 cm from the bottom of the main floating body.

When the object floating on the water is in equilibrium, the center of gravity and the
center of buoyancy are on the same vertical line, which is the central axis of the buoy, and
the drainage volume is approximately symmetrically distributed along the central axis.
According to Archimedes’ principle, the drainage volume V is calculated as follows:

∑4
i=1 Mi × g = ρ× g × V = ρ× g∑3

i=1 Vi (3)

Among them, ρ is the density of seawater; take 1020 kg/m3 offshore and bring it into
the formula to obtain the total drainage volume V = 0.5098 m3. Assuming that the drainage
volume of the 20 cm × 20 cm × 25 cm weight is V4 = 0.01 m3 and the volume of stainless
steel pipe with a 4 cm diameter is V3 = 0.006 m3, the drainage volume of the main floating
body is V1 = 0.4938 m3. Bring the value into the cylinder volume formula V1 = π× r2 × h,
could obtain h = 24.6 cm. In order to facilitate the calculation, take h = 25 cm, that is, the
buoy water surface line is 25 cm from the bottom datum surface.
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The center of buoyancy, b, is defined as the center of gravity of the fluid displaced by
the object immersed in the fluid, whose position is expressed in the Cartesian coordinate
system as follows:

Zb =

t
zi × dVt

dv
=

∑3
i=1 Vi × hi

∑3
i=1 VI

(4)

where hi is the distance from the volume of fluid displaced by the part immersed in water
to the waterline, then, Zb

∼= 15.94 cm ∼= 16 cm is calculated, that is, the center of buoyancy
on the Z axis is 16 cm below the positive floating water line and 9 cm above the base surface
of the main floating body.

2.2.2. Initial Stability

The stability of marine buoys usually includes the initial stability of the buoy and its
stability at large angles of inclination. The former refers to stability when the inclination
angle is less than 10◦, and the latter refers to stability when the inclination angle is greater
than 10◦ [9]. As shown in Figure 2, after the buoy is tilted by an angle of φ under the action
of an external force, its center of buoyancy B will move to a new position along a certain
curve, which is Bφ. The angle between the waterline W0L0 at equilibrium and the waterline
WφLφ at tilt is φ. The vertical line of the new center of buoyancy Bφ will intersect the
central axis of the buoy at point m, which is called the metacenter of the buoy. The moment
of the buoy is present as follows:

M = M × gm × sinφ (5)

where gm is the distance between the center of gravity G and the metacenter m, which is
also called the metacentric height; M is the displacement.

When the metacenter m is above the center of gravity G, the righting moment will
straighten the floating back to the equilibrium position, and otherwise, the buoy will have
the possibility of overturning.

Obviously, it is difficult to calculate gm, but it can be obtained indirectly by calculating
the distance between the center of buoyancy B and the metacenter m. The calculation
formulas are given below:

bm =
I
V

(6)

I =
∫

y2dy =
π× D4

64
(7)

gm = bm ± gb (8)

where I is indicated as the moment of inertia of the waterline facing the transverse axis of
the waterline surface, V is the volume of the water discharged by the buoy, and D is the
diameter of the main floating body. When the inclination angle is small, the change curve
of the center of buoyancy B is similar to an arc, so it is also called the metacentric radius of
the buoy. And then I = 0.3217 m4 is calculated as follows:

bm =
0.3217
0.5098

= 0.631 m;

gm = 0.6310 − 13 − 9
100

= 0.591 m;

The metacentric height is one of the important indicators to measure the initial stability
of the buoy [10,11]. For the industry standard for the initial stability of marine floating
structures, the initial stability height should not be less than 0.15 m. From the above
results, the initial metacentric height of the marine buoy designed in this paper meets
this requirement.
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2.2.3. Natural Rolling Period of Buoy

The tilted buoy with a righting moment will perform an undamped rolling motion un-
der ideal conditions and then gradually return to equilibrium due to the internal damping
having little impact on their rolling stability in the nonresonance region [12]. Considering
the volume element dv with mass m on the main floating body, its distance from the
horizontal axis passing through the center of gravity is r, by moving at a speed of v so that
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→
v =

→
ω×→

r and angular velocity
→
ω = dφ

dt =
.
θ. Then, the inertial force and inertial moment

elements on the volume element are [13,14] as follows:

d
→
F =

d
dt

(
m

→
v
)
= m

.
ω×→

r (9)

dM = m
→
r × .

ω×→
r (10)

The total moment of inertia is the integral over the entire buoy body, then

M =
y

m
→
r × .

ω×→
r dv = Iv

.
ω = Iv

..
φ (11)

where I is the moment of inertia of the entire buoy about its axis through the center of
gravity. Considering the rotational moment of inertia added by the water attached to
the buoy during the rotation, a corresponding virtual moment of inertia Iv is introduced
Iv = I + I′, where I′ = (0.2 ∼ 0.4) × I is the moment of inertia due to the attached
water mass, whose specific value is related to its shape. Thus, the resulting moment
of inertia is equal to the righting moment of the buoy in the opposite direction, that is
Iv

..
φ + M × gm × sinφ = 0. In the case of a small angle, sinφ ≈ φ, the equation can

be simplified to Iv
..
φ+ M × gm × φ = 0, which will obtain the differential equation of

undamped free simple harmonic oscillation, as follows:

..
φ+

M × gm ×φ

Iv
= 0 (12)

Then, the natural rolling frequency of the buoy is f0 = 1
2π

√
M × gm

Iv
, and the natural

rolling period is T0 = 2π
√

Iv
M × gm .

The key to calculating the natural frequency is the virtual moment of inertia, usually
considering the attachment mass-induced moment of inertia I′, whose value is 0.2 × I, and
I is the moment of inertia of the axis over the center of gravity parallel to the X/Y axis.

The moment of inertia of the main floating body can be obtained from the calculation
formula of the moments of inertia of the cylinder around the X/Y axis and the parallel axis
theorem, which is I1 = 1

4 mR2 + 1
12 mh2 + mD2, where h is the height of the main floating

body, and D is the distance from the horizontal central axis of the floating body to the center
of gravity G. The other components’ moments of inertia are given as Ii = Mi × d2, where d
is the distance from each component to the center of gravity G. Hence, the natural rolling
period of the buoy is calculated as T0 = 2.2 s. However, regardless of the actual conditions,
the motion of buoys in seawater will be dampened to a certain extent, so the hydrodynamic
nonlinear damping motion of buoys should be further studied in future studies.

2.2.4. Movement of the Buoy in the Wave

Assuming a sine wave propagating forward from the origin to the X-axis, whose
expression can be written as follows [13]:

y =
H
2

cos 2π
(

t
T
− x

L

)
(13)

Hence, the slope of this wave is as follows:

dy
dx

= tanβ =
πH
L

sin 2π
(

t
T
− x

L

)
(14)

When x = 0, the slope at this moment is as follows:

β ∼= tanβ =
πH
L

sin 2π
(

t
T

)
=

πH
L

sinωt (15)
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The righting moment of the buoy in the waves changes as M = M × gm × sin(φ− β),
φ is the roll angle of the buoy, and β is the slope of the wave. In the case where both of
them are small, it can be simplified to M = M × gm × (φ− β). Therefore, the equation of
motion can be represented as follows:

Iv
..
φ+ M × gm × (φ− β) = 0 (16)

..
φ+

M × gm × φ

Iv
=

M × gm
Iv

× πH
L

sinωt (17)

where the initial conditions are φ0 =
.
φ0 = 0, then the solution of the differential equation

can be obtained as follows:

φ =
πH
L

1 − T0
2

T2

(
sinωt − T0

T
sinω0t

)
(18)

The maximum free-rolling angle is as follows:

φmax =
πH
L

1 − T0
2

T2

=
πH
L

(
T2

T2 − T0
2

)
(19)

It can be seen from the analytical formula that when the natural rolling period T0 of the
buoy and the period T of the wave are close to the same, they will suddenly increase and
tend to be infinite, which will lead to the buoy resonating with the wave [15]. Therefore,
when designing, the natural period of the buoy should avoid the period value of the wave
as much as possible. The buoy designed in this paper will be placed in a certain area of
the Bohai Sea in China. According to statistics, the maximum wave height in this area is
8 m, the wave period is 8.5 s, and the wavelength is 84 m. Hence, the maximum free rolling
angle is 19.14◦, which is the result calculated without damping. In the actual ocean, the
buoy is subjected to seawater and other damping effects, so the real maximum free rolling
angle will be smaller than this result.

2.3. Stability at a Large Angle of Inclination

The stability of the buoy at a large inclination angle refers to whether the restoring
moment of the buoy can prevent itself from overturning after the buoy is tilted at a large
angle under the action of an external force. Therefore, as with the initial stability, it is
necessary to calculate the righting moment at large inclination angles, specifically the
static stability lever curve and the dynamic stability lever curve. As shown in Figure 3
below, assuming that the buoy is in static water and affected by static force, the water line
is horizontal. For cylindrical buoys, the coupling action of vertical tilt can be basically
ignored, and only the rolling action is considered. The righting moment of the float can be
defined as follows:

MR = M × GZ (20)

In initial stability, the static stability lever GZ = gm× sinφ, but as the inclination angle
increases, the metacenter changes with the change in the volume of water entering and
leaving, and the static stability lever is no longer = gm × sinφ. Therefore, it is necessary
to recalculate the righting lever GZ. Quoting the theory of ship statics, the concept of the
assumed center of gravity S is introduced, which stipulates that the assumed center of
gravity S will not change due to the loading situation of the instruments carried by the
upper and lower towers of the buoy.
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The calculation of the distance Ls from the buoyancy line of action to the S point after
the buoy is given by the following equation:

Ls = OE + OO′ + SQ = lφ + ccosφ+
(
d0 − KS

)
sinφ (21)

The lφ is the distance from the buoyancy line of action to the reference axis NN′, and
point Q is the intersection of the vertical line from point O′ with the horizontal vertical line
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from point S. The static stability lever L can then be calculated according to the center of
gravity G correction of the actual buoy loading situation, which is as follows:

L = Ls − SGsinφ = Ls −
(
KG − KS

)
sinφ

= lφ + c cosφ+
(
d0 − KS

)
sinφ−

(
KG − KS

)
sinφ

(22)

2.3.1. Distance lφ from the Center of Buoyancy to the Reference Axis

First of all, to facilitate the calculation, ignore the volume of the upper and lower
brackets entering or leaving water and only consider the change in immersed wedge
volume and emerged wedge volume of the main floating body. In Figure 3, after the buoy
is heeled by the external force, the displacement volume of the buoy at this time changes as

Vφ = V0 + V1 − V2 (23)

where V0 is the volume of drainage of the buoy at equilibrium, V1 is the immersed wedge
volume of the main floating body, and V2 is the emerged wedge volume of the main
floating body.

Then, the static moment of the inclined drainage volume concerning the reference axis
NN′ can be obtained as follows:

Mφ = Vφ × OE = V1 × OA + V2 × OB − V0 × OF (24)

Hence,

lφ = OE =
Mφ

Vφ
=

V1 × OA + V2 × OB − V0 × OF
V0 + V1 − V2

(25)

where OA is the distance from the centroid of the immersed wedge volume to the reference
axis NN′, OB is the distance from the centroid of the emerged wedge volume to the
reference axis NN′, and OF is the distance from the drainage volume of the buoy at stable
equilibrium to the reference axis NN′.

Obviously, OF could be expressed as follows:

OF = FO′ + O′O =
(
d0 − KB0

)
sinφ+ ccosφ (26)

where d0 is the distance h = 25 cm from the waterline plane to the base plane at the bottom
of the main floating body in stable equilibrium, KB0 is the vertical distance from the datum
plane of the main floating body to the center of buoyancy at equilibrium, KB0 = 9 cm, O′

is the intersection point of the waterline at equilibrium and the central axis of the buoy,
point O is the intersection of the waterline at an inclination, and the reference axis NN′,
also known as the center of floatation. The deviation value of the floatation center is an
empirical value that is related to the position of the waterline, so the deviation value c is
taken as 0.05 m in this paper. In this way, it is only necessary to calculate the immersed and
emerged volume V1, V2, and the location of its centroids A and B to obtain lφ and static
stability lever L.

2.3.2. Volume and Centroid of Immersed Wedge and Emerged Wedge

The shape and centroid of the immersed wedge and emerged wedge are related to
the inclination angle of the buoy. Considering the edge immersing and emerging seawater,
the situation with the angle of edge immersion can be divided into three cases. Case 1,
when the inclination angle is less than 17◦, the shape of the immersed and emerged wedge,
similar to the cylindrical cone, is the geometry of one part of the oblique truncated cylinder,
which is relatively regular and illustrated in Figures 4 and 5. Case 2, when the inclination
angle is greater than 17◦ and less than 25◦, the immersed wedge volume does not change,
while the emerged wedge volume is composed of a triangular prism-like geometry and an
arcuate geometry with an arcuate base area and a height of d0, which is part of a cylinder.
Case 3, when the inclination angle is greater than 25◦, the shape of both is the same and
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composed of a triangular prism-like geometry and an arcuate geometry with an arcuate
base area and a height of d0 or d1, just as Figures 4–6 shows.
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1. When φ ≤ 17◦, the calculation formula for the volume of the main floating body
entering or leaving the seawater wedge, similar to a cylindrical cone, can be derived
as follows:
The infinitesimal volume of the emerged wedge:

dv2 = x × z × dy, x =
√

R2 − y2, z = (c − y)× tanφ (27)

Hence,

V2 =
∫ c

−R
2 × (c − y)× tanφ ×

√
R2 − y2dy (28)

The infinitesimal volume of the immersed wedge:

dv1 = x × z × dy, x =
√

R2 − y2, z = (y − c)× tanφ (29)

Therefrom

V1 =
∫ R

c
2 × (y − c)× tanφ×

√
R2 − y2dy (30)

2. When 17◦ ≤ φ ≤ 25◦, V2 volume consists of a triangular prism-like geometry V21 and
one part of a cylinder V22, where V21 is the same as the above formula with different
integral domains and illustrated in Figure 6, which are written as follows:

V21 =
∫ c

c− d0
tanφ

2 × (c − y)× tanφ ×
√

R2 − y2dy (31)

V22 =
d0 ∗ R2

2
×
(

2 × cos−1
d0

tanφ − c
R

− sin

(
2 × cos−1

d0
tanφ − c

R

))
(32)
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where the arcuate area can be written as S = R2 × (A−sin A)
2 , A is the angle of the corre-

sponding arc, and A = 2 × cos−1
d0

tanφ−c
R in emerged wedge volume, then V2 = V21 +

V22. At this moment, V1 does not change, V1 =
∫ R

c 2 × (y − c)× tanφ ×
√

R2 − y2dy.
3. When 25◦ ≤ φ, the calculation of V2 is as same as Case 2, and the integral domain is

only modified by the change in the inclination angle. At this point, the shape of V1
becomes the same as that of V2, so that the formula for V1 is written as follows:

V11 =
∫ d1

tanφ+c

c
2 × (y − c)× tanφ ×

√
R2 − y2dy (33)

V12 =
d1 ∗ R2

2
×
(

2 × cos−1
d1

tanφ + c
R

− sin

(
2 × cos−1

d1
tanφ + c

R

))
(34)

Then, V1 = V11 + V12.

2.3.3. The Centroid of the Immersed or Emerged Wedge Volume

The centroid is only related to the shape of the object. Due to the symmetry of the
cylindrical buoy, the position of the centroid must be on the Y0Z plane. It is only needed
to calculate the coordinates on the Y and Z axes. The differential equation of a centroid is
defined as follows:

y =
My

V
=

t
y × dvt

dv
=

∑ yi × Vi

∑ Vi
; z =

Mz

V
=

t
z × dvt

dv
=

∑ zi × Vi

∑ Vi
(35)

In this formula, My and Mz are the static moments of the volume on the Y or Z axes,
and the volume V has been obtained in the previous section.

1. The static moments to the Y or Z axes of one part of the emerged wedge volume are
calculated as follows:

M21y =
∫

2 × (c − y)× tanφ×
√

R2 − y2 × y dy (36)

M21z =
∫

2 × (c − y)× tanφ×
√

R2 − y2 × (c − y)× tanφ dy (37)

The static moments to the Y or Z axes of one part of the immersed wedge volume are
calculated as follows:

M11y =
∫

2 × (y − c)× tanφ×
√

R2 − y2 × y dy (38)

M11z =
∫

2 × (y − c)× tanφ×
√

R2 − y2 × (y − c)× tanφ dy (39)

Thus, one part of the centroid coordinates of the wedge-shaped volume can be obtained
by dividing the calculated static moment by the volume.

2. The other part of the wedge-shaped volume is part of a complete cylinder, with good
symmetry, and its z-coordinate of the centroid is z = h

2 , where h is the height of the
cylinder. The centroid coordinate y of this geometry is the centroid coordinate y of
the arcuate base, which can be solved by using polar coordinates. The arcuate area
and area moment of the immersed wedge volume can be written as follows:

S12 =
∫ cos−1

d1
tanφ+c

R

−cos−1
d1

tanφ+c
R

∫ R

Rcosφ
r drdθ (40)
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M12 =
∫ cos−1

d1
tanφ+c

R

−cos−1
d1

tanφ+c
R

∫ R

Rcosφ
r × cos θ × r drdθ (41)

Hence,

y12 =
M12

S12
(42)

The arcuate area and area moment of the emerged wedge volume can be written as
follows:

S22 = 2 ×
∫ cos−1 c− d0

tanφ
R

0

∫ R

Rcosφ
r drdθ (43)

M22 = 2 ×
∫ cos−1 c− d0

tanφ
R

0

∫ R

Rcosφ
r × cos θ × r drdθ (44)

Hence,

y22 =
M22

S22
(45)

After obtaining the centroid coordinates of the two geometric bodies, the above (35)
formula may be used to determine the ultimate centroid position of the entire immersed or
emerging wedge volume as Equation (35).

When the buoy is tilted by φ angle, the equation for the reference axis NN′ is defined
as − 1

tanφy + z − c
tanφ = 0, which can be solved for OA and OB using the distance formula

from point to line.

di =

∣∣∣− 1
tanφ × y + z − c

tanφ

∣∣∣√(
− 1

tanφ

)2
+ 1

(46)

Finally, by bringing V1, V2, OA, OB into the equation lφ = V1 × OA + V2 × OB − V0 × OF
V0 + V1 − V2

to calculate lφ, and then taking lφ into the above (22) equation, we could obtain the static
stability lever.

L = Ls − SGsinφ = Ls −
(
KG − KS

)
sinφ

= lφ + c cosφ+
(
d0 − KS

)
sinφ−

(
KG − KS

)
sinφ

(47)

3. Discussion of Static Stability Curve and Dynamic Stability Curve
3.1. Static Stability Curve

The static stability arm with an inclination angle interval of 5◦ and a range of 5◦ to
85◦ may be obtained and presented as a graph in Figure 7 using the calculation method
from the previous section. It is generally considered that small marine buoys should meet
the following requirements: 1. The initial metacentric height shall not be less than 0.15 m,
2. The stability arm when heeling 30◦ shall be greater than 0.2 m, and 3. The stability
vanishing angle shall be greater than 55◦. Obviously, it can be seen from Figure 7 that all
the buoys designed in this paper meet these conditions.

When the slope on the static stability curve is 0, the corresponding highest point is
the maximum static inclination moment (lever lmax) that the buoy can withstand, that
is, the maximum restoring moment (arm) possessed by the buoy, and the corresponding
heel angle is the limit static inclination angle φmax. The trend of the restoring moment or
righting moment MR = M × L of the buoy is the same as that of the static stability lever
curve. When the angle of inclination φ < φmax, the buoy is still in a stable equilibrium
state; otherwise, it is in an unstable equilibrium state.
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After calculation, the maximum static stability lever of the buoy is 0.3138 m, the
corresponding limit static heeling angle is 36.55◦, and the maximum restoring moment is
1599 N×m. The maximum free heeling angle of the buoy due to waves in the deployed
sea area was calculated in Section 2.2.4. Obviously θmax = 19◦ < φmax, if only under the
action of waves, from the static stability curve, the stability of the buoy can still satisfy the
influence of waves on it. However, the static stability curve only considers that the buoy
is constantly and slowly acted upon by the external moment during the tilting process,
and the angular acceleration is not considered. Apart from the constant current that will
generate a constant moment on the buoy within a certain period, other external moments
come from such things as the violent impact of waves, the ebb and flow of tides, and the
sudden attack from the wind, which will change significantly in a short period, which will
result in even these external moments being equal to the righting moment. The buoy would
not stop tilting immediately but instead continue to tilt at a certain angle due to inertia.
While the work performed by the external moment is equal to the work performed by
the righting moment, the buoy will stop inclination, and the angle reached after stopping
inclination is called the dynamic healing angle. Therefore, the angular acceleration and
the dynamic stability performance must be considered when analyzing the buoy-restoring
equilibrium process.

3.2. Dynamic Stability Curve

The dynamic stability of the buoy is expressed as the work performed by the righting
moment of the buoy during the restoring equilibrium process [16]. When the buoy is tilted
by φd, the calculation formula for the work performed by its restoring moment is written
as follows:

TR = V × Ld =
∫ φd

0
MRdφ = V ×

∫ φd

0
Ldφ (48)

Ld =
∫ φd

0
Ldφ (49)

where Ld is the dynamic stability lever and V is the displacement of the buoy.



J. Mar. Sci. Eng. 2024, 12, 966 15 of 26

The ordinate of the dynamic stability curve at φ = φd is expressed as the area enclosed
by the static stability curve and φ = φd. On the static stability curve in Figure 7, draw
a horizontal line to make the area OAE equal to the area ABD, and point D is in the
descending section of the static stability curve. At this time, the work performed by the
external moment is equal to the work performed by the restoring moment. If the external
torque increases again, the work performed by the two moments can no longer be offset,
which will cause the buoy to overturn. Therefore this limit external moment is called
the maximum wind heeling moment MOEMAX or the minimum capsizing moment. The
inclination angle corresponding to point D is called the limit dynamic heeling angle, while
the inclination angle corresponding to point A is called the maximum dynamic stability
rolling angle. After calculation, the limit dynamic heeling angle of the buoy designed in this
paper is φdmax = 68.55◦, the maximum dynamic stability heeling angle is φ = 20.35◦, the
corresponding maximum wind heeling arm is 0.2348 m, and the maximum wind heeling
moment that can be supported is MOEMAX = 1196 N × m (Figure 8).
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According to the calculation formula for wind resistance, which is given by

F =
1
2
× C × ρ× S × v2 (50)

where C is the air resistance coefficient, taking the value of 1.6, ρ is the air density, taking
1.29 kg/m3, S is the windward area of the buoy, v is the wind speed, and assuming that
the windward area of the upper tower instrument is 0.3 m2, the center of the windward
area is 0.8 m from the waterline, the area above the waterline of the buoy is 0.56 m2, and
the distance to the waterline is 0.175 m, then wind speed v = 58 m/s might be derived by
incorporating these values into the equation.

It can be seen that if only affected by the wind, the designed buoy could theoretically
withstand a maximum wind speed of 58 m/s without overturning, which basically fulfills
the industry standard for small buoys that can perform normally at wind speeds of less
than 60 m/s.
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However, the buoy cannot be only subjected to the wind or the wave; usually, it is
frequently susceptible to both. Waves become more noticeable as the sea surface wind
increases. Statistics show that the greatest wind speed in the sea area can reach level
8 severe winds of around 17–20 m/s. While the value of 20 m/s is brought into the above
formula, the wind effect on the buoy is calculated to be 160 N×m, which causes the buoy
to tilt to 6.18◦. The restoring force arm is 0.065 m, and the restoring moment is 325 N×m.
At this time, the combined effect of wind and waves should be divided into two situations
to discuss.

Case 1: When the buoy is heeling to the maximum inclination angle of 6.18◦ caused by
the wind, if the external moment exerted by a wave on the buoy is in the same direction as
the righting moment after the action of the wind heeling moment, the inclination motion of
the buoy will be aggravated under the action of two co-directional moments. Since the buoy
is left-right symmetrical, the static and dynamic stability curves are symmetrical about
the origin O. Taking OC1 = 6.18◦ in the static stability curve and making the horizontal
line E1D1 to let SC1E1A1 = SA1BD1 , the maximum tilting moment that the buoy can bear in
this case, also known as the minimum overturning moment, is equal to 1090 N×m, and
the limit dynamic healing inclination angle is 73.8◦. If the external moment exerted by the
wave on the buoy exceeds this limit value, the buoy may overturn.

Case 2: When the buoy is first shaken by the action of the wave and then inclined to
the windward side to the maximum angle, in this moment, the buoy is about to roll back
under the action of its restoring moment. If affected by the abovementioned wind heeling
moment, the inclination of the buoy will also increase due to the same direction of both
moments. In the second section, it has been determined that the maximum free rolling
angle of the buoy in this sea area is 19◦. Repeating the above calculation method to assume
SC2E2A2 = SA2BD2 and then calculating the extreme dynamic heeling angle of the buoy at
this time is 24.61◦ without danger of overturning (Figure 9).
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3.3. Optimization of Buoy Structure

Increasing the weight and the draft of the buoy body would increase the restoring
moment of the buoy [17]. To facilitate the placement of buoys at sea, the width of the buoys
will not be changed. Under the same material used, increasing the height of the buoys to a
certain extent can increase their weight and draft. However, it will also increase the center
of gravity of the buoy, making the metacentric height and the static stability arm smaller, so
a certain balance should be achieved between the two factors. Establish the buoys model
with different ratios of width and height and then calculate their stability to obtain the
following static stability moment curve, where the heights of the buoys are 40 cm, 60 cm,
80 cm, and 100 cm, respectively, with the same width of 1.6 m (Figure 10).
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floating body of the buoy.

With the increase in height, the metacentric height of the buoy will become smaller, as
shown in Figure 11. While the height is 40 cm, the metacentric height reaches more than
0.9 m. However, the excessively high metacentric height will reduce the natural rolling
period of the buoy, which will increase the frequency of the buoy’s rolling motion when
the buoy encounters wind and waves [18]. In addition, the righting moment of this buoy
is smaller than that of other buoys, and while encountering a large external moment, the
dynamic stability heeling angle of this buoy will be larger than that of others due to its
poor dynamic stability performance. On the other hand, because of the small area above
the waterline, this 40 cm high buoy has better wind resistance. When the buoy has a height
of 100 cm, the metacentric height is only 0.21 m. Although the restoring moment is larger
at large inclination angles, the wind-receiving area on the waterline and the flow-receiving
area below the waterline are enlarged due to the higher buoy height, resulting in the
capacity of resistance to an external moment with a small inclination angle less than 20◦

being worse than the other three sizes of buoys (Figures 12–15).
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Figure 15. Dynamic heeling angle caused by the same external moment.

In Figure 16, the wave spectral function in the China Sea area is given by the follow-
ing equation:

Sxx(ω) =
0.74
ω

× exp
(
− 96.2

u2 ∗ω2

)
(51)

where ω is the angular frequency of the wave, and u is the sea surface wind speed.
The amplitude response density function of the buoy rolling motion is written as

follows [19,20]:
Sθθ(ω) = RAO2 × Sxx(ω) (52)

RAO2 =
ω4

g2 × 1(
1 −

(
ω
ω0

)2
)2

+ 4 × µ0 ×
(

ω
ω0

)2
(53)

where RAO is the amplitude response operator, µ0 is the damping coefficient, and ω0 is the
natural angular frequency of the rolling motion.

By calculating the spectral moments of the spectral function, several amplitudes and
periods of the response motion of the buoy can be obtained, and the results are shown in
Figures 17 and 18.

In Figures 19–22, the results of calculating methods and model simulation of the buoy
are given by assuming a sea surface wind speed of 12 m/s in a class V sea state, where the
first row shows the result of the rolling angle calculated by the simulation, the second row
shows the time-domain and frequency-domain separation of the simulated data in 1 by
FFT, the third row illustrates the rolling angle of the model simulation results given by the
AQWA 14.0, and the fourth row displays the probability distribution of rolling angle.
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From the first row, it can be seen that with the increase in the height, the amplitude
of the dynamic rolling angle of the buoy only in the ideal state of wave action gradually
decreases and increases, indicating that its stability performance is negatively correlated
with the height of the depth. And the separation of the frequency domain response by fast
Fourier transform shows that when the natural angular frequency of the buoy is close to
the wave frequency, the rolling response is obvious and severe, which illustrates that the
response spectrum energy is substantially concentrated.

As observed from the time history distribution and probability distribution charts, it
can be seen that under the conditions considering wind and irregular waves, the upper
and lower limits of the rolling angle corresponding to the 98% statistical probability also
increase with height. This indicates that with large buoy heights, the discrete fluctuations
of the rolling response become more pronounced, leading to poorer dynamic stability.

Therefore, the buoy has relatively large righting moment and dynamic stability per-
formance at the height range of 60–80 cm, as well as a good balance of wind resistance,
resistance to external moment, and resistance to wave disturbance, indicating that the de-
signed buoy in this paper is more reasonable in size and has sufficient stability performance.
Finally, it can be concluded that without changing the type of material used for the main
floating body, the buoy will perform better in terms of stability when the ratio of height to
a definite width is between 0.375 and 0.5. Similarly, the same is the case at a certain height
with a different width.
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4. Conclusions

The inherent parameters of the designed buoy are obtained after the above numerical
calculation. Taking the bottom of the main floating body as the reference plane, the center of
gravity of the buoy is 13 cm high, the center of buoyancy is 9 cm high at stable equilibrium,
and the height of the waterline surface is 25 cm. The natural rolling period of the buoy is
5.5 s. The maximum free heeling angle is 32◦ under the action of waves in the released
sea area, and it can withstand the wind speed of 58 m/s without capsizing. The stability
parameters are as follows: the metacentric height of the buoy is 0.591 m, the metacentric
radius is 0.631 m, the limit static heeling angle is 36.55◦, the maximum righting moment is
1599 N×m, and the maximum wind heeling moment that it can withstand is 1196 N×m.
So this suggests that the buoy designed in this paper has excellent stability performance,
and the restoring moment can fully cope with the tilting of the buoy caused by various
winds and waves in the sea area without overturning. Finally, a parametric study of the
buoy is further analyzed, which showed that without changing the material used for the
main floating body, the buoy with a height-to-width ratio of 0.375–0.5 will have a relatively
balanced stability performance.

This study aims to establish a complete and universally applicable integral model and
ideas to analyze the stability of cylindrical buoys and also provide a reference for other
types of buoys, which indicated that just changing the integral of the calculated model and
using programming software to solve it could easily obtain the stability performance of
research object buoys. However, the mooring system of the buoy and other disturbances of
the ocean, such as currents and tidal currents, have not been considered in the analysis in
this paper, whose effects are relatively small relative to wind and waves. However, these
influencing factors would be further refined and incorporated into the analysis in future
studies on hydrodynamic analysis.
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