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Abstract: The navigational safety of ships on waterways plays a crucial role in ensuring the op-
erational efficiency of ports. Ship anomalous behavior detection is an important method of water
traffic surveillance that can effectively identify abnormal ship behavior, such as sudden acceleration
or deceleration. In order to detect potential anomalous ship behavior in real time, a method for
ship anomalous behavior detection in waterways is proposed based on text similarity and kernel
density estimation. Under the assumption of known traffic patterns entering and leaving the port,
this method can identify ship behaviors that violate traffic patterns in real time. Firstly, kernel density
estimation is applied to construct a traffic pattern density model for ship trajectories entering and
leaving the port, used to estimate the density values of ship motion states. Simultaneously, a semantic
transformation method is used to convert traffic pattern trajectory into pattern trajectory text, which
is used to identify the ship’s traffic pattern. Subsequently, the historical trajectory data of the target
ship are transformed into textual trajectories, and text similarity is used to identify ship inbound
and outbound traffic patterns. Furthermore, the constructed traffic pattern density model is used to
estimate real-time density values of the state of ship motion, and the trajectory points that exceed the
threshold of the anomaly factor are marked as anomalies. Finally, the effectiveness of the proposed
method is validated using simulation data, and the results indicate an accuracy of more than 90%
for the comprehensive detection of anomalous behavior. This study, approaching the detection of
potential ship anomalous behavior from the perspective of port traffic patterns, enriches the methods
of ship anomalous behavior detection in port waterways.

Keywords: port waterways; traffic patterns; text similarity; kernel density estimation; ship anomalous
behavior detection

1. Introduction

Navigation safety in port waterways, as the main waterway for ships entering and
leaving ports, directly affects the operational activities of ports. The European Maritime
Safety Agency analyzed 21,173 maritime accidents that occurred in the past decade, and the
results indicate that the proportion of maritime accidents in port waters exceeds 40% [1].
Therefore, port waters are identified as areas with frequent maritime accidents. Further-
more, according to the United Nations Conference on Trade and Development, maritime
trade volume is expected to continue to grow at an annual rate of 2.1% over the next five
years [2]. This is expected to lead to an increasing traffic density of ships, making the
navigational environment more complex in port waterways, posing greater challenges for
the safety supervision of ship traffic in waterways [3,4]. Once a maritime disaster occurs,
it can deliver a devastating blow to the environment essential for the survival of marine
life [5,6]. Ship anomaly behavior detection is an essential maritime surveillance method
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that utilizes anomaly detection algorithms to identify deviations in the ship’s movements
from traffic patterns. This approach can effectively reduce the rate of maritime accidents,
improve waterway traffic safety, and optimize the capacity to raise early warnings of
potential risks. It serves as a crucial means for achieving automation and intelligence in
maritime supervision [7,8].

When navigating within harbor waters, ships are required to adhere to port navigation
rules, including following designated courses and speeds within specific navigational
waterways. These actions create a distinct pattern of vessel movements in and out of the
port, known as the port traffic model. Deviations from this normal traffic pattern, such
as sudden changes in course and speed, resulting in veering off the navigational route
or stopping within the channel, are considered abnormal behaviors [9]. Such deviations
often indicate potential navigation risks, such as loss of vessel control, collisions, and
groundings [10]. In this paper, we consider behaviors such as abrupt acceleration or decel-
eration and course deviations from the established port traffic model as abnormal behaviors.
Ship anomaly detection typically involves two parts: constructing an anomaly detection
model and using the detection model to identify anomalous ship behavior. Currently, ship
anomaly detection methods based on numerical calculations can be categorized into three
types: based on statistical analysis, based on neural networks, and based on clustering [11].
Statistical methods assume that ship movements follow a certain probability distribution,
thereby establishing a corresponding probability distribution model to detect abnormal
behavior. When the ship movements fall within a high-probability region, normal ship
behavior is considered. Rong et al. [12] assumed that the ship’s motion along the ship’s
route follows a normal distribution. They defined the 95% probability interval of the
route as the waterway boundary and detected deviations from the historical trajectory
by calculating the Gaussian function values of the ship’s lateral distribution. Laxhammar
et al. [13] assumed that the ship’s motion follows a Gaussian mixture model (GMM). They
trained and learned from historical trajectory samples to obtain parameter estimates for the
GMM model. The anomalies in the new trajectory points were determined by evaluating
the GMM probability values. Mascaro et al. [14] integrated automatic identification system
(AIS) data, weather, and time data. They used Bayesian networks to generate dynamic and
static Bayesian network models for detecting anomalies in a given trajectory. For harbor
waters, ships’ trajectories exhibit concentrated distributions within navigational channels
but with uneven density, and distinct directional differences in inbound and outbound
traffic. It is challenging to employ a unified probability distribution model to construct ship
anomaly detection algorithms. Furthermore, current research on ship anomaly detection
primarily focuses on coastal and inland waterways, with relatively fewer studies conducted
in harbor waters.

Cluster-based methods are among the most commonly used approaches for ship
anomaly behavior detection [15–17]. Clustering is based on the similarity of ship trajec-
tories in terms of location or motion states (course, speed, etc.). Clustering methods are
employed to identify trajectories with ship behaviors similar to those of the same motion
pattern. The recognized cluster motion patterns are considered normal, and other ship
behaviors deviating from these patterns are deemed abnormal. Pallotta et al. [18] proposed
a ship anomaly detection algorithm called Traffic Route Extraction and Anomaly Detection
(TREAD). This method uses clustering algorithms to extract normal traffic patterns and
establishes an anomaly detector to detect anomalous behavior in ships. Zhen et al. [19] in-
troduced an abnormal ship behavior detection method combining ship trajectory clustering
and a naive Bayes classifier. They designed a trajectory similarity measurement method
that considers position and course features in AIS data. Then, hierarchical clustering (HCA)
and k-medoids clustering methods were applied to model ship navigation patterns. A
naive Bayes-based ship abnormal detection classifier is established to identify abnormal
ship behaviors. Botts et al. [20] applied the DBSCAN algorithm to cluster ship trajectory
points, allowing the identification of anomalous behavior in the given ship AIS trajectory
data. Liu et al. [21] used density clustering methods to group historical AIS data, extract
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typical trajectories as cluster centers, and set an abnormal threshold for ship speed. When
the ship speed exceeds the set threshold, it is considered a speed anomaly. Radon et al. [22]
applied the DBSCAN clustering algorithm to extract ship motion patterns from historical
trajectory points. They then used these motion patterns to detect potential anomalies, and
finally, through contextual verification, filtered out true anomalies from potential ones.
In clustering-based methods, there is a lack of consideration of information beyond the
influences on vessel behavior, such as vessel static information and navigation rules, re-
sulting in the incomplete characterization of vessel behavior. Therefore, there is a need
for further research to incorporate the factors influencing vessel behavior into trajectory
similarity measurements and clustering methods to obtain more reasonable, accurate, and
comprehensive representations of vessel navigation behavior [19].

In recent years, with the rapid development of artificial intelligence technology, al-
gorithms based on neural networks have garnered increasing attention in ship anomaly
behavior detection [23,24]. The neural network-based approach involves establishing a
neural network model, training it with historical data to obtain a normal ship behavior
model, and using the trained model to detect new behaviors. If ship behavior deviates
beyond a certain range from the normal behavior model, it is considered abnormal. Rhodes
et al. [25] used a neural network to learn the current position, speed, and course information
of the ship to predict its future positions. If the predicted position deviates from the actual
position, the ship behavior is deemed abnormal. Huang et al. [26] proposed a ship trajectory
anomaly detection method based on an LSTM model that incorporates ship size, environ-
mental information, and time interval features. Hu et al. [27] used variational autoencoders
to discover potential connections between each dimension of normal trajectories and spatial
similarities between normal trajectories, and used deep reinforcement learning algorithms
to train trajectory anomaly detection models. Nguyen et al. [28] proposed a deep learning
approach for ship anomaly behavior detection using AIS data streams. They combined
recursive neural networks with latent variable modeling to extract useful information from
AIS data streams and construct a normal model for ship anomaly behavior detection. Eljabu
et al. [29] trained a graph convolutional network model for the spatiotemporal maritime
traffic network. They constructed a graph network bias detector using graph embedding
and context embedding techniques to identify ships deviating from their routes. However,
the neural network-based approach also has its drawbacks, such as the large demand for
pre-training trajectory data and sensitivity to initial values and parameters. It is necessary
to consider the practical maritime application scenarios comprehensively.

However, these methods often fail to consider external factors, such as maritime traffic
rules, when constructing anomaly detection models. Port navigation rules are usually
formulated and enforced by each country’s port management agencies or authorities. The
primary purpose of these rules is to ensure port security, the safe navigation of ships, and
efficient port operations. The rules involving the safe navigation of ships include rules for
ships entering and leaving ports, rules for waterways and anchorages, and rules for using
port facilities. These navigation rules will jointly affect the ship’s navigation behavior when
entering and leaving the port, such as selecting anchorages, channels, routes, headings,
and speeds [30]. Ships of the same type will follow the navigation rules of the port to form
a specific inbound/outbound traffic pattern. The ship will enter specific port waters from
anchorage water along a specific waterway and berth at a specific terminal operating area.
For port waters with complex traffic, it is difficult for traditional methods to accurately
identify the traffic patterns of ships entering and leaving the port, so it is easy for a high rate
of false positives or false negatives to arise in anomaly detection. Hence, for ship anomaly
detection in port waters, two main challenges need to be addressed, as follows:

1. How to accurately identify the traffic patterns of inbound and outbound ships based
on relevant maritime information;

2. How to effectively detect potential anomalous ship behavior based on inbound and
outbound traffic patterns.
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With the rapid development of artificial intelligence technology, natural language
processing techniques have found widespread and effective applications in fields such as
information retrieval, text classification, and speech recognition [31–33]. Recently, some
scholars have begun applying natural language processing techniques to extract knowledge
in the traffic domain. Hughes et al. [34] used segmentation and word frequency statistics to
identify and classify different accident risks in road traffic accident data. Huang et al. [35]
and Li et al. [36] used semantic transformation methods to convert ship trajectories into
trajectory texts. They utilized topic models to identify ship motion pattern topics from
the trajectory texts. Kernel density estimation is a non-parametric statistical method used
to estimate the probability density of data. Due to its nonparametric and unsupervised
characteristics, this method is widely used in the field of anomaly detection [37].

Building on previous research, this paper proposes a method for ship anomalous
behavior detection in port waterways based on text similarity and kernel density estimation,
named TS-KDE. The method first employs a kernel density estimate function to construct a
pattern trajectory kernel density estimation model for ship inbound and outbound traffic
patterns. Simultaneously, a semantic transformation method is used to convert and generate
textual representations of inbound and outbound traffic pattern trajectories. Subsequently,
the historical trajectory data of the target ship are semantically transformed into textual
trajectories, and text similarity is applied to identify ship inbound and outbound traffic
patterns. Finally, using the constructed kernel density estimation model, real-time density
values of ship motion states are estimated, and trajectory points exceeding an anomaly
factor threshold are flagged as anomalous. The framework of the method is illustrated in
Figure 1. Through verification and analysis in multiple simulation scenarios, the method
demonstrates good real-time detection performance. The research contributions of this
study are summarized as follows.

(1) A novel method for detecting abnormal ship behavior in waterways is proposed. This
paper is dedicated to studying the abnormal behavior of ships in waterways. When
designing the anomaly detection algorithm, the impacts of ship static attributes, port
traffic rules, etc., on ship movement were considered, and the dense historical trajec-
tories of ships in the waterways were divided into different inbound and outbound
traffic patterns, which enabled the inbound and outbound traffic patterns to represent
ships’ typical patterns.

(2) It is proposed to use the multiple attributes of ship trajectory to perform semantic
transformation on the ship trajectory points to improve the accuracy of traffic pattern
identification. This paper converts ship type, course, speed, and geospatial attribute
semantics into ship trajectory text, ensuring the completeness of ship movement infor-
mation, eliminating the problem of only considering the distance between trajectories
in traditional ship traffic pattern identification, and improving ship traffic pattern
identification results’ accuracy.

(3) This paper proposes using the cosine similarity measurement method to identify
ship inbound and outbound traffic patterns, improving traffic pattern identification
efficiency. The cosine similarity measure is a method based on vector calculation.
Based on the vectorized representation of target trajectory text and traffic mode
trajectory text, the traffic mode can be identified by simply calculating the cosine
similarity between vectors, eliminating the need to calculate different trajectories.
Therefore, the method proposed in this paper will significantly improve the efficiency
of traffic mode identification compared to traditional methods.

(4) A method for detecting abnormal ship behavior based on kernel density estimation,
which can detect abnormal ship behavior in a timely and effective manner, is proposed.
A local density and abnormal factor calculation method was constructed to ensure
the abnormal ship behavior detection method’s accuracy and real-time performance.
Simulation experiments have verified that abnormal ship behavior can be detected
promptly, and the accuracy of the detection results can reach more than 90%.
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density estimation.

The remainder of this paper is organized as follows. Section 2 presents the principles
of ship anomaly detection methods. The experiments and results analysis are discussed
in Section 3. The advantages and limitations of the proposed method are addressed in
Section 4. Section 5 provides conclusions and future works.

2. Methods

The TS-KDE method framework first identifies the traffic patterns of ships entering
and leaving the port, and then detects abnormal behaviors of ships that deviate from
these patterns. Text cosine similarity is used to calculate the similarity between the traffic
pattern text, after semantic transformation, and the text of the ship trajectory to be tested,
identifying the traffic pattern followed by the ship. Potential abnormal behaviors deviating
from the identified patterns are detected using a kernel density estimation-based ship
anomaly detection factor.

2.1. Ship Traffic Pattern Recognition

Traditional ship traffic pattern recognition methods typically use trajectory similarity
metrics to calculate the distances between trajectories. Such methods require calculating
similarity values between a trajectory and all other trajectories, leading to inefficiency.
Additionally, in narrow waterways with concentrated ship trajectories, it is challenging
to accurately classify ship traffic patterns. In this study, we draw inspiration from text
similarity methods, transforming ship trajectories into trajectory text and comparing the
similarity between trajectory texts to achieve ship traffic pattern recognition.

2.1.1. Trajectory Text Generation

In order to precisely identify the traffic patterns of the ships entering and leaving
ports, this paper combines four types of spatio-temporal trajectory information, including
ship position, course, speed, and geographical spatial information, to represent the motion
characteristic of the ship. First, the four types of spatio-temporal trajectory information
mentioned above are transformed into semantically comprehensible data. Subsequently,
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the transformed semantic information is organized into a trajectory dictionary to generate
textual documents representing ship trajectories.

The semantic representation of ship position conveys information about a ship’s loca-
tion within navigable waters. To better understand ships’ position information, this study
assigns geographic codes to water areas that describe the meaning of the characteristics
of the ship position. As illustrated in Figure 2b, the water areas are divided into M × N
square grids, each grid denoted as Gm,n, where m and n represent the row and column
codes of the grid. Therefore, the semantic information of the position can be represented by
the row and column codes, such as ST(lonk, latk) = Row#Col.
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The semantic representation of the course of ship conveys the course of a ship’s naviga-
tion. To better describe the semantic information of course, a model based on a conical direction
derived from geographic information theory is used. As shown in Figure 2d, course is uni-
formly divided into eight conical directions, namely, Dir = {North, Northeast, East, Southeast,
South, Southwest, West, Northwest}. Its semantics can be described as ST(dirk) = Dir.

The semantic representation of ship speed describes the magnitude of a ship’s speed in
sailing waters. This paper adopts a segmented approach with 1-knot intervals to partition
ship speeds. As shown in Figure 2c, the ship speed distribution is obtained as V =
{(0, 1], (1, 2], . . . , (⌊m⌋, ⌈m⌉] }, where m is the maximum speed of ship in the study water
area. In this case, the average value of each speed segment is taken as the semantic feature
of speed, such as Sp = {0.5, 1.5, . . . , (⌊m⌋+ ⌈m⌉)/2}. Its semantics can be described as
ST(spk) = Sp.

The semantic representation of the geographic space of the ship describes the waters
through which the ship passes when entering and leaving the ports. Geographical spatial
semantics can also reflect the influence of port traffic rules [36]. This paper combines the
type of ship and the names of the sailing waters traversed to characterize the semantic
information of port traffic rules, that is, ST(gsk) = Waters_name#Shiptype. The type of
ship is determined based on the category of the ship, and the water names are related to
the division of the port waters, as shown in Figure 2e.

Semantic conversion can transform the numerical information from the trajectory
into easily understandable semantic information. To obtain a textual representation of the
trajectories, this paper constructs a trajectory dictionary to represent ship trajectories in text
form. The trajectory dictionary expresses the ship’s motion state through a series of motion
words in writing. In this paper, each motion word is a comprehensive representation of ship
position semantics, geographical space semantics, speed semantics, and course semantics,
i.e., mw = Row#Col#Waters_name#Shiptype#Dir#Sp. Therefore, the trajectory dictionary
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contains a total of Np × Ng × Nc × Ns motion words. Here, Np is the number of words
describing ship position features, determined by the size of the study water area and the
dimensions of the spatial grid division; Ng is the number of words describing geographical
space, determined by water type and ship classification; Nc and Ns describe the number of
words representing ship course and speed features.

A trajectory document is composed of a set of motion words that describe the con-
tinuous movement of ships entering and leaving ports. Assuming that the study wa-
ter area contains M trajectories, i.e., M trajectory documents, it can be represented as
TD = {td1, td2, . . . , tdM}. For each trajectory document, tdi, it can be represented by a
finite, continuous sequence of N motion words, tdi = {mw1, mw2, . . . , mwN}.

2.1.2. Trajectory Text Similarity Measurement

For evaluating text similarity, common methods include cosine similarity, Jaccard
similarity, Jensen–Shannon divergence, and so on [38,39]. Due to its good performance in
calculating the similarity between texts of different lengths and its insensitivity to vector
dimensions, cosine similarity is widely used. The text words are encoded and vectorized,
and the cosine value between vectors is measured to quantify the similarity of the text.
This paper utilizes the cosine similarity method to measure the similarity of trajectory texts.
Motion words are vectorized, where each motion word is assigned a different dimension,
and the values on each dimension correspond to the frequency of that motion word
appearing in the trajectory document. Cosine similarity provides a measure of similarity
between two documents in terms of their topics. The specific method steps are as follows:

Step 1—Tokenize the trajectory text to obtain a list of motion words corresponding
to the trajectory text, i.e., Tl = [mw1, mw2, . . . , mwm], where m represents the number of
motion words;

Step 2—Summarize and de-duplicate the motion words in the set of trajectory texts
to obtain a vocabulary of motion words. The number of words in this vocabulary is
the dimensionality of the trajectory text vector, i.e., Vm = [mw1, mw2, . . . , mwn], where n
represents the number of non-repeated motion words;

Step 3—Calculate the word frequency for each trajectory text by constructing a word
frequency vector corresponding to the trajectory text;

Step 4—For two trajectory texts with n-dimensional word frequency vectors
→
A and

→
B,

where
→
A is [a1, a2, . . . , an] and

→
B is [b1, b2, . . . , bn], the cosine value of the angle θ between

vectors
→
A and

→
B can be obtained by Equation (1) [39]

cos(θ) =

→
A ·

→
B∥∥∥∥→A∥∥∥∥∥∥∥∥→B∥∥∥∥ =

∑n
i=1 ai × bi√

∑n
i=1 a2

i ×
√

∑n
i=1 b2

i

(1)

In this paper, semantic conversion is employed to transform pattern trajectories into
pattern trajectory text. Historical trajectory data of the target ship are converted, generating
the corresponding trajectory text. The cosine similarity between the pattern trajectory text
and the target trajectory text is measured to ultimately identify the traffic pattern of the
target ship entering and leaving the port.

2.2. Ship Anomaly Detection

To enable the real-time detection of abnormal ship behavior, an assessment can be
made of the extent to which the ship’s movements conform to overall traffic patterns. The
density estimation-based outlier detection method detects anomalies by comparing the
density of a sample with the density of its neighborhood, where the neighborhood density
refers to the average local density within its vicinity. A novel approach is proposed that
calculates an anomaly factor for each point on the trajectory based on the mean density of
the neighborhood, which is used to detect abnormal ship behavior.
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2.2.1. Definition of Neighborhood

Suppose X is a dataset, and n is the number of data points in dataset X, where x is a
d-dimensional data object, that is, x = [x1, x1, . . . , xd]. For any positive integer m(m ≤ n),
the m-distance of data point x is represented as dism(x). dism(x) must simultaneously
satisfy the following two conditions [40]:

(1) There are at least m sample points Q ∈ X \ {x} in the dataset X, such that dis(x, Q) ≤
dism(x)

(2) There are at most m − 1 sample points Q ∈ X \ {x} in the dataset X, such that
dis(x, Q) < dism(x)

{x, Q} ∈ X, and dis(x, Q) is the distance between the data points x and Q in the dataset X.
For ease of calculation, this paper adopts the Euclidean distance. That is, for data points x =

(x1, x2, . . . , xd), Q = (q1, q2, . . . , qd), dis(x, Q) =
√

∑d
i=1(xi − qi)

2. The m-distance neigh-
borhood of data point x can be represented as the set of sample points whose distance to x is
not greater than x’s m-distance, denoted by Domainm(x) = {Q ∈ X|dis(x, Q) ≤ dism(x)}.

Each sample point in the m-distance neighborhood is an m-distance neighbor of
x. Figure 3 illustrates the 4-distance neighborhoods of nodes p1 and p2. It is obvious
from Figure 3 that the 4-distance neighborhood of p2 is larger than that of p1. Therefore,
within the unit area, the number of sample points for p1 (i.e., the local density of p1) is
greater than that for p2 (i.e., the local density of p2). Consequently, the size of the m-distance
neighborhood in spatial samples is inversely proportional to the local density of the samples.
Thus, with a constant m-value, the smaller the local density of a sample point and the larger
its m-distance, the greater the likelihood of it being an outlier. In this scenario, the level of
the anomaly of the ship’s point p2 is higher than that of point p1.
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2.2.2. Kernel Density Estimation

The density value of the sample points is closely related to the characteristics of
the outliers, so the density value of sample points can be calculated to detect anomalies.
Kernel density estimation (KDE) is an important method for studying the distribution
characteristics of random variables in samples, and can be used to calculate the domain
values of sample points [41].
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Suppose X1, X2, . . . , Xn are samples in the dataset X, and x1, x2, . . . , xn are the corre-
sponding observed values. For a data object with d-dimensional features, the KDE based
on the observation value distribution can be approximated as:

fn(x) =
1

nhd

n

∑
i=1

K
(

x − Xi
h

)
(2)

In general, the kernel function is set as the Gaussian kernel function, resulting in
multidimensional Gaussian kernel density.

fn(x) =
1

nhd(2π)d/2

n

∑
i=1

e−
∥x−Xi∥

2

2h2 (3)

The kernel density function can fit the distribution characteristics of the observation
values, thereby obtaining a distribution model for the observation values. The bandwidth
parameter h is a crucial hyperparameter that controls the smoothness of the distribu-
tion model. When h is too large, the probability density curve becomes smoother, but it
may obscure data structures; when h is too small, it may introduce excessive data noise.
The optimal fixed bandwidth for the Gaussian kernel function can be calculated using
Equation (4) [42]:

h∗ = An− 1
d+4 (4)

where A = [4/(d + 2)]1/(d+4). In response to the uneven distribution of traffic flow in port
waters, aiming to improve the accuracy of abnormal detection results for ship behavior
(position, speed, and course), a strategy is used in constructing the KDE model. It involves
using a small bandwidth in areas where trajectory points are densely distributed and a
large bandwidth in regions with sparse data distribution.

This study proposes the use of adaptive KDE for calculating the density values of
the ship behavior data. The adaptive kernel density function can be obtained through a
two-stage process [43]. The first stage is typically the fixed KDE. The second stage initially

calculates the adaptive window width
∼
hk, k = 1, 2, . . . , n as

∼
hk = h∗λk, where h∗ is given in

Equation (4), and

λk =

(
fn(x)

l

)−γ

(5)

where l is the geometric mean of a sequence { fn(x)}, that is,

logl =
1
n

n

∑
i=1

log fn(x) (6)

where γ is the sensitivity parameter such that 0 ≤ γ ≤ 1, typically set to 0.5. Finally, the
adaptive KDE can be obtained, as in Equation (7).

fn(x) =
1

n
(∼

hk

)d
(2π)d/2

n

∑
i=1

e−
∥x−Xi∥

2

2h2 (7)

2.2.3. Neighborhood Density

Anomaly detection based on the local kernel is heavily dependent on the selection of
the neighborhood parameter m. To enhance the robustness of the impact of parameter m, a
mean-based neighborhood density is proposed. In contrast to traditional neighborhood
density, mean-based neighborhood density refers to the mean of the local kernel densities
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of all sample points in the neighborhood. It is highly sensitive to outlier data in the
neighborhood, and its calculation formula is given in Equation (8):

Density(x) =
∑Q∈Domainm(x) fn(x)

m
(8)

Using a mean-based local kernel density estimation can reduce the error impact
caused by a single domain point, thus enhancing robustness. To minimize the error in
the estimation of the kernel density based on the mean and improve the efficiency of
subsequent anomaly detection, this study sets m to 3. This means calculating the mean of
the kernel densities of the 3 nearest historical trajectory points as the neighborhood density
for the test trajectory point.

2.2.4. Anomaly Factor

The anomaly factor is used to estimate the abnormality of ship behavior and is a
decisive factor in determining whether ship behavior is abnormal. In general, normal
samples are located in dense areas with higher local kernel density and neighborhood
density. Outlying samples are typically distributed in sparse regions, where sample points
have lower local kernel density, and the distance between sample points and their neighbors
is relatively far. Therefore, using the local kernel density and its neighborhood density
estimation of sample points as the anomaly factor helps to determine whether the sample
point belongs to an abnormal object. Therefore, the abnormality factor can be obtained
using Formula (9). Substituting Equation (8) into Equation (9), we can derive the final
formula for calculating the abnormality factor, as shown in Equation (10) [40].

Abnor_ f actor(x) =
Density(x)

fn(x)
(9)

Abnor_ f actor(x) =
∑Q∈Domainm(x) fn(x)

m fn(x)
(10)

As indicated by Formula (10), when the local kernel density of a sample is smaller,
and the mean density of the neighborhood is higher, the abnormality factor is greater,
indicating a higher likelihood that the sample is anomalous. Generally, for anomalous data,
their local kernel density and mean neighborhood density differ significantly, leading to
an abnormality factor much greater than 1 [40]. In the context of ship movements, where
behaviors change continuously and gradually, the timely detection of potential anomalies
can reduce the risk of maritime accidents and improve the response time of regulatory
authorities, enhancing the efficiency of maritime emergency rescue. Therefore, this study
sets the threshold for the abnormality factor at 3 as the criterion for the evaluation of
the abnormalities. {

Abnormal, if Abnor_factor(x) ≥ 3
Normal, else

(11)

When inputting the current state of the ship’s behavior, including ship position (longi-
tude, latitude), ship course, and ship speed, the detection of anomalies in the behavior of
the ship is achieved by calculating the kernel density value and the neighborhood density of
the ship’s behavior. This process ultimately establishes a relationship between the anomaly
factor and the threshold.

3. Experiments and Results
3.1. Experimental Setup

The test scenario for anomaly behavior detection is the main port area of Tianjin Port.
The main port area of Tianjin Port includes one main waterway, two small boat waterways,
and three warning waterways. Eleven terminals are distributed on both sides of the West
and North Basin. Three anchorages are distributed on both sides of the main waterway, as
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shown in Figure 4. To ensure the safe and efficient passage of ships entering and leaving
the port, the competent authority of Tianjin Port has formulated navigation rules for ships
entering and leaving the port. This study selected AIS data for the Tianjin Port water
area from 1 September to 30 November 2016, and after data preprocessing, obtained the
complete 1956 trajectories of ships entering and leaving the port. The accuracy of ship
traffic patterns has a significant impact on the subsequent detection of abnormal ship
behavior. Based on previous research [44], we have identified 40 traffic patterns for ships
entering and leaving the port that comply with the navigation rules of Tianjin Port, as
shown in Appendix A. To identify the traffic patterns of the test ship entering and leaving
the port, the trajectories of the 40 traffic patterns were converted into 40 different pattern
trajectory texts.
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To validate the effectiveness of the proposed method, three sets of ship maneuvering
experiments were simulated using a maritime simulator platform. Each set of simulation
experiments was designed for specific scenarios of ship entry and exit from the port. Contin-
uous motion dynamics data, including ship position, speed, and course information, were
obtained by manipulating ships of different types and scales. The ship data used in the sim-
ulation experiments are presented in Table 1. Based on this, the TS-KDE method proposed
in this paper was employed for the real-time detection of ship anomalous behavior.

Table 1. Experimental data for simulated ship maneuvering.

ID Ship Type Ship Length (m) Ship Width (m) Abnormal Type

1 Cargo 125 20 Deviation from the waterway
2 Container 170 28 U-turn Within the waterway
3 Container 231 35 Stopping in the waterway

3.2. Evaluation Index

Ship abnormal behavior detection is a typical binary classification method, whereby
the detection results can be categorized as normal or abnormal. The simulated trajectory
data are labeled as normal and abnormal, and then the TS-KDE method is utilized for
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abnormal behavior detection. The performance of the TS-KDE method can be evaluated
using various performance metrics, such as accuracy, precision, recall, et al. [45]. These
evaluation indexes are related with the confusion matrix [46], as shown in Table 2. The
three metrics chosen to evaluate the proposed TS-KDE are shown below.

(1) Accuracy represents the proportion of samples with correct abnormal detection results
among the total number of samples, as shown in Equation (12).

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

(2) Precision, also known as positive predictive value, represents the proportion of true
positive samples among the samples detected as positive by abnormal behavior
detection, as shown in Equation (13).

Precision =
TP

TP + FP
(13)

(3) Recall, also known as sensitivity or true positive rate, represents the proportion of
actual positive samples among the positive samples detected by abnormal behavior
detection in the entire set of positive samples, as shown in Equation (14).

Recall =
TP

TP + FN
(14)

Table 2. Confusion matrix of abnormal behavior detection results.

Confusion
Detection Results

Abnormal Normal

Ture results
Abnormal True Positive (TP) False Negative (FN)

Normal False Positive (FP) True Negative (TN)

3.3. Experimental Results and Analysis
3.3.1. Deviation from the Waterway

Experiment 1: Simulating the navigation process of a cargo ship from the North
Anchorage to the Main Waterway, reaching the Dry Bulk Terminal. The ship gradually
accelerates from a stationary state at the North anchorage, and after entering the Main
Waterway, it begins to violate the implemented navigation rules of the port.

Continuously generating new trajectory texts based on the time series of ship trajec-
tories and performing real-time cosine similarity measurements with 40 types of pattern
trajectory texts, the ship’s movement was found to match the inbound traffic pattern cate-
gory 23, as shown in Figure 5a. Figure 5b displays the trajectories of traffic pattern category
23 and experimental ship 1. It can be seen from Figure 5b that the traffic pattern recognition
method proposed in this paper can accurately identify the ship’s traffic pattern. Using the
proposed ship abnormal behavior detection method to obtain the abnormal factor values of
the ship’s behavior states, this paper identifies abnormal behavior when Abnor_ f actor ≥ 3.
To facilitate visual display, when the abnormal factor value is greater than 3, it is marked
as 3, as shown in Figure 6a. Meanwhile, by comparing the course and speed information
of experimental ship 1 with the speed and course of the corresponding traffic pattern, it
was found that the ship violated the port’s navigational rules by diagonally entering the
South Boat Waterway (a waterway dedicated to small ships leaving the port) after entering
the waterway. Furthermore, the ship changed its course multiple times, accelerating to
around 20 knots, significantly exceeding the speed and course distribution of historical
pattern trajectories and the speed limits stipulated by the port. This process was marked as
an anomaly, as shown in Figure 6b,c. In addition, the values of the three metrics accuracy,
precision and recall of experimental ship 1 are shown in Figure 7.
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ship 1 (yellow markers) and trajectory of traffic pattern category 23 (green markers).
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Figure 6. The results of anomaly behavior detection for experimental ship 1. (a) Values of the
abnormal factor of the state of the motion of experimental ship 1. (b) Variation in the course of
experimental ship 1 and traffic pattern category 23 with longitude. (c) Variation in the speed of
experimental ship 1 and traffic pattern category 23 with longitude.
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3.3.2. U-Turn within the Waterway

Experiment 2: Simulating the navigation process of a container ship from the North
Anchorage to the operation area of the Dongjiang Container Terminal in the North Basin.
In this process, the ship first enters the Main Waterway from the North Anchorage, then
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crosses the Main Waterway to enter the South Boat Waterway, and finally performs a
turning maneuver to enter the Main Waterway.

Continuously generating new trajectory texts based on the time series of ship trajec-
tories and performing real-time cosine similarity measurements with 40 types of pattern
trajectory texts, the ship’s movement is found to match inbound traffic pattern category
8, as shown in Figure 8a. Figure 8b shows the trajectory of traffic pattern category 8 and
experimental ship 2. It can be seen in Figure 8b that the traffic pattern recognition method
proposed in this paper can accurately identify the traffic pattern of the ship. Using the
proposed ship abnormal behavior detection method to obtain the abnormal factor values of
the ship behavior states, this paper identifies abnormal behavior when Abnor_ f actor ≥ 3.
To facilitate visual display, when the abnormal factor value is greater than 3, it is marked as
3, as shown in Figure 9a. Meanwhile, a comparison of the course and speed information of
experimental ship 2 with the historical traffic pattern trajectory in terms of speed and course
showed that, after entering the Main Waterway, the ship suddenly made a significant left
turn to enter the South Boat Waterway (a waterway dedicated to small ship leaving the
port). This action, until re-entering the Main Waterway, violated the port’s navigational
rules. Additionally, the ship’s speed and course were below the average values of the
historical pattern trajectory, affecting the normal navigation of the port. This process was
marked as an anomaly, as shown in Figure 9b,c. In addition, the values of the three metrics
of accuracy, precision and recall for experimental ship 2 are shown in Figure 10.
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Figure 8. Recognition of inbound and outbound traffic patterns for experimental ship 2. (a) Traffic
pattern followed by the experimental ship 2 when entering the port. (b) Trajectory of experimental
ship 2 (yellow markers) and trajectory of traffic pattern category 8 (green markers).
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3.3.3. Stopping in the Waterway

Experiment 3: Simulating the navigation process of a container ship from the North
Anchorage to the East Tuki Container Terminal in the West Basin. When the ship enters the
Main Waterway from the North Anchorage, the ship suddenly decelerates until the speed
drops to 0 knots.
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Continuously generating new trajectory texts based on the time series of ship trajec-
tories and performing real-time cosine similarity measurements with 40 types of pattern
trajectory texts, the ship’s movement is found to match inbound traffic pattern category
26, as shown in Figure 11a. Figure 11b shows the trajectory of traffic pattern category 26
and experimental ship 3. It can be seen from Figure 11b that the traffic pattern recogni-
tion method proposed in this paper can accurately identify the traffic pattern of the ship.
Using the proposed ship abnormal behavior detection method to obtain the abnormal
factor values of the ship’s behavior state, this paper identifies abnormal behavior when
Abnor_ f actor ≥ 3. To facilitate visual display, when the abnormal factor value is greater
than 3, it is marked as 3, as shown in Figure 12a. Meanwhile, a comparison of the speed
information of experimental ship 3 with the historical traffic pattern trajectory in terms of
speed shows that the ship starts to decelerate when entering the main channel, slowing
down until the speed drops to 0, affecting the normal navigation of the port, which clearly
violates the port’s navigation rules. This process is marked as an anomaly, as shown in
Figure 12b,c. In addition, the values of the three metrics accuracy, precision and recall of
experimental ship 3 are shown in Figure 13.
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Figure 13. The values of the three metrics accuracy, precision, and recall of experimental ship 3 are
shown in Figure 13.

Table 3 presents the statistical results of anomaly detection for the four sets of simulated
experimental data. Each experiment corresponds to different types and scales of ship
adopting different traffic patterns to enter and leave the port. The model designed in this
paper can detect abnormal ship behavior in all four experiments, demonstrating the model’s
versatility. In addition, with the increase in the number of samples, the time for anomaly
detection will increase accordingly. However, the average time spent identifying each ship’s
behavior state remains relatively constant. The anomaly detection model performs well
in real time and can identify potential abnormal behaviors. The model comprehensively
evaluates whether ship behavior is abnormal based on the ship’s motion state (position,
direction, and speed). Compared with the labeled abnormal trajectory points, the proposed
method achieves an average accuracy of over 90% in identifying abnormal behaviors.
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Table 3. Detection results of abnormal ship behavior in three groups of simulation experiments.

Experiment
Total

Number of
Trajectories

True Positive
Anomalies

Detecting
Anomalous

Points
Accuracy (%) Precision (%) Recall (%) Average

Time (s)

1 417 148 144 98.6 98.6 97.3 0.085
2 424 130 126 96.5 92.6 96.9 0.095
3 576 50 41 97.9 93.2 82 0.091

Average / / / 97.6 94.8 92.1 0.090

4. Discussion

This paper introduces a novel method for detecting abnormal ship behavior in port
waterways based on text similarity and kernel density estimation. Given the assumption
of obtaining ship traffic patterns when entering and leaving the port, a semantic trans-
formation method is employed to convert each traffic pattern into pattern trajectory text.
The method utilizes text similarity measurement to identify the traffic pattern of the target
ship and uses kernel density estimation to detect abnormal ship behavior. Compared to
previous research, the proposed method has several advantages:

(1) Compared with traditional ship traffic pattern recognition methods, this paper con-
verts ship type, course, speed and geospatial attribute semantics into ship trajectory
text, ensuring the integrity of ship movement information. By comparing the sim-
ilarity of texts, ship traffic patterns can be improved in terms of the efficiency and
accuracy of identification results. The traditional ship traffic pattern identification
method calculates the similarity based on the distance between trajectories, which
can easily lead to deviations in ship traffic pattern recognition, leading to false alarms
in detecting abnormal ship behavior. In addition, the traditional ship traffic pattern
identification method measures the similarity between the target ship trajectory and
all trajectories in each traffic pattern, identifies its traffic pattern based on the similarity
measurement value, or finds out the typical trajectories in each traffic pattern, and
calculates the similarity value between target trajectories and typical trajectories to
identify traffic patterns. The above similarity measurement method requires calculat-
ing the distance between trajectory points, which is inefficient. The cosine similarity
measure is a method based on vector calculation. Based on the vector representation
of the target trajectory text and the traffic pattern trajectory text, the traffic pattern can
be identified by simply calculating the cosine similarity between vectors;

(2) Combined with kernel density estimation to construct a ship abnormal behavior
detection method, the abnormal factor value can be set according to the tolerance
of abnormal behavior. This paper constructs a calculation method for ship behavior
abnormality factors and sets corresponding abnormality thresholds according to the
actual needs of the port. For example, to identify potential or suspicious ship behavior,
the threshold should be set to a lower value to identify and take response actions
quickly. The threshold can be set to a higher value to prevent false alarms and increase
the burden on drivers on duty to reduce work pressure.

However, the methods proposed in this paper also have the following limitations:

(1) This method is based on the assumption that ships enter and leave ports according to
port navigation rules. Therefore, it mainly considers the detection of abnormal behav-
iors of single vessels entering and leaving ports, lacking consideration of detecting
ship abnormal behaviors in multi-vessel interaction scenarios. In typical situations,
ships navigate within specific channels, making it difficult to encounter situations
between vessels.

(2) Since this method is data-driven, its results may be influenced by the quality of
ship trajectory data, especially in ship traffic pattern recognition. In future research,
consideration could be given to integrating other maritime data, such as port water
depth data, to improve the accuracy of ship abnormal behavior detection. Additionally,
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the selection of threshold values for abnormal factors significantly affects the results of
abnormal detection. Therefore, appropriate thresholds should be set based on specific
scenarios or environments.

5. Conclusions and Future Work

In this paper, we proposed a method for detecting anomalous ship behavior in port
waters based on text similarity and kernel density estimation. Taking into account the
impact of port traffic rules on ship movements, a text similarity measurement method
is used to identify ship traffic patterns, and kernel density estimation is used to detect
anomalous ship behavior violating port traffic rules in waterways. This study used natural
language processing methods to address the challenge of recognizing traffic patterns in
complex waterways. Additionally, we construct a ship behavior anomaly factor based
on kernel density estimation, effectively detecting abnormal ship behavior against port
traffic rules, with experimental verification results demonstrating an average accuracy
exceeding 90%. From the perspective of inbound and outbound traffic patterns, this
research detects potential anomalous ship behavior in waterways, enriching methods for
detecting abnormal ship behavior in port waters and demonstrating engineering application
potential for ship supervision.

In future research, employing trajectory data with a longer time span could enhance
the accuracy of ship traffic pattern recognition. Additionally, it is advisable to consider inte-
grating satellite imagery, radar data, cargo composition, and contextual information about
the navigational environment to enrich the maritime traffic information, thereby further
improving the accuracy of anomaly behavior detection [47]. In addition, when abnormal
ship behavior is identified, supervisory personnel need to make further confirmations to
clarify the cause of the ship’s abnormal behavior so as to prevent false alarms due to the
ship’s normal navigation adjustments [48].
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Appendix A

In this paper, we visualized ship traffic patterns based on ArcGIS with Electronic
Navigational Charts (ENCs) [44]. Cargo ship trajectories are shown as red lines, and
container ship trajectories are shown in blue. We use yellow arrows to indicate the direction
of motion of the trajectory cluster.



J. Mar. Sci. Eng. 2024, 12, 968 22 of 27J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 22 of 27 
 

 

 
(1) Traffic pattern 1 

 
(2) Traffic pattern 2 

 
(3) Traffic pattern 3 

 
(4) Traffic pattern 4 

 
(5) Traffic pattern 5 

 
 (6) Traffic pattern 6 

 
(7) Traffic pattern 7 

 
(8) Traffic pattern 8 

 
(9) Traffic pattern 9 

 
(10) Traffic pattern 10 

Figure A1. Cont.



J. Mar. Sci. Eng. 2024, 12, 968 23 of 27J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 23 of 27 
 

 

 
(11) Traffic pattern 11 

 
(12) Traffic pattern 12 

 
(13) Traffic pattern 13 

 
(14) Traffic pattern 14 

 
(15) Traffic pattern 15 

 
(16) Traffic pattern 16 

 
(17) Traffic patte17 

 
(18) Traffic pattern 18 

 
(19) Traffic pattern 19 

 
(20) Traffic pattern 20 

Figure A1. Cont.



J. Mar. Sci. Eng. 2024, 12, 968 24 of 27J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 24 of 27 
 

 

 
(21) Traffic pattern 21 

 
(22) Traffic pattern 22 

 
(23) Traffic pattern 23 

 
(24) Traffic pattern 24 

 
(25) Traffic pattern 25 

 
(26) Traffic pattern 26 

 
(27) Traffic pattern 27 

 
(28) Traffic pattern 28 

 
(29) Traffic pattern 29 

 
(30) Traffic pattern 30 

Figure A1. Cont.



J. Mar. Sci. Eng. 2024, 12, 968 25 of 27J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 25 of 27 
 

 

 
(31) Traffic pattern 31 

 
(32) Taffic pattern 32 

 
(33) Traffic pattern 33 

 
(34) Traffic pattern 34 

 
(35) Traffic pattern 35 

 
(36) Traffic pattern 36 

 
(37) Traffic pattern 37 

 
(38) Traffic pattern 38 

 
(39) Traffic pattern 39 

 
(40) Traffic pattern 40 

Figure A1. The traffic patterns of ships entering and leaving Tianjin Port. 

References 
1. EMSA (European Maritime Safety Agency). Annual Overview of Marine Casualties and Incidents. 2022. Available online: 

https://www.emsa.europa.eu/newsroom/latest-news/item/4867-annual-overview-of-marine-casualties-and-incidents-2021.htm
l (accessed on 1 March 2024). 

Figure A1. The traffic patterns of ships entering and leaving Tianjin Port.



J. Mar. Sci. Eng. 2024, 12, 968 26 of 27

References
1. EMSA (European Maritime Safety Agency). Annual Overview of Marine Casualties and Incidents. 2022. Available online: https://

www.emsa.europa.eu/newsroom/latest-news/item/4867-annual-overview-of-marine-casualties-and-incidents-2021.html (ac-
cessed on 1 March 2024).

2. UNCTAD. Review of Maritime Transportation 2022. Available online: https://unctad.org/system/files/official-document/rmt2
022_en.pdf (accessed on 1 March 2024).

3. Bai, X.; Cheng, L.; Iris, Ç. Data-driven financial and operational risk management: Empirical evidence from the global tramp
shipping industry. Transp. Res. Part E Logist. Transp. Rev. 2022, 158, 102617. [CrossRef]

4. Zhang, X.; Li, R.; Wang, C.; Xue, B.; Guo, W. Robust optimization for a class of ship traffic scheduling problem with uncertain
arrival and departure times. Eng. Appl. Artif. Intell. 2024, 133, 108257. [CrossRef]

5. Wang, C.; Zhang, X.; Gao, H.; Bashir, M.; Li, H.; Yang, Z. Optimizing Anti-collision Strategy for MASS: A Safe Reinforcement
Learning Approach to Improve Maritime Traffic Safety. Ocean Coast. Manag. 2024, 253, 107161. [CrossRef]

6. Zheng, K.; Zhang, X.; Wang, C.; Li, Y.; Cui, J.; Jiang, L. Adaptive collision avoidance decisions in autonomous ship encounter
scenarios through rule-guided vision supervised learning. Ocean Eng. 2024, 297, 117096. [CrossRef]

7. Shu, Y.; Han, B.; Song, L.; Yan, T.; Gan, L.; Zhu, Y.; Zheng, C. Analyzing the spatio-temporal correlation between tide and shipping
behavior at estuarine port for energy-saving purposes. Appl. Energy. 2024, 367, 123382. [CrossRef]

8. Liang, M.; Weng, L.; Gao, R.; Li, Y.; Du, L. Unsupervised maritime anomaly detection for intelligent situational awareness using
AIS data. Knowl.-Based Syst. 2024, 284, 111313. [CrossRef]

9. Sidibé, A.; Gao, S. Study of automatic anomalous behaviour detection techniques for maritime vessels. J. Navig. 2017, 70, 847–858.
[CrossRef]

10. Laxhammar, R. Anomaly detection for sea surveillance. In Proceedings of the 2008 11th International Conference on Information
Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–8.

11. Zhang, B.; Ren, H.; Wang, P.; Wang, D. Research Progress on Ship Anomaly Detection Based on Big Data. In Proceedings of the
2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 16–18 October
2020; pp. 316–320. [CrossRef]

12. Rong, H.; Teixeira, A.P.; Soares, C.G. Data mining approach to shipping route characterization and anomaly detection based on
AIS data. Ocean Eng. 2020, 198, 106936. [CrossRef]

13. Laxhammar, R.; Falkman, G.; Sviestins, E. Anomaly detection in sea traffic-a comparison of the gaussian mixture model and the
kernel density estimator. In Proceedings of the 2009 12th International Conference on Information Fusion, Seattle, WA, USA, 6–9
July 2009; pp. 756–763.

14. Mascaro, S.; Nicholso, A.E.; Korb, K.B. Anomaly detection in vessel tracks using Bayesian networks. Int. J. Approx. Reason. 2014,
55, 84–98. [CrossRef]

15. Farahnakian, F.; Nicolas, F.; Farahnakian, F.; Nevalainen, P.; Sheikh, J.; Heikkonen, J.; Raduly-Baka, C. A Comprehensive Study of
Clustering-Based Techniques for Detecting Abnormal Vessel Behaviour. Remote Sens. 2023, 15, 1477. [CrossRef]

16. Zhao, L.; Shi, G. Maritime anomaly detection using density-based clustering and recurrent neural network. J. Navig. 2019, 72,
894–916. [CrossRef]
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