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Abstract: Autonomous underwater vehicles (AUVs) are susceptible to non-line-of-sight (NLOS) er-
rors and noise bias at receiving stations during the application of hydroacoustic localization systems,
leading to a degradation in positioning accuracy. To address this problem, this paper optimizes the
Chan-Taylor algorithm. Initially, we propose the Weighted Modified Chan-Taylor (WMChan-Talor)
algorithm, which introduces dynamic weights into the Chan algorithm to correct noise variance at
measurement stations, thereby improving the accuracy of AUV positioning. Computer simulations
validate the effectiveness of the WMChan-Taylor algorithm in enhancing positioning accuracy. To
further address the accuracy degradation caused by noise deviations across different receiving sta-
tions, we introduce an error-corrected WMChan-Taylor algorithm. This algorithm utilizes a standard
residual function to eliminate significant delays caused by large errors at receiving stations and
applies standard residual weighting to improve the combined positioning solution. The performance
of the error-corrected WMChan-Taylor algorithm is demonstrated through both computer and semi-
physical simulation experiments, confirming its capability to isolate noisier stations and thus enhance
overall positioning accuracy.

Keywords: autonomous underwater vehicle; hydroacoustic positioning systems; Chan-Taylor;
weighted modified Chan-Taylor (WMChan-Taylor); error-corrected WMChan-Taylor

1. Introduction

With the growing interest in oceanic exploration, autonomous underwater vehicles
(AUVs) play a vital role in marine research activities, such as ocean pollution monitor-
ing [1], marine biology exploration [2], and pipeline inspection [3]. To maximize the AUV’s
efficiency, reliable navigation information is essential, and precise positioning is mandatory
for effective navigation and control [4]. AUVs employ a range of underwater positioning
technologies, including underwater acoustic systems [5], inertial navigation systems [6],
dead reckoning systems [7], and geophysical navigation systems [8]. Among these, un-
derwater acoustic positioning systems are the most commonly used to localize AUVs.
These systems calculate the AUV’s position by analyzing acoustic propagation times using
algorithms and refining the estimates. Key technologies include time of arrival (TOA) [9],
time difference of arrival (TDOA) [10], angle of arrival (AOA) [11], and received signal
strength indicator (RSSI) [12]. TDOA is particularly valued for its simplicity, real-time
capabilities, and independence from time synchronization between the sound source and
sensors, making it useful not only in underwater positioning but also in terrestrial wireless
systems. Addressing the nonlinear optimization challenges of TDOA positioning typically
involves three primary solution methods: linearization, nonlinear iterative, and hybrid
localization algorithms [13–16].
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Linear algorithms offer significant benefits, including straightforward computational
processes, excellent real-time performance, and robust convergence. However, linearizing
nonlinear positioning equations can degrade performance, particularly in noisy environ-
ments that significantly increase positioning errors [17]. Currently, existing TDOA methods
typically require solving nonlinear hyperbolic equations, necessitating the use of a non-
linear iterative method. This process is computationally intensive and time-consuming.
Kun et al. proposed an enhanced AUV-aided TDOA localization algorithm (EATLA) for
underwater acoustic sensor networks (UASNs), which achieves relatively higher accuracy
with smaller calculations and overcomes some traditional localization drawbacks [18]. To
manage the high computational load from extensive observational data and potential local
optima in the least squares method, Chen et al. applied the implicit function theorem to
derive the Jacobian matrix for linear and circular measurement configurations [19]. This
matrix serves as a constraint, and an optimization algorithm is used to enhance position-
ing accuracy in shallow water areas. Xu et al. proposed an iterative stepping algorithm
that has been followed to solve the evaluation function and obtain the optimal positions
of the sensors. The algorithm ensured that the computation complexity should remain
limited, even when the number of sensors is increased [20]. To minimize errors, Lekkas
et al. employed statistical testing to assess the quality distribution of observed values, thus
improving positioning accuracy [21]. Furthermore, nonlinear iterative methods include
Fang, SX, SI, and Taylor series expansions [22,23]. To reduce the location bias and improve
location accuracy, Liang et al. presented a novel bias-reduced method based on an iterative
constrained weighted least squares algorithm [24]. These methods; however, suffer from
limitations such as inefficient use of measurement data and high initial precision require-
ments [25]. Furthermore, the success of these algorithms in achieving high-precision results
presupposes that TDOA measurement errors are normally distributed. Nevertheless, the
effectiveness of nonlinear iterative methods heavily relies on the accuracy of initial values.
Imprecise initial values can cause the algorithm to diverge, failing to converge effectively
to the true target value.

Hybrid localization algorithms combine various algorithms, such as least square and
nonlinear expectation maximization (LS-NLEM) [26], semidefinite programming with
weighted least squares (SDP-WLS) [27], and singular value decomposition with least
squares (SVD-LS) [28], Chan-Taylor algorithm [29]. Research indicates that these algo-
rithms offer superior accuracy under similar conditions and effectively mitigate slow
convergence caused by inaccuracies in initial values. Moreover, they are less sensitive
to external environmental changes compared to single-method approaches. However,
underwater environments, characterized by their complexity and numerous obstructions,
significantly impede the propagation of sound signals. Most signals received at stations
are influenced by reflections and multipath effects, leading to significant non-line-of-sight
(NLOS) errors. These non-Gaussian TDOA values compromise the efficacy of localization
algorithms. Conventional methods like least squares, Chan’s algorithm, and Taylor series
expansion often overlook these NLOS effects. To address these challenges, researchers
have developed wireless sensor network localization algorithms using particle swarm
optimization (PSO) to reduce the biases typical of traditional methods [30–32]. Addition-
ally, Chen et al. introduced an advanced TDOA/AOA localization method utilizing the
dandelion optimization algorithm, which enhances optimization performance by integrat-
ing optimal solutions from two populations through a multi-objective mechanism [33].
Nevertheless, as TDOA and AOA errors increase, the accuracy of the final convergence
results deteriorates. Furthermore, the current position solution process fails to account for
noise deviations between different stations under NLOS conditions, adversely affecting
localization accuracy.

To address the issues discussed, this paper introduces a novel position-solving algo-
rithm for the hydroacoustic localization system of AUV. This novel algorithm estimates
the noise variance within the Chan-Taylor framework to minimize NLOS errors and en-
hance positioning accuracy by defining a standard residual function that isolates receiving
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stations with significant noise deviations. Initially, the weighted modified Chan-Taylor
(WMChan-Taylor) was developed based on the Chan-Taylor algorithm. The WMChan-
Taylor algorithm addresses the issue of diminished positioning accuracy, which arises
from substantial initial errors in the Chan-Taylor algorithm due to NLOS conditions, by
integrating a dynamic weighting mechanism. Subsequently, the WMChan-Taylor algorithm
is optimized to mitigate the impact of noise bias at the receiving station. An error-corrected
version of this algorithm is then proposed, which employs a standard residual function as
an evaluative metric. This function helps eliminate receiving stations with high measure-
ment noise variance and applies residual weighting to the position solution combinations
for enhanced optimization and improved positioning accuracy.

The rest of this paper is organized as follows. Section 2 outlines the TDOA system
model and the Chan-Taylor algorithm. Section 3 discusses the WMChan-Taylor algorithm
and the error-corrected WMChan-Taylor algorithm introduced in this paper. The proposed
algorithms are then simulated and analyzed in Section 4. Section 5 further validates these
algorithms by establishing a semi-physical simulation platform. Finally, Section 6 concludes
the paper and suggests potential avenues for future research.

2. System Model

This section presents the mathematical model of an acoustic localization system for
AUVs that utilizes the TDOA system. It further analyzes the commonly used Chan-Taylor
algorithm within this framework and identifies its limitations.

2.1. Time Difference of Arrival System

Hydroacoustic positioning technology utilizes a network of hydrophone buoys and
seafloor stations to acoustically determine the positions of AUVs. In this system, the AUV
is equipped with an interrogator that periodically transmits interrogation pulses. These
pulses are received and processed by either a seafloor station or a buoy, which then sends
a return acknowledgment signal to the interrogator. The system calculates the distance
between the interrogator and the transponder by measuring the acoustic round-trip time
and uses this data to determine the AUV’s position relative to each transponder, thereby
ensuring precise positioning. The fundamental measurement principle of this technology is
based on the propagation time of the acoustic signal, which is mathematically represented
as follows:

(xi − x)2 + (yi − y)2 + (zi − z)2 = c2(ti − t)2 (1)

In Equation (1), (xi, yi, zi) represents the ith array element, c denotes the underwater
speed of sound, and ti indicates the moment when the signal is received by array element i,
i = 1, 2, · · · , N. (x, y, z) specifies the three-dimensional (3D) coordinates of the target point,
and t corresponds to the moment of signal emission relative to the receiver’s clock.

Hydroacoustic positioning techniques vary based on time synchronization conditions
and can be classified into two categories: synchronous and non-synchronous systems. In
non-synchronous systems, the sound source clock is not synchronized with the measure-
ment clock, represented by t ̸= 0. High-precision positioning requires the elimination of
clock error interference, denoted by ∆t. When the sound source and receiving system times
are not synchronized, Equation (1) is adapted to a non-synchronous positioning model.

As depicted in Figure 1, once the target depth is established, measuring the TDOA
between the source on the AUV and various base array elements enables the derivation of
quadratic equations that define a hyperbolic curve [10]. Assuming that the coordinates of
the AUV are represented by (x, y, z) and those of the receiver by (xi, yi, zi). The distance ri
between the moving AUV and the receiver satisfies the following condition:

r2
i = (xi − x)2 + (yi − y)2 + (zi − z)2

= Ki − 2xix − 2yiy − 2ziz + x2 + y2 + z2 (2)

where Ki = x2
i + y2

i + z2
i .



J. Mar. Sci. Eng. 2024, 12, 974 4 of 21

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 22 
 

 

the AUV are represented by ( , , )x y z   and those of the receiver by ( , , )i i ix y z  . The dis-
tance 𝑟 between the moving AUV and the receiver satisfies the following condition: 

2 2 2 2

2 2 2

( ) ( ) ( )

2 2 2
i i i i

i i i i

r x x y y z z

K x x y y z z x y z

= − + − + −

= − − − + + +
 (2) 

where 
2 2 2

i i i iK x y z= + + . 

 
Figure 1. TDOA positioning model. 

Assuming ,1ir  represents the difference between the distance from the AUV to the 
ith ሺ𝑖 > 1ሻ receiver and the distance to the first receiver, it can be expressed as follows: 

,1 1i ir r r= −  (3)

where ,1 ,1i ir cd= , ,1id  is TDOA values. 
From Equation (3), there is: 

2 2 2 2 2
,1 ,1 1 12 2 2 2i i i i i ir r r r K x x y y z z x y z+ + = − − − + + +  (4)

The matrix of Equation (3) is expressed as: 
2

,1 ,1 ,1 ,1 1 1 ,12( , , , )( , , , )T
i i i i i ix y z r x y z r K K r= − −  (5) 

where ,1 1i ix x x= − , ,1 1i iy y y= − , ,1 1i iz z z= − . 
When x, y and r are considered unknown variables, other parameters can be practi-

cally measured. Once the depth z of the AUV is determined through depth sensor meas-
urements, and r is dependent on x and y, only x and y remain unknown. With three re-
ceivers configured, two linear equations can be established to derive a unique solution for 
x and y. The Chan-Taylor algorithm enhances accuracy when more than three receivers 
are utilized, and the number of equations surpasses the number of unknowns. 

2.2. Chan-Taylor Algorithm 
In TDOA positioning systems, the Taylor series expansion algorithm serves as both a 

common positional technique and a recursive method for solving nonlinear equations. 
Based on the Taylor median theorem, this algorithm expands the positional equation us-
ing a Taylor series, which theoretically includes infinitely many terms. In practice, only 
the first-order derivative term is retained to minimize computational complexity. Never-
theless, this algorithm’s sensitivity to initial estimates can result in slow convergence if 
the starting estimate is poorly chosen. To address this issue, the Chan algorithm can be 

Figure 1. TDOA positioning model.

Assuming ri,1 represents the difference between the distance from the AUV to the ith
(i > 1) receiver and the distance to the first receiver, it can be expressed as follows:

ri,1 = ri − r1 (3)

where ri,1 = cdi,1, di,1 is TDOA values.
From Equation (3), there is:

r2
i,1 + 2ri,1r1 + r2

1 = Ki − 2xix − 2yiy − 2ziz + x2 + y2 + z2 (4)

The matrix of Equation (3) is expressed as:

2(xi,1, yi,1, zi,1, ri,1)(x, y, z, r1)
T = Ki − K1 − r2

i,1 (5)

where xi,1 = xi − x1, yi,1 = yi − y1, zi,1 = zi − z1.
When x, y and r are considered unknown variables, other parameters can be practically

measured. Once the depth z of the AUV is determined through depth sensor measurements,
and r is dependent on x and y, only x and y remain unknown. With three receivers
configured, two linear equations can be established to derive a unique solution for x and y.
The Chan-Taylor algorithm enhances accuracy when more than three receivers are utilized,
and the number of equations surpasses the number of unknowns.

2.2. Chan-Taylor Algorithm

In TDOA positioning systems, the Taylor series expansion algorithm serves as both
a common positional technique and a recursive method for solving nonlinear equations.
Based on the Taylor median theorem, this algorithm expands the positional equation using
a Taylor series, which theoretically includes infinitely many terms. In practice, only the
first-order derivative term is retained to minimize computational complexity. Nevertheless,
this algorithm’s sensitivity to initial estimates can result in slow convergence if the starting
estimate is poorly chosen. To address this issue, the Chan algorithm can be employed to
initially determine the observed data’s position, which then serves as the initial input for
the Taylor series expansion algorithm.

The Chan algorithm provides an analytical solution to the hyperbolic intersection
model system of equations, distinguished by its explicit analytical formulation and minimal
computational demands. In the AUV motion process, it is assumed that the depth z is

known and variable za =
[
zT

p , r1

]T
remains unknown. The error vector associated with

TDOA noise is derived from Equation (5) as follows:

Ψ = h − Gaz0
a (6)
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where h = 1
2


K1 − K2 + r2

2,1
K1 − K3 + r2

3,1
...

K1 − KN + r2
n,1

, Ga =


x2,1 y2,1 z2,1 r2,1
x3,1 y3,1 z3,1 r3,1

...
xn,1 yn,1 zn,1 rn,1

.

Where the maximum likelihood estimation of za is

za = (GT
a φ−1Ga)

−1
GT

a φ−1h (7)

where φ is the error matrix, φ = c2BQBT , c is the speed of sound, Q is the Gaussian error
covariance matrix of the measurements. B = diag(r0

2, r0
3, · · · , r0

n), r0
n is the actual distance

from the nth receiver signal to the AUV.
The Chan algorithm treats x, y, r1 as a distinct variable and assumes that the mean of

za represents the actual value when the resultant TDOA measurement error is minimal.
Define za,1 = x0 + e1, za,2 = y0 + e2, za,3 = z0 + e3, where e1, e2 and e3 represent

the estimation errors of za. A system of equations is derived by subtracting the first two
elements of za from x1 and y1, then squaring these elements.

φ′ =

(za,1 − x1)
2

(za,2 − y1)
2

z2
a,3

−

1 0
0 1
1 1

[(x − x1)
2

(y − y1)
2

]
(8)

The covariance matrix of φ′ is ϕ′ =
[
φ′φ′T

]
= 4B′cov(za)B′, where B′ = diag(x0 −

x1, y0 − y1, r0
1). Then, the maximum likelihood estimation of z′a is:

z′a = (G′
a

T
φ′−1G′

a)
−1

G′
a

T
φ′−1h′ (9)

Determine whether zp =
√

z′a +
[

x1
y1

]
or zp = −

√
z′a +

[
x1
y1

]
using Equation (9).

This allows the identification of both the positive and negative values of
√

z′a, ultimately
providing the initial coordinates (x0, y0).

A Taylor expansion at the initially guessed target location (x0, y0), which disregards
components higher than the second order, is performed as follows.

ψ = ht − Gtδ (10)

where δ =

[
∆x
∆y

]
, ht =

[
r2,1 − (r2 − r1)
r3,1 − (r3 − r1)

]
, Gt =

[
x1−x0

r1
− x2−x0

r2

y1−y0
r1

− y2−y0
r2

x1−x0
r1

− x3−x0
r3

y1−y0
r1

− y3−y0
r3

]
.

Where ψ is the measurement error vector and ri(i = 1, 2, · · · , n) is the distance
between the initial position and each receiving station. The weighted least squares solution
of Equation (10) is:

δ = (GT
t Q−1Gt)

−1
GT

t Q−1ht (11)

Q represents the covariance matrix of the delay difference measurements, it is defined
as follows:

x′0 = x0 + ∆x
y′0 = y0 + ∆y

(12)

Repeat the process until ∆x and ∆y sufficiently small to meet the predefined limit ξ.

|∆x|+ |∆y| < ξ (13)

The (x′0, y′0) obtained at this stage represents the position estimation of the target.
The main steps of the Chan-Taylor algorithm are illustrated in Figure 2, with the

processes described as follows [29].
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Step 1. Set parameters such as the number of iterations, convergence threshold, and
other critical parameters.

Step 2. Use the Chan algorithm for initial target position.
Step 3. Implement iterative optimization using the Taylor series expansion algorithm.

Begin with the initial position from step 2 and iteratively refine this estimate to approach
the true position.

Step 4. After each iteration, verify whether the preset convergence conditions are met.

3. Optimized Localization Algorithms
3.1. Weighted Modified Chan-Taylor Algorithm

The Chan-Taylor algorithm employs the Chan algorithm to address the recursive com-
putation of initial values required by the Taylor series expansion algorithm. The precision of
the initial values obtained significantly influences the outcomes and convergence speed of
the Taylor series expansion. Typically, the Chan algorithm necessitates the estimation of the
measurement noise matrix Q, during the solution process. Q is variable in practice, and its
fluctuations affect the accuracy of the Chan algorithm. Consequently, to enhance the initial
value determination in scenarios with NLOS errors, the weighted modified Chan-Taylor
(WMChan-Taylor) algorithm has been developed.

The AUV obtains depth z from a depth sensor. Assuming that M (M > 3) receiving
stations are involved in localization, the system of equations formed by any two of the M-1
equations from Equation (6) yields a unique solution. The solutions for the various systems
of equations are determined separately for each (xk, yk) (k = 1, 2, · · · , n), and a residual
function is subsequently constructed as follows:

ei(xk, yk) = ri1 − rik (14)

Since z is known, it follows that ri1 =
√
(xi − x)2 + (yi − y)2 −

√
(x1 − x)2 + (y1 − y)2,

rik =
√
(xi − xk)

2 + (yi − yk)
2 −

√
(x1 − xk)

2 + (y1 − yk)
2.

According to Equation (14), the residuals ei from each equation are calculated, and the
residual emin with the smallest absolute value is identified to construct the Q matrix.

Q = diag[emin, emin, · · · , emin] (15)

Flowchart of the WMChan-Taylor is shown in Figure 3, with its main steps as flows.
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Step 1. Set the parameters, including the number of iterations, iteration threshold,
positioning accuracy, number of stations, initial measurement noise matrix, and other
relevant parameters.

Step 2. Use the Chan algorithm for positioning to determine the estimated position
T0(x, y) and solve the system equations, obtaining solution (xk, yk).

Step 3. Calculate the residual ei(xk, yk) = ri1 − rik and construct a new measurement
noise matrix Q = diag[emin, emin, · · · , emin].

Step 4. Iterate the Chan algorithm for weight estimation. Calculate Tk(xk, yk) based on
the newly constructed measurement noise matrix Q, verify the accuracy with T0(x, y), and
update T0(x, y) and k.

Step 5. At the end of each iteration, assess whether the number of iterations k is less
than W. If this condition is met, proceed to step 4. Otherwise, use the results as input for
the Taylor series expansion algorithm.

Step 6. Implement the Taylor series expansion algorithm by taking the results of step 5
as the new initial value, and iterate the algorithm accordingly.

Step 7. If the algorithm satisfies the predefined convergence condition, terminate the
iterations and output the final global optimal solution. If it does not meet the convergence
condition, establish the current iteration result as the new initial value for the next round of
the Taylor series expansion algorithm and continue the iterations.

3.2. Error-Corrected WMChan-Taylor Algorithm

The WMChan-Taylor algorithm enhances the accuracy of the Chan-Taylor algorithm
in scenarios with NLOS errors by adjusting the measurement noise matrix Q of the Chan
algorithm. However, the transmitted positioning signals may be obstructed by obstacles
during AUV operations, and variations in noise across different receiving stations can
lead to significant discrepancies in delay estimation results. Consequently, results from
stations with substantial errors require correction. To address this problem, a standard
residual function is established to exclude position estimates with significant errors, thereby
optimizing the combination of delay estimation solutions. Subsequently, the aggregated
position solutions are further refined by applying standard residual weighting to the
positioning errors of the algorithm.
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The standard residual function was calculated using the following formula:

Cc(x0, y0, Tj) =

[
∑i∈j|ri1 − di0|

]
size(Tj)

(16)

where Tj represents the set of solved matrices for the stations, Tj is the first station serving as
the reference, and the remaining stations form the j combinations.

di0 =
√
(xi − x0)

2 + (yi − y0)
2 −

√
(x1 − x0)

2 + (y1 − y0)
2.

The formula used to calculate the position based on standard residual weighting is
as following.

T =

(
n
∑

j=1
[x0, y0]Cc

−1(x0, y0,Tj)

)
n
∑

j=1
Cc

−1(x0, y0,Tj)
(17)

A flowchart of the error-corrected WMChan-Taylor algorithm is depicted in Figure 4,
with the main steps outlined as follows:
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Step 1. Set parameters, including the determination of the number of stations and
convergence conditions.

Step 2. Determine the minimum number of stations L required in the location-solving
process and select the appropriate scheme.

Step 3. If L represents the minimum number of stations, the WMChan-Taylor algorithm
is executed to determine the position fixing results and calculate the standard residuals.

Step 4. When M exceeds L, the WMChan-Taylor algorithm is implemented, utilizing
delay estimation data from all stations to determine positional location fixing results and



J. Mar. Sci. Eng. 2024, 12, 974 9 of 21

standard residuals. These results are stored in the target candidate set Tj and the standard
residual selection set Ee.

Step 5. Use the station as a reference and sequentially extract the ith time delay value
to form a combination of time delay values. Then, solve for the position based on this
combination and calculate the target position along with the corresponding residuals.

Step 6. Retain the smallest standard residual in step 5 and compute the weighted
position using Equation (17).

4. Analysis of the Simulation Results

During the simulation, the AUV’s simulated motion trajectory consists of four linear
segments and three semicircular segments, as shown in Figure 5. This type of trajectory is
commonly used by AUVs for searching and exploration. Since the AUV’s depth does not
significantly change over short periods of time during missions and the depth sensor can
provide highly accurate data in practical applications, the AUV simulates planar motion at
a constant depth.
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In the simulation setup, the number of receiving stations is four, with coordinates
H1 (0, 0), H2 (0, 200), H3 (200, 200), and H4 (0, 200). H1 serves as the central station. The
position of each station is measured in meters. The AUV starts at an initial position of
(25, 95) with a depth of 3 m underwater. Since the AUV’s depth is fixed, the speed of
sound is set to 1540 m/s, and the number of sampling points is 496. The Bellhop ray
model is utilized to construct the hydroacoustic channel model. The key parameters in the
environmental modeling process using Bellhop are set as follows. Assuming a water depth
of 5000 m, a flat seafloor type, a seafloor sound velocity of 1500 m/s, a seafloor density of
1.8 g/cm3, and a seafloor attenuation coefficient of 0.8 dB·λ−1. The Munk deep-sea acoustic
velocity profiles, with boundaries between depths of 0 and 5000 m, are selected for the
acoustic field simulation. During positioning, the transducer positioning error is 10 cm,
and the ranging error due to time delay is 5 cm.

4.1. Simulation Analysis of WMChan-Taylor Algorithm

In the simulation process, the value of ξc in the WMChan-Taylor algorithm is set
to 0.01, and the iteration threshold W is set to 100. To compare the positioning effects
of different algorithms under varying measurement noise variances, the position error
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Formula (22) and the root mean square error (RMSE) [34] formula are used to evaluate the
accuracy of the proposed algorithm.

RMS =
√
(xi − xi)

2 + (yi − yi)
2 (18)

In the formula, xi and yi represent the estimated values in the X and Y directions at
the ith moment, respectively. xi and yi denote the actual values in the X and Y directions at
the same moment. The larger the RMS value, the greater the error of the algorithm and
the lower its accuracy. Conversely, the smaller the RMS value, the higher the positioning
accuracy of the algorithm.

The positioning results of the Chan, Chan-Taylor, and WMChan-Taylor algorithms
are shown in Figures 6 and 7 when the measurement noise variance σ is set to 0.1 ms.
As illustrated in Figure 6, the positioning results of all three algorithms remain relatively
stable. Figure 7 shows that the maximum RMS value of the Chan algorithm is 0.339 m,
while the maximum RMS values of the Chan-Taylor and WMChan-Taylor algorithms are
0.313 m and 0.312 m, respectively. This indicates that the Chan-Taylor algorithm and the
WMChan-Taylor algorithm optimize the positioning result of the Chan algorithm.
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As shown in Table 1, the changes in the RMS error values for both the Chan-Taylor and
WMChan-Taylor algorithms are not significant, primarily because the initial error values in
the Chan algorithm are small. The RMSE values of the WMChan-Taylor algorithm in the X
and Y directions are 0.0602 m and 0.0677 m, respectively, while those of the Chan-Taylor
algorithm are 0.0652 m and 0.0721 m. This indicates that the WMChan-Taylor algorithm
is more stable than the Chan-Taylor algorithm in terms of computational results when
σ = 0.1 ms.

Table 1. Comparison of the positioning parameters in the Chan, Chan-Taylor, and WMChan-Taylor
algorithms (σ = 0.1 ms).

Algorithm RMS (m) RMSE (m)

maximum value average value X direction Y direction
Chan 0.339 0.083 0.0663 0.0762

Chan-Taylor 0.313 0.081 0.0652 0.0721
WMChan-Taylor 0.312 0.078 0.0602 0.0677

When the measurement noise variance σ is set to 0.5 ms, the localization results of
the Chan, Chan-Taylor, and WMChan-Taylor algorithms are shown in Figures 8 and 9. As
the measurement noise variance increases, the localization error of the Chan algorithm
begins to rise relative to previous results. As shown in Figure 9, the RMS value of the
Chan algorithm changes significantly, reaching a maximum value of 3.241 m. Since the
Chan-Taylor and WMChan-Taylor algorithms both use the Chan algorithm’s results as the
initial value for positioning, the localization error of the Chan algorithm increases as its
results increase. Therefore, as the localization error of the Chan algorithm increases, the
RMS values of these two algorithms also increase, reaching a maximum value of 1.437 m for
both the Chan-Taylor and WMChan-Taylor algorithms. This indicates that both algorithms
limit the propagation of errors in the Chan algorithm.
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In comparing the average RMS values, the Chan-Taylor algorithm reduces the average
error of the Chan algorithm by 0.056 m. Meanwhile, the WMChan-Taylor algorithm
reduces the average error of the Chan algorithm by 0.083 m, outperforming the Chan-Taylor
algorithm, as shown in Table 2. Regarding the RMSE values in the X and Y directions, the
WMChan-Taylor algorithm achieves smaller errors, with 0.2985 m in the X direction and
0.3221 m in the Y direction, compared to 0.3319 m in the X direction and 0.3519 m in the
Y direction for the Chan-Taylor algorithm. This demonstrates that the WMChan-Taylor
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algorithm improves the overall system’s localization stability through threshold values and
iterative optimization.
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Table 2. Comparison of the positioning parameters in the Chan, Chan-Taylor, and WMChan-Taylor
algorithms (σ = 0.5 ms).

Algorithm RMS (m) RMSE (m)

maximum value average value X direction Y direction
Chan 3.241 0.471 0.4782 0.3427

Chan-Taylor 1.437 0.415 0.3319 0.3519
WMChan-Taylor 1.437 0.358 0.2985 0.3221

Further comparisons of the localization results from the Chan, Chan-Taylor, and
WMChan-Taylor algorithms reveal simulation outcomes in Figures 10 and 11. These
simulations used a measurement noise variance of 1 ms as an illustrative example. As the
measurement noise variance increases, the localization error of the Chan algorithm becomes
more noticeable. Since both the Chan-Taylor and WMChan-Taylor algorithms use the
results of the Chan algorithm as the initial value, when the error reaches a maximum value
of 4.532 m, the WMChan-Taylor algorithm applies a weighting correction by estimating the
measurement noise. Although the effect of this correction is not significant, the maximum
error of the WMChan-Taylor algorithm is 2.841 m, compared to 2.871 m for the Chan-Taylor
algorithm. As shown in Table 3, the average error of the WMChan-Taylor algorithm is
0.781 m, which is lower than the 0.813 m mean error of the Chan-Taylor algorithm. The
difference between the two is 0.032 m, representing a decrease in effectiveness compared to
the results under the conditions shown in Table 2.

Table 3. Comparison of the positioning parameters in the Chan, Chan-Taylor, and WMChan-Taylor
algorithms (σ = 1 ms).

Algorithm RMS (m) RMSE (m)

maximum value average value X direction Y direction
Chan 4.532 0.985 0.7486 0.9274

Chan-Taylor 2.871 0.813 0.6606 0.6936
WMChan-Taylor 2.841 0.781 0.5930 0.6637
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The above analyses indicate that the errors of the Chan, Chan-Taylor, and WMChan-
Taylor algorithms all increase with the rise in measurement error. Among them, the
localization accuracy of the Chan algorithm decreases significantly. By employing the
Chan-Taylor and WMChan-Taylor algorithms, localization accuracy can be improved to a
certain extent. The WMChan-Taylor algorithm has better stability and localization accuracy
than the Chan-Taylor algorithm by iteratively optimizing the localization results through
measurement noise estimation.

4.2. Simulation Analysis of Error-Corrected WMChan-Taylor Algorithm

To analyze the effect of the error-corrected WMChan-Taylor algorithm, the total num-
ber of receiving stations M is set to 4 during the simulation, considering only motion in the
horizontal plane. Consequently, the minimum number of stations L required for positional
solutions is 3. All other parameters are identical to those used in the WMChan-Taylor algo-
rithm.

From the analysis results in Section 4.1, it can be observed that when the noise variance
σ is 1 ms, the WMChan-Taylor algorithm exhibits significant localization error. Therefore,
the effect of the error-corrected WMChan-Taylor algorithm can be verified by varying the
noise variance. To compare the impact of changes in noise variance on localization results
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across different receiving stations, Figure 12 illustrates the process of measuring noise
variance changes at receiving stations 3 and 4.
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Figure 12. Changes in the noise variance at the receiving station.

During the simulation, the measurement noise error of receiving station 3 changes
from the 50th sampling point to the 150th sampling point, while the measurement noise
error of the receiving station 4 changes from σ = 0.1 ms to σ = 1 ms between the 300th
and 400th sampling points. At other times, the measurement noise error of the receiving
stations remains constant. All other simulation conditions are consistent with those in
Section 4.1.

The simulation results of the noise variance of the receiving stations under NLOS
conditions are shown in Figures 13 and 14. When the measured noise variance changes,
the WMChan-Taylor algorithm does not correct the receiving stations that exhibit high
measurement variance. As illustrated in Figure 13, excessive measurement noise variance
cannot be mitigated through weight correction, leading to significant deviations in the
localization results. Consequently, the 50th to 150th and the 300th to 400th sampling points
show an increase in the RMS value of the localization error. The WMChan-Taylor algorithm
produces the largest RMS deviation from the 50th to the 150th sampling point, with a
maximum deviation of 2.683 m, and from the 300th to the 400th sampling point, with a
maximum deviation of 3.340 m.
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Compared to the WMChan-Taylor algorithm, the error-corrected WMChan-Taylor
algorithm calculates the target location and corresponding residuals by combining different
station solution equations and applying a weighting function for weighted correction. This
approach reduces the impact of receiving stations with high measurement noise variance
on the localization results. The maximum RMS deviation ranges from 0.993 m between the
50th and 150th sampling points to 1.496 m between the 300th and 400th sampling points.
These values are smaller than those of the WMChan-Taylor algorithm, indicating improved
localization accuracy.

The RMSE values of the error-corrected WMChan-Taylor and WMChan-Taylor algo-
rithms are presented in Table 4. The RMSE values in the X and Y directions for the error-
corrected WMChan-Taylor algorithm are 0.1729 m and 0.2248 m, respectively, which are
smaller than those of the WMChan-Taylor algorithm. This suggests that incorporating addi-
tional error correction into the WMChan-Taylor algorithm enhances positioning stability.

Table 4. Comparison of the positioning parameters in the error-corrected WMChan-Taylor and
WMChan-Taylor algorithms.

Algorithm RMS (m) RMSE (m)

maximum value average value X direction Y direction
WMChan-Taylor 3.340 0.327 0.4401 0.5332
error-corrected

WMChan-Taylor 1.496 0.189 0.1729 0.2248

5. Semi-Physical Simulation Analysis

Due to experimental limitations, this paper applies the ultra-wide band (UWB) po-
sitioning system to establish an experimental platform and verifies the error-corrected
WMChan-Taylor algorithm through semi-physical simulation. UWB is a short-range wire-
less impulse communication technology with advantages such as low energy consumption,
fast transmission, and a simple system. UWB and hydroacoustic positioning technology
have similar localization algorithms, both using the corresponding Chan algorithm, Taylor
series expansion algorithm, and Chan-Taylor algorithm. Therefore, the UWB system can be
used to validate the error-corrected WMChan-Taylor algorithm.

Before conducting the experiment, the UWB equipment must be calibrated. The
calibration process is detailed in Figure 15. A UWB tag is placed on a four-wheeled trolley,
which is controlled to move within the area surrounded by UWB stations. A right-angle
coordinate system is constructed with station 0 as the coordinate origin in meters. The
direction between station 0 and station 1 represents the positive direction of the X axis,
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while the direction between station 0 and station 3 represents the positive direction of the
Y axis. The calibration process consists of straight-line and turning movements. First, the
trolley moves from the marked point (0.80, 2.00) to the point (4.00, 2.00) in a straight line.
Then, the trolley moves in a circular motion with the marked point (4.50, 4.00) as the center
and a 1.5 m radius. The data obtained during the calibration process is processed using the
Kalman filtering algorithm. As a result, the calibrated UWB localization process improved
the localization accuracy in the X and Y directions from ±0.15 m and ±0.27 m to ±0.05 m
and ±0.12 m, respectively.
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The experiment was conducted in a pool measuring 2 m in width and 4 m in length,
as depicted in Figure 16. In this setup, a robotic fish equipped with a UWB tag swims
on the water surface, as illustrated in Figure 17. As the robotic fish swims, the UWB tag
continuously emits electromagnetic wave signals, which undergo multipath propagation
due to reflections from the water surface. Additionally, since the experiment takes place
indoors, walls also reflect these signals. Consequently, the variation in noise deviation
between the receiving stations can be simulated by adjusting the distance L between each
station and the wall, as shown in Figure 18.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 22 
 

 

coordinate system is constructed with station 0 as the coordinate origin in meters. The 
direction between station 0 and station 1 represents the positive direction of the X axis, 
while the direction between station 0 and station 3 represents the positive direction of the 
Y axis. The calibration process consists of straight-line and turning movements. First, the 
trolley moves from the marked point (0.80, 2.00) to the point (4.00, 2.00) in a straight line. 
Then, the trolley moves in a circular motion with the marked point (4.50, 4.00) as the center 
and a 1.5 m radius. The data obtained during the calibration process is processed using 
the Kalman filtering algorithm. As a result, the calibrated UWB localization process im-
proved the localization accuracy in the X and Y directions from ±0.15 m and ±0.27 m to 
±0.05 m and ±0.12 m, respectively. 

 
Figure 15. UWB calibration. 

The experiment was conducted in a pool measuring 2 m in width and 4 m in length, 
as depicted in Figure 16. In this setup, a robotic fish equipped with a UWB tag swims on 
the water surface, as illustrated in Figure 17. As the robotic fish swims, the UWB tag con-
tinuously emits electromagnetic wave signals, which undergo multipath propagation due 
to reflections from the water surface. Additionally, since the experiment takes place in-
doors, walls also reflect these signals. Consequently, the variation in noise deviation be-
tween the receiving stations can be simulated by adjusting the distance L between each 
station and the wall, as shown in Figure 18. 

 
Figure 16. Experimental environment. Figure 16. Experimental environment.

During the experiment, the robotic fish maintained the same tail swing amplitude to
ensure a consistent movement speed in the pool. To compare the differences in localiza-
tion results between the error-corrected WMChan-Taylor algorithm, the WMChan-Taylor
algorithm, and the Chan-Taylor algorithm, the value of L was set to 1 m, 0.8 m, 0.6 m,
0.4 m, and 0.2 m. The parameters of each algorithm were kept consistent with the previous
simulation conditions.
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The experimental results are shown in Figures 19–21. The RMS values exhibit an
increasing trend over time because the water surface ripples as the robotic fish swims in
the pool, causing the multipath propagation effect of the electromagnetic wave signals to
intensify. Since the error-corrected WMChan-Taylor algorithm and the WMChan-Taylor
algorithm iteratively measure the noise matrix, their RMS values are lower than the Chan-
Taylor algorithm.
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When receiving station 2 is at a distance of L = 1 m or 0.8 m from the wall, signal reflec-
tions from the wall do not significantly affect station 2 because it is still some distance away.
Thus, the RMS values of the error-corrected WMChan-Taylor algorithm, the WMChan-
Taylor algorithm, and the Chan-Taylor algorithm are all relatively low, maintaining higher
localization accuracy. As L decreases, the effect of wall reflections on station 2 begins to
increase. When L = 0.2 m, the WMChan-Taylor algorithm and the Chan-Taylor algorithm
have the largest errors, with RMS values of 0.78 m and 0.83 m, respectively. Although the
WMChan-Taylor algorithm optimizes the localization results of the Chan-Taylor algorithm,
the optimization effect is not obvious at this point. Compared to the WMChan-Taylor
algorithm, the maximum RMS value of the error-corrected WMChan-Taylor algorithm at
L = 0.2 m is 0.61 m, which is smaller than the RMS value of the WMChan-Taylor algo-
rithm under the same conditions. This indicates that the error-corrected WMChan-Taylor
algorithm can isolate station 2, which exhibits larger errors. However, localization accu-
racy begins to decline as only three receiving stations remain to position the robotic fish
following isolation.

Comparing the variation in RMSE values for different values of L, the results are
displayed in Figure 22. The error-corrected WMChan-Taylor algorithm demonstrates the
smallest change in RMSE values, indicating greater stability. Specifically, when L = 1 m,
the noise deviation impact of station 2 is relatively minor. Nonetheless, the RMSE of the
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error-corrected WMChan-Taylor algorithm is 0.088 m, which is less than the 0.102 m of the
WMChan-Taylor algorithm. This improvement stems from the error-corrected algorithm’s
use of standardized location-solving combinations and the application of a standard resid-
ual weighting to the positional combinations, further correcting the localization error and
enhancing result stability.
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Semi-physical simulation experiments demonstrate that the error-corrected WMChan-
Taylor algorithm effectively reduces the detrimental effects of NLOS errors and station
noise bias on localization results.

6. Conclusions

This paper optimizes the Chan-Taylor algorithm to mitigate the impact of NLOS errors
and noise deviations at the receiving stations on the accuracy of AUV hydroacoustic local-
ization solutions. The WMChan-Taylor algorithm is introduced, incorporating dynamic
weights into the Chan algorithm to address issues such as long iteration times or dispersion
due to large initial value errors from NLOS errors. Simulation results demonstrate that
this algorithm effectively uses weights to correct measurement noise variance, optimizes
initial values, and enhances localization accuracy. To further address positioning errors
caused by varying measurement noise deviations among different receiving stations during
underwater positioning, the error-corrected WMChan-Taylor algorithm is proposed. This
algorithm introduces a standard residual function to eliminate time delays with large
errors at the receiving stations. It applies standard residual weighting to the resultant
position solution combinations for further optimization, achieving an optimal combination
of positioning solutions. Computer and semi-physical simulation experiments verify that
the error-corrected WMChan-Taylor algorithm effectively isolates positioning errors from
stations with larger measurement noise variances, significantly enhancing overall position-
ing accuracy. Moreover, the algorithm improves the stability of the positioning results by
implementing weighted processing for the solution combination.

In this paper, the effect of station arrangement on the AUV positioning solution
algorithm for hydroacoustic systems was not explored. Future research could integrate the
station arrangement with the localization-solving algorithm to enhance the optimization
further. Moreover, incorporating intelligent algorithms or Kalman filters may reduce the
significant noise bias from the stations during the solution process.
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