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Abstract: In response to challenges such as narrow visibility for ship navigators, limited field of
view from a single camera, and complex maritime environments, this study proposes panoramic
visual perception-assisted navigation technology. The approach includes introducing a region-of-
interest search method based on SSIM and an elliptical weighted fusion method, culminating in the
development of the ship panoramic visual stitching algorithm SSIM-EW. Additionally, the YOLOv8s
model is improved by increasing the size of the detection head, introducing GhostNet, and replacing
the regression loss function with the WIoU loss function, and a perception model yolov8-SGW for
sea target detection is proposed. The experimental results demonstrate that the SSIM-EW algorithm
achieves the highest PSNR indicator of 25.736, which can effectively reduce the stitching traces
and significantly improve the stitching quality of panoramic images. Compared to the baseline
model, the YOLOv8-SGW model shows improvements in the P, R, and mAP50 of 1.5%, 4.3%, and
2.3%, respectively, its mAP50 is significantly higher than that of other target detection models, and
the detection ability of small targets at sea has been significantly improved. Implementing these
algorithms in tugboat operations at ports enhances the fields of view of navigators, allowing for the
identification of targets missed by AISs and radar systems, thus ensuring operational safety and
advancing the level of vessel intelligence.

Keywords: panoramic vision; object detection; visual perception; intelligent vessels

1. Introduction

The development and demands of the marine transportation industry have promoted
the innovation of ship intelligence technology, and the intelligentization of ships has
become a new trend in the development of the shipping industry [1,2]. Ship navigation
environment perception refers to the use of radar, LiDAR, Automatic Identification Systems
(AISs), depth sounders, cameras, and other sensors to collect ship navigation environment
data, as well as the building of intelligent algorithms for perception enhancement, data
fusion, target classification, decision recommendations, automatic processing and analyzing
of perception data, and distinguishing potential dangers and abnormal situations (such as
channel obstacles and past ships). Emergency response measures (such as adjusting the
route and speed) to improve the navigation safety of the ship have also been determined.

In the field of ship perception, many scholars have devoted themselves to exploring
how to use computer vision and image processing technology to enhance maritime envi-
ronment perception abilities, and some scholars have used target detection technology to
achieve the automatic perception of maritime targets visually [3]. Qu et al. [4] proposed
an anti-occlusion vessel tracking method to predict the vessel positions, so as to obtain a
synchronized AIS and visual data for data fusion. It can overcome the vessel occlusion
problem and improve the safety and efficiency of ship traffic. Chen et al. [5] proposed a
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new small-ship detection method using a Convolutional Neural Network (CNN) and an
improved Generative Adversarial Network (GAN) to help autonomous ships navigate
safely. Faggioni et al. [6] proposed a low-computational method for multi-object tracking
based on LiDAR point clouds, tested in virtual and real data, demonstrating good per-
formance. Zhu et al. [7] proposed the target detection algorithm YOLOv7-CSAW for the
sea. Compared with the YOLOv7 model, the algorithm enhanced the accuracy and robust-
ness of small-target detection in complex scenes and reduced the occurrence of missed
detection. Maritime targets mainly include ships, buoys, and reefs. Due to insufficient
datasets, current research on the visual perception of maritime targets is mainly focused
on ships [8], and small targets such as buoys mainly use LiDAR for perception [9,10]. Few
visual perception methods have been developed that can perceive other targets. Moreover,
there are cases of missed detection. Further research is needed for practical applications.

A single camera has a small field of view and captures limited information about
the environment. Multiple cameras can capture more environmental information, but it
is presented from multiple perspectives; the crew needs to perform frequent perspective
switching and cannot watch comprehensive environmental information at the same time.
Stitching images from different perspectives into panoramic images for display can solve
these problems. In this regard, many scholars have conducted research on panoramic vision
technology and have achieved certain results in the field of land transportation [11]. Zhang
et al. [12] proposed a distortion correction (DC) and perspective transformation (PT) method
based on a LookUp Table (LUT) transformation to enhance the processing speed of image
stitching algorithms, generating panoramic images to assist in parking. Christian et al. [13]
introduced a real-time image stitching method to improve the horizontal field of view for
object detection in autonomous driving. Compared to land transportation systems such as
intelligent driving perception in automobiles, which can provide all key visual information
related to the driving environment [14] and assist in collision avoidance, pedestrian and
vehicle detection, and visual parking aid [15], the panoramic perception systems of ships
are still in their infancy and are not widely applied in maritime settings [16].

To enhance the perception capabilities of ship navigation environments, this study
is based on panoramic image stitching and object detection algorithms. A real-time envi-
ronmental perception technology for assisting ship navigation is proposed, and a visual
assistance perception system for application on tugboats is constructed. The goal is to
ensure the safety of ship navigation and promote the intelligent development of ships.

2. Construction of Ship Panoramic Vision Mosaic Algorithm
2.1. Panoramic Image Stitching Method

The panoramic image stitching algorithm refers to the alignment and fusion of multiple
images by means of extraction, matching, and registration of image feature points [17].
Existing image stitching techniques typically extract features from the entire image during
the feature extraction stage, resulting in many invalid feature points, which use computing
resources and influence the accuracy of subsequent registration [18]. In terms of image
fusion algorithms, there are mainly average weighting methods and fade-in/fade-out
methods. Although these fusion algorithms can weaken the traces produced by image
stitching, the effect is general, and there is still room for improvement [19].

This paper presents an image stitching approach: the SSIM, SURF, and Elliptical
Weighted Algorithm Stitcher (SSIM-EW). In addition to the image stitching method based
on Speeded-Up Robust Features (SURFs) [20], the region-of-interest search method based
on the Structural Similarity Index Measure (SSIM) [21] and the elliptical weighted fusion
method are added to improve the algorithm stitching performance and reduce issues such
as gaps and artifacts that may arise during the stitching process. The specific steps are
illustrated in Figure 1.
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Figure 1. Flowchart of panoramic image stitching.

2.1.1. The Region-of-Interest Search Method Based on SSIM

By comparing the SSIM values of different image regions, the algorithm identifies the
region with the highest SSIM value as the region of interest of the stitching algorithm. This
approach reduces computational complexity, minimizes interference from invalid feature
points, accelerates feature point extraction speed, and enhances image registration accuracy.
The specific steps are as follows:

The image is divided into N equal areas along the image splicing direction, as shown
in Figure 2. N is a hyperparameter; the larger the value of N is, the slower the speed is and
the higher the positioning accuracy of the overlapping area is. In this research, the value of
N is 10.
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After the image is divided, the regions are superimposed and combined along the
divided direction, and each image forms N sub-images M of different sizes, as follows:

Mk = ∑k
i=1 Si, k ∈ [1, N]. (1)

The SSIM values of the corresponding sub-images are compared, and the SSIM calcu-
lation method is as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , (2)

where µ is the mean of the image, σ is the standard deviation, σ2 is the image variance, and
σxy represents the covariance between images x and y, while C1 and C2 are constants.

The result of the region-of-interest search is shown in Figure 3, where the sub-image
M5 has the highest SSIM value. Therefore, the region of interest is the combination of
regions S1–S5.
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2.1.2. Feature Point Extraction and Matching

In the SURF algorithm for feature extraction, box filters are used to process images
and construct the scale space and to evaluate whether a pixel is located at an edge by
comparing the determinants of the matrix. And in the area around each key point, through
the calculation of continuous sub-windows of varying scales, the final generated feature
vector is a 64-dimensional vector. The expression for the Hessian matrix is as follows:

H(I(x, y)) =

 δ2 I
δx2

δ2 I
δxδy

δ2 I
δxδy

δ2 I
δy2

, (3)

where I(x, y) represents the pixel point.
The process of feature point matching is divided into coarse matching and fine match-

ing. In the coarse matching process, the Euclidean distance between the two groups of
feature points is calculated, the matching points are preliminarily filtered according to the
Euclidean distance, and the feature point pairs satisfying the following formula are retained.

Nearest Euclidean distance
Second − nearest Euclidean distance

< Ratio. (4)

The Ratio represents the threshold for the difference in matching pairs, which is used
to measure the degree of difference between the nearest Euclidean distance matching
pair and the second-nearest Euclidean distance matching pair. A smaller Ratio leads to
fewer retained matching pairs but higher accuracy. In this research, the Ratio is set to 0.35
(0 < Ratio < 1).

In the fine matching, the RANSAC algorithm [22] is used to randomly sample the fea-
ture point pairs retained in the coarse matching stage, the best homography transformation
matrix is continuously and iteratively calculated, and the outliers in the matching points
are eliminated through the matrix. The final matching result is shown in Figure 4.
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The homography transformation [23] is expressed as follows:x′

y′

1

 =

m0 m1 m2
m3 m4 m5
m6 m7 1

x
y
1

 = H

x
y
1

, (5)

where H represents the homography transformation matrix, and (x, y) and (x′, y′) represent
the pixel coordinates before and after the transformation, respectively. The pixel points of
the image to be registered can be mapped to the pixel coordinate system of the reference
image one by one through the best homography transformation matrix.

2.1.3. Image Fusion Based on Elliptic Function Weighting

The elliptical weighted fusion method can solve the issues of noticeable image stitching
artifacts and unnatural transitions. As shown in Figure 5, ML(i, j) is the reference image
whose abscissa ranges from 0 to L2, MR(i, j) is an image to be stitched whose abscissa
ranges from L1 to L3, x is the abscissa of any pixel point of the panoramic image, and L1
and L2 are the left and right boundaries of the overlapping region, respectively. An ellipse
is constructed by taking L1 as the center of the circle, L1L2 as the semi-major axis, and the
length of the semi-minor axis as 1. The ellipse curve in the overlapping area is taken as the
weight curve of the reference image pixel point.
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Let k1 and k2 denote the weights of the left and right images, respectively; then, the
calculation method is as follows:

k1 = 2

√√√√1 − (x − L1)
2

(L2 − L1)
2 , x ∈ (L1, L2), (6)

and
k2 = 1 − k1. (7)

Let M(i, j) represent the pixel point of the fused panoramic image; then, the calculation
formula is as follows:

M(i, j) =


ML(i, j), i < L1,
k1(i)× ML(i, j) + k2(i)× MR(i, j), (i, j) ∈ ML ∩ MR,
MR(i, j), i > L2.

(8)

2.2. Validation of Ship Panoramic Image Stitching Algorithm
2.2.1. Test Dataset

The image data used are a real image of the Xiamen sea scene taken by a shore-based
camera. Due to the lack of panoramic images of real scenes, this paper crops two images
with partially overlapping areas from a complete image and then compares the stitched and
fused images with the original images for verification. Following the principles mentioned
above, a test dataset is established as follows. Left and right images are cropped from
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one image. The left image serves as the reference image, while the right image undergoes
a slight stretching transformation to simulate differences between different cameras. A
portion of the maximum rectangular sub-image extracted from this is selected as the image
to be stitched, as shown in Figure 6. The size of the experimental images is constrained
within the range of 640 × 470–680 × 540 pixels.
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2.2.2. Verification Results
Comparison of Theoretical Data

To verify the effectiveness of the SSIM-EW algorithm proposed in this paper, the
algorithm is compared with a cross-combination of the SIFT-based image registration
method, the SURF-based image registration method, the average weighted fusion (AWF)
method, and the fade-in/fade-out fusion method (DFF). The higher the evaluation index of
Peak Signal-to-Noise Ratio (PSNR) [24], the higher the quality of the stitching. The results
are shown in Table 1.

Table 1. Validation results of stitching algorithm comparison.

Serial Number Stitching Method PSNR Time (s) AP_Time (s)

1⃝ SIFT + AWF 25.382 0.471 0.017
2⃝ SIFT + DFF 25.386 0.517 0.017
3⃝ SURF + AWF 24.690 0.436 0.021
4⃝ SURF + DFF 24.679 0.485 0.021
5⃝ SSIM-EW 25.736 0.435 0.020

In the table, “Time” represents the complete runtime of the stitching algorithm, and
“AP_time” indicates the actual application stitching time. In practical applications, low-
visibility weather such as rainy and foggy days will seriously affect the accuracy of the
algorithm; after fixing the camera parameters, the precomputed homography matrix H and
fusion weight matrix can be directly used for panoramic image stitching without needing
to run the entire image stitching algorithm, which can reduce the algorithm running time
and the adverse effects of bad weather on the stitching effect.

It can be seen from Table 1 that compared with other algorithms, the SSIM-EW algo-
rithm proposed in this paper achieves the best performance in terms of both PSNR and
time, and although it is not the best in terms of AP_time, the algorithm also meets the
real-time requirements of practical applications. Therefore, the performance of SSIM-EW is
the best.
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Comparison of Fused Images

The image stitching results of different algorithms are shown in Figure 7. By comparing
the locally enlarged images, it can be observed that there are still noticeable stitching seams
and severe ghosting in the stitching results of SIFT + AWF and SURF + AWF. In the stitching
results of SIFT + DFF and SURF + DFF, there are no obvious stitching seams, but slight
ghosting still exists. The SSIM-EW proposed in this paper shows superior stitching results
compared to other algorithms, with no apparent stitching seams or ghosting. The image
stitching effect is significantly better than that of other algorithms.
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3. Construction of Ship Navigation Target Perception Model Based on YOLOv8
3.1. Model Architecture

As the latest version of the YOLO series of models, the YOLOv8 model further im-
proves the performance, and the detection capability is faster, more accurate, and easier to
apply [25]. Based on the YOLOv8s network, this paper optimizes the network structure
and regression loss function, proposes the YOLOv8-SGW network, and strengthens the de-
tection capacity of small maritime targets. The optimized YOLOv8-SGW network structure
is shown in Figure 8.
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introduction of GhostNet. For more detailed information, please refer to Section 3.2.

3.2. Model Network Optimization

In the ship environment perception scene, in addition to the normal ship target, there
are many small targets (such as buoys and reefs). To solve the problems of missed detection
and wrong detection in the YOLOv8 model’s small-target detection, this research improves
the neck and head network of the YOLOv8 model, strengthens the small-target detection
ability of the model, introduces lightweight GhostNet [26] in the neck network, strengthens
the feature fusion ability, and ensures the lightweight characteristic of the model.

3.2.1. Increased Detection Head Size

The traditional YOLOv8s has three detection heads with sizes of 80 × 80, 40 × 40, and
20 × 20. Larger detection head sizes can extract target features from higher network layers,
enhancing the perception capabilities for small targets. The original head layer does not
have residual connections with higher network layers, leading to the loss of some target
details in the feature maps generated by the head layer. To further improve the model’s
ability to detect small targets, the feature maps from the neck section are connected as
residuals to even higher network layers, and the detection head size is increased from
80 × 80 to 160 × 160, as shown in Figure 9.



J. Mar. Sci. Eng. 2024, 12, 1042 9 of 21J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 9. Changes in the model network structure after increasing the size of the detection head. 
Inside this red frame is the extra added network layers. 

3.2.2. Introduction of GhostNet 
Increasing the size of the detection head deepens the network layers and enhances 

the network’s feature extraction capabilities. However, it also significantly increases the 
network parameters and computational complexity. To reduce the network parameters 
and computational complexity, the GhostConv module is introduced in the neck network. 
The GhostConv module uses some special linear transformations to generate partial out-
put features. Compared to traditional convolution operations, the computational com-
plexity of the GhostConv module is low while still preserving the feature information for 
the target objects obtained after traditional convolutions. The comparison between the 
CBS module and the GhostConv module is shown in Figure 10. 

 
Figure 10. CBS module and GhostConv module. 

The change in the model network structure after introducing the GhostNet network 
is shown in Figure 11. The CBS module in the C2f module is replaced with the GhostConv 
module, the C2fGhost module is formed, and then, all Conv and C2f modules in the neck 
network are replaced with GhostConv and C2fGhost modules, and the feature infor-
mation extraction capacity is retained while reducing the number of network parameters. 

 
Figure 11. Changes in network structure after introducing GhostNet. 
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3.2.2. Introduction of GhostNet

Increasing the size of the detection head deepens the network layers and enhances
the network’s feature extraction capabilities. However, it also significantly increases the
network parameters and computational complexity. To reduce the network parameters and
computational complexity, the GhostConv module is introduced in the neck network. The
GhostConv module uses some special linear transformations to generate partial output
features. Compared to traditional convolution operations, the computational complexity of
the GhostConv module is low while still preserving the feature information for the target
objects obtained after traditional convolutions. The comparison between the CBS module
and the GhostConv module is shown in Figure 10.
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The change in the model network structure after introducing the GhostNet network is
shown in Figure 11. The CBS module in the C2f module is replaced with the GhostConv
module, the C2fGhost module is formed, and then, all Conv and C2f modules in the neck
network are replaced with GhostConv and C2fGhost modules, and the feature information
extraction capacity is retained while reducing the number of network parameters.
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3.3. Improvement of Regression Loss Function

YOLOv8 adopts Complete-IoU (CIoU) loss [27] as the bounding box regression loss
function. CIoU loss focuses on enhancing the fitting ability of bounding box losses, but
it does not consider the detrimental impact of low-quality data on model performance.
Addressing this flaw, in this paper, CIoU loss is replaced with Wise-IoU (WIoU) loss [28].
WIoU loss can adapt to distinguish between annotation box qualities, enabling the model
to dynamically focus on different quality anchor boxes, reducing the negative impact of
low-quality data on the model and thus improving the overall performance of the model.
In Figure 12, the blue rectangle represents the predicted box, and the green rectangle
represents the annotated box, where wg and hg denote the width and height of the smallest
bounding box, respectively.
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WIoU loss is calculated as follows:

LWIoU =
β

δαβ−δ
R|WIoULIoU , (9)

where δ and α are hyperparameters, which are taken as 1.9 and 3, respectively, in this
research, and RWIoU , LIoU , and β are calculated as follows:

RWIoU = exp

(
x − xgt

)2
+

(
y − ygt

)2(
w2

g + h2
g

)
, (10)

LIoU = 1 − IoU, (11)

and

β =
L∗

loU

LIoU
, (12)

where IoU represents the intersection–union ratio between the predicted box and the
annotated box. LIoU is the mean dynamic intersection over union loss of the predicted box,
L∗

loU is the current prediction’s intersection over the union loss value, and β represents the
outlier score of the predicted box. A lower outlier score indicates a higher quality for the
predicted box.

3.4. Verification of Perceptual Models
3.4.1. Experimental Dataset

Based on the visual terminal deployed on the Xiamen coast, a database of marine
targets is constructed, and 2107 marine target images with annotations are obtained through
manual screening and annotation. There are two main types of maritime targets: ‘Ship’ and
‘Other’. The dataset is divided into a training set, a validation set, and a test set in the ratio
of 6:2:2. A partial dataset is shown in Figure 13.
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3.4.2. Experiment

To verify the effectiveness of the improved model, ablation experiments are set to
verify the impact of the improved method. The Mean Average Precision (mAP) [29] and
frames per second (FPS) [30,31] are introduced to evaluate the performance of the model.
The higher the mAP is, the stronger the ability of the model to perceive the target is. The
experimental results are shown in Table 2.

Table 2. Ablation experiments. In the table, “SGnet” represents the model network optimization
improvement, while “WIoU” represents the model regression loss function enhancement.

Serial Number Model P (%) R (%) mAP50 (%) FPS

1⃝ Baseline 84.6 75.2 82.9 126
2⃝ Baseline + SGnet 82.7 79.5 84.8 110
3⃝ Baseline + WIoU 86.7 75.3 83.3 126
4⃝ Baseline + SGnet + WIoU 86.1 79.5 85.2 110

The specific conclusions are as follows:
(1) By introducing GhostNet and increasing the size of the detection head to improve

the model network and enhance the small-target perception ability, the recall rate and mAP
are increased by 4.3% and 1.9%, respectively.

(2) The original regression loss function is replaced by WIoU loss to reduce the harm
of low-quality data. The precision rate, recall rate, and mAP are increased by 2.3%, 0.1%,
and 0.4%, respectively.

(3) The proposed model 4⃝ in this paper has demonstrated significant improvements
in P, R, and mAP compared to the baseline model, with increases of 1.5%, 4.3%, and 2.3%,
respectively. Although there is a slight decrease in FPS, achieving a detection speed of
110 FPS is still sufficient to meet the real-time perception requirements for marine applica-
tions, considering that the transmission speed of the shipboard camera is only 25 frames per
second. Therefore, the improved model proposed in this paper has significantly enhanced
detection accuracy without compromising real-time performance.
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Some of the target detection results of the improved model in this paper are shown
in Figure 14. In the figure, small targets such as ship targets and buoys can be detected
without false detection or missed detection.
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To demonstrate the superiority of the YOLOv8-SGW network, this paper selects
YOLOv5s, YOLOv7-tiny, YOLOv8s, and YOLOv8-SGW for comparison experiments. The
experimental results are presented in Table 3. In terms of mAP50, YOLOv8-SGW achieved
the highest accuracy, outperforming YOLOv5s, YOLOv7-tiny, and YOLOv8s by 1.6%, 3.9%,
and 2.3%, respectively. In terms of the AP for “ship”, YOLOv8-SGW falls short of the best
performer, YOLOv5s, by 0.2%. However, when it comes to the AP for “Other”, YOLOv8-
SGW significantly outperforms the other models, achieving improvements of 3.4%, 6.7%,
and 4.7%, respectively. Overall, the improved YOLOv8-SGW model proposed in this paper
demonstrates the best performance on this dataset, effectively enhancing the detection
capabilities for small objects such as buoys and reefs.

Table 3. Comparison of AP among different networks on the dataset.

Ship’s AP (%) Other’s AP (%) mAP50 (%)

YOLOv5s 92.3 75.0 83.6
YOLOv7-tiny 90.8 71.7 81.3

YOLOv8s 92.0 73.7 82.9
YOLOv8-SGW 92.1 78.4 85.2

4. Application Verification of Tugboat Panoramic Visual Perception-Assisted Navigation
4.1. Construction of Application Platform

Taking the tugboat navigation and operation environment as the verification scene, to
solve the limitations of current perception methods such as AIS, radar, and crew lookout,
the tugboat panoramic visual perception assistant navigation system is constructed, and the
image mosaic algorithm SSIM-EW is used to remove the visual redundant information and
generate the tugboat panoramic visual perception scene. The improved YOLO perception
model is used to achieve the recognition of small targets in the navigation environment
such as distant ships and buoys, and the data for the electronic chart, AIS, and radar are
fused to achieve the multi-dimensional perception of the navigation environment in the sea
area to provide more comprehensive and accurate information support for ship navigation
and improve navigation safety.

In practical applications, the images of multiple cameras are processed by perceived al-
gorithms and image stitching algorithms at the same time, instead of performing panoramic
image stitching first and then obstacle recognition. The perception algorithm’s performance
on the source image will be better; the perception results can be displayed on the source
image or panoramic image according to the needs of the crew.

The camera perception data are transmitted through the IP network, the radar and
Electronic Chart Display and Information System (ECDIS) data are transmitted through
the NEMA0183 interface, and the ship AIS information is transmitted through the AIS base
station. All the above information is transmitted to the data collection terminal at the ship
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end through the gateway for preliminary data cleaning work. The 5G network is used as
the ship-end network communication method to ensure the safe transmission of data in the
ship-end local area network and the cloud server and realize the remote access, backup,
etc., of the data. The architecture of the above tug panoramic visual perception-assisted
navigation system is shown in Figure 15.
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4.2. Deployment of Relevant Equipment

The visual perception equipment is installed on a 3720 kW new energy hybrid tug-
boat. This tugboat is mainly used to assist with the docking and departure of large ships
entering the port, and it can complete towing, pushing, and other operations in the port.
The operational sea area is 24.498311◦ N–24.501598◦ N and 118.069349◦ E–118.075789◦ E
(Figure 16).
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The navigation and navigation aids on the tugboat mainly include radar, an ECDIS, a
magnetic compass, a GPS, a depth sounder, an AIS, and an anemometer. For specific ship
parameters, please refer to Table 4.
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Table 4. Tugboat parameters.

Ship’s Name XIA GANG TUO 30

MMSI 413545920
LOA 38.35 m (excluding bow and stern fenders)

Breadth 10.60 m
Depth 4.90 m

Designed Draft 3.70 m
Speed >13 kn

Bollard Pull Forward > 60 tons; astern > 55 tons
Crew Capacity 8 people

The installation distribution of visual perception equipment according to the percep-
tion requirements of the ship environment is shown in Figure 17. The forward-looking
camera group is installed directly in front of the compass deck, approximately 1.5 m away
from the compass deck, and the rear-looking camera group is installed on the mast on
the compass deck, about 2.4 m above the compass deck. The vertical field of view of the
panoramic camera group is approximately 30◦, which can carry out panoramic intelligent
monitoring for 360◦ around the hull. The structure of the hull itself should not enter the
field of view as far as possible to avoid blocking the camera’s field of view.
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4.3. Conversion of Different Data Coordinate Systems

Radar, AIS, electronic charts, and video data have different spatial information bench-
marks. AIS data and electronic chart data are typically based on the WGS84 coordinate
system. Radar data, on the other hand, often use a polar coordinate system centered
around the radar base station. Video data are represented in pixel coordinates. The global
coordinate system is established as a unified geographic reference, and the coordinate
conversion is adopted to unify the coordinate space benchmark to realize the superposition
and display of data from different dimensions.

4.3.1. Global Coordinate System and Inertial Coordinate System

As shown in Figure 18, taking a certain point (Xlon0, Xlat0) as the original center, the
y axis points due north, and the right-hand Cartesian coordinate system is established as
the global coordinate system as a unified geographic reference system. The corresponding
inertial coordinate system is established with the tug as the original center. The transfor-
mation of the inertial coordinate system and the global coordinate system requires only a
simple translation.
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4.3.2. Conversion of the Global Coordinate System and the Pixel Coordinate System

(1) The inertial coordinate system turns into the camera coordinate system
In practical application scenarios, a change in ship heading, rolling, and pitching

will make the relationship between the camera coordinate system and inertial coordinate
system change [32]. The pitching angle θ, rolling angle β, and heading angle φ are used to
transform the inertial coordinate system into the camera coordinate system. The rotation of
the inertial coordinate system around the x, y, and z axes can realize the transformation
of the camera coordinate system (as shown in Figure 19), and the relationship is shown in
Formula (14).xc

yc
zc

 =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 cos β 0 sin β
0 1 0

− sin β 0 cos β

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

xT
yT
zT

. (14)
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(2) Camera coordinate system turns into the image coordinate system
The camera coordinate system and image coordinate system are conversions between

3D and 2D, belonging to the perspective projection relationship. At this time, the unit
of projection point is still the distance unit mm, not the pixel. The image coordinates
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are calculated using Formula (15); zc represents the distance between the point and the
optical axis.

zc

xI
yI
1

 =

 f 0 0
0 f 0
0 0 1

xc
yc
zc

. (15)

(3) Image coordinate system turns into pixel coordinate system
The pixel coordinate system and image coordinate system are both on the imaging

plane, but their respective origins and measurement units are different (as shown in
Figure 20). The unit of the image coordinate system is mm, which belongs to the physical
unit, while the unit of the pixel coordinate system is pixel. According to Formula (16), the
pixel coordinates corresponding to the image coordinates are calculated, where dx and dy
represent how many millimeters each column and row represents, i.e., 1 pixel = dx mm.u

v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


xI

yI
1

. (16)
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In summary, by using the conversion method for the pixel coordinate system, camera
coordinate system, inertial coordinate system, and global coordinate system, the mutual
mapping relationship between the pixel coordinate system and global coordinate system is
determined, as shown in Formula (17), where F and Q represent the camera’s inner and outer
parameter matrices, respectively. F, Q, and zc can be obtained through camera calibration.

zc

u
v
1

 = FQ

xW
yW
zW

−

xS
yS
zS

, (17)

where

F =

 1
dx 0 u0
0 1

dy v0

0 0 1


 fz 0 0

0 fz 0
0 0 1

 =

 fx 0 u0
0 fy v0
0 0 1

, (18)

and

Q =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 cos β 0 sin β
0 1 0

− sin β 0 cos β

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

. (19)

By utilizing the mutual mapping relationship between different coordinate systems,
AISs, radar, and visual data can be overlaid on charts and videos.

4.4. Application of Visual Assistance for Perception
4.4.1. Panoramic Vision-Aided Operation

Using the SSIM-EW algorithm proposed in this research, the visual redundancy
between images is eliminated, the different perspective images taken by the camera are
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combined in real time, and the continuous and seamless panoramic perception image of
the sea area around the tugboat is output, which provides a larger field of vision, reduces
the frequency of view switching when the crew looks outward, effectively avoids collisions
between the tugboat and other ships, obstacles, and dangerous areas, and improves the
tugboat’s operation efficiency. Combined with other perception modules, the panoramic
vision technology can intuitively monitor the changes in the surrounding environment of
the tugboat to ensure the safety and efficiency of the operation (as shown in Figure 21).
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4.4.2. Visual Assistance for Perception

According to the relevant regulations of Xiamen Maritime Bureau, when the visibility
distance is less than 1000 m, ships should stop in time. Therefore, this paper mainly focuses
on the situation where the visibility distance is greater than 1000 m. When the visual
perception system of the ship is affected by the visibility, in addition to using defogging
algorithms such as dark channel enhancement and Retinex to enhance the visual perception
ability of the ship, radar and AISs can be used to assist in the perception of the ship.

AISs, radar, and LiDAR are common target recognition and monitoring systems, but
their perception range and information provided have certain limitations. AISs can provide
basic information such as the position, course, and speed of a ship but only if these ships
carry and turn on the AIS device; otherwise, this information cannot be obtained, and such
a perception mode is too passive. And the update frequency of AISs is too slow to meet
the real-time performance. Radar can detect the surrounding objects, but it only provides
point targets and cannot provide the appearance, color, and other details of a ship [33,34].
In addition, the detection ability of radar for small objects, low-energy reflective objects,
or especially stationary objects is poor [35–37]. LiDAR can provide high ranging accuracy
and angle resolution in real time at a short and medium distance [38] and has strong
anti-magnetic interference ability, but it has high cost, a small detection range, and is easily
affected by adverse climate.

Supplementing visual perception methods on a ship can help to make up for the lack
of AIS and radar perception and improve the navigation safety of the ship. The following
are some of the visually aided perception application scenarios:

(1) The AIS, radar target, and visible light images are superimposed on ECDIS, which
can provide more intuitive information for the crew [39]. The crew can intuitively under-
stand the position, appearance, and surrounding environment of the target by observing
the superimposed image to better judge the intention and possible action of the target, as
shown in Figure 22.
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Figure 22. Multi-source information overlay display.

(2) As shown in Figure 23, the visual perception model identifies buoys without AIS
information. The AIS information for a ship with an MMSI of 312446303 seriously lags
behind, and the position displayed on the ECDIS is wrong. The visual perception model
helps to perceive the correct position of the ship.
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At present, this visual perception model can only identify targets as “Ship” and
“Other”. In future research, these categories should be further refined into specific types
of maritime targets, such as passenger ship, tugboat, cargo ship, buoy, reef, and so on.
Additionally, the current approach of the system for handling different data is limited to a
simple overlay display on the same layer, requiring sailors to manually determine whether
the AIS data, radar data, and visual perception data belong to the same target. This is an
area that requires further research and refinement. One potential solution is to utilize a
data matching algorithm and a data fusion algorithm to achieve the integration of different
data sources for the same target.

5. Conclusions

This paper proposes a ship environment auxiliary perception technology based on
panoramic vision that breaks through the limitations of traditional ship perception technol-
ogy and promotes the development of ship intelligence. The specific research contents are
as follows:

(1) To solve the problems of the instability of the ship panoramic image registration
and the unnatural stitching effect, the traditional image stitching method is improved by the
region-of-interest search method based on SSIM and the elliptical weighted fusion method.
The panoramic image stitched by the improved SSIM-EW algorithm has a significant
improvement in the quality evaluation index, and the transition is natural without stitching
traces such as ghosting and dislocation. The experimental results show that the splicing
effect of the SSMI-EW algorithm is significantly better than that of other algorithms.

(2) To solve the problem of poor perception accuracy of small targets at sea, based
on the YOLOv8 model, this study increases the size of the detection head, introduces
GhostNet, uses the WIoU function instead of the original loss function, and proposes
the YOLOv8-SGW model. The mAP of the YOLOv8-SGW model is increased by 2.3%,
its detection accuracy is significantly higher than that of YOLOv5s, YOLOv7-tiny, and
YOLOv8, and the detection ability of small targets is greatly improved.

(3) The above technology is applied to the tugboat, and the panoramic vision-assisted
tugboat operation is successfully realized, which expands the perception field of view.
Moreover, the visual perception model can detect the targets that AIS and radar cannot,
which enhances the perception ability of ships and has great significance and practical
application value for the safe navigation of ships and the development of ship intelligence.
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