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Abstract: Despite major economic and technological advances, much of the ocean remains unexplored,
which has led to the use of remotely operated vehicles (ROVs) and gliders for surveying. ROVs
and underwater gliders are essential for ocean data collection. Gliders, which control their own
buoyancy, are particularly effective unmanned platforms for long-term observations. The traditional
method of recovering the glider on a small boat is a risky operation and depends on the skill of the
workers. Therefore, a safer, more efficient, and automated system is needed to recover them. In this
study, we propose a lightweight artificial neural network for underwater glider detection that is
efficient for learning and inference. In order to have a smaller parameter size and faster inference, a
convolutional neural network (CNN) vision encoder in an artificial neural network splits an image of
a glider into a number of elongated patches that overlap to better preserve the spatial information
of the pixels in the horizontal and vertical directions. Global max-pooling, which computes the
maximum over all the spatial locations of an input feature, was used to activate the most salient
feature vectors at the end of the encoder. As a result of the inference of the glider detection models
on the test dataset, the average precision (AP), which indicates the probability that an object is
located within the predicted bounding box, shows that the proposed model achieves AP = 99.7%,
while the EfficientDet-D2 model for comparison of detection performance achieves AP = 69.2% at an
intersection over union (IOU) threshold of 0.5. Similarly, the proposed model achieves an AP of 78.9%
and the EfficientDet-D2 model achieves an AP of 50.5% for an IOU threshold of 0.75. These results
show that accurate prediction is possible within a wide range of recall for glider position inference in
a real ocean environment.

Keywords: artificial neural network; CNN vision encoder; underwater glider; low-rank adaptation

1. Introduction

A rich source of natural resources, the oceans cover a significant portion of the
Earth’s surface. With advances in economics and technology, ocean exploration has gained
widespread attention. Remotely operated vehicles (ROVs) and underwater gliders play
a critical role in ocean data collection. ROVs can operate in deep-sea environments that
are difficult for humans to access and use a variety of sensors and tools to collect data.
Underwater gliders are among the most effective unmanned underwater platforms for
ocean observation. These gliders are designed to operate by changing the buoyancy of
the surrounding water. They have advantages such as low energy consumption, long
navigation range, and extended endurance. Meanwhile, gliders will explore the oceans
autonomously and transmit data continuously for long periods of time.

By switching between a negative and positive lift, the gliders follow a slow sawtooth
up-and-down trajectory using very little energy. This allows them to travel farther and stay
open longer. As a result, they can conduct ocean sampling missions lasting hours to weeks
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or months, over thousands of kilometers. At the end of long missions, the glider must be
recovered because it is drifting at sea and has no surface propulsion for its own return to
the mothership.

The conventional method of lifting the glider onto a small boat relies on human skill
and basic tools such as nets, cranes, belts, and hooks. First, the mother ship navigates close
to the floating position of the glider. Workers then approach the glider in a small boat.
They drop a net or hook to secure the glider and then pull it on board. The boat with the
workers and the glider on board is then hoisted back to the mother ship by a crane. The
experience and skill of the workers are critical to the success of this recovery operation.
Adverse weather conditions can frequently complicate the operation, slowing it down
and increasing the risk of injury to the workers. These traditional methods remain largely
manual, despite their risks and limitations. There is a need for a safer, more efficient, and
automated system of recovery.

In this work, we propose an artificial neural network to detect gliders in a maritime
environment and recover them using an ROV platform, which can operate in rough seas
and is capable of both human-operated and semi-autonomous control. The ROV platform
uses GPS tracking to navigate from a distance to the visible location of the glider, guided by
the camera sensors. To navigate long distances, the ROV relies on GPS to get within a few
meters of the glider. For short-range navigation, the ROV uses a camera sensor to detect the
glider within its visible range and then moves to within a meter of the glider. To facilitate
this process, an artificial neural network detects the glider in the camera images, provides
position coordinates, and helps control the ROV’s movements based on this information.

The main contributions of this work are summarized as follows:

• We propose a lightweight, end-to-end artificial neural network model for detecting
gliders with fast inference speed. To compress the weight of the model, a low-rank
approximation is applied to the CNN vision encoder.

• A CNN vision encoder that divides an image of a glider at sea into several elongated
variable-width patches and extracts feature vectors for each direction. These patches
are overlapped to better preserve the spatial information of the pixels in the horizontal
and vertical directions.

2. Related Works

Deep learning models use various image segmentation methods to perform image
processing tasks. The feature pyramid network (FPN) [1] is a method that effectively uses
the features extracted from different resolutions of an image to perform image segmen-
tation tasks. To achieve accurate image segmentation results, the FPN effectively utilizes
important information from multiple resolutions of the image. The FPN extracts feature
maps from the input image at different resolutions, and the high-resolution feature map
information is fed into low-resolution feature maps to generate feature maps with rich
information. The vision transformer (ViT) [2] is a method that uses a transformer-based
neural network architecture to segment images. It consists of patching, which divides the
input image into smaller patches; position encoding, which adds position information to
each patch; a transformer encoder, which processes the sequence of patches to learn the
image context; and a segmentation head, which uses the learned features to predict the
category of each pixel. The ViT can better understand the complex structure of images by
learning longer-term dependencies than CNN-based models.

Methods for detecting and tracking objects like gliders in images include traditional
image processing techniques and deep learning models. Conventional image processing
involves object patch matching, which involves extracting a patch containing the slider
from an image and then matching it to similar areas in another image to locate it. These
algorithms include Tracking, Learning and Detection (TLD) [3], Kernel Correlation Filters
(KCFs) [4], and Channel and Spatial Reliability (CSRT) [5]. However, this method has the
drawback that it often fails to match due to variations in brightness and color in different
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marine environments and changes in the glider’s pose. Also, as the image size increases,
the complexity of the matching operation increases.

In order to identify and track the glider more efficiently, deep learning-based object
detection uses advanced models. These models are typically implemented as convolutional
neural networks (CNNs) and detect objects using images. One of the early successful
models is the region-based convolutional neural network (R-CNN) [6], which uses a
selective search to generate regions of interest (ROIs) and performs classification and
location within those ROIs. An improvement on R-CNN, Fast R-CNN [7] shares the feature
extraction stage and uses RPNs to efficiently generate ROIs. As a further refinement,
Faster R-CNN integrates RPNs into the network, enabling end-to-end training and faster
performance. The single shot multibox detector (SSD) [8] uses a single convolutional
network to predict bounding boxes and class labels for each object in an image. Retina-
Net [9] is a one-stage dense object detector that uses focal loss, a feature pyramid network,
and dense anchor boxes to achieve high accuracy and efficiency. CenterNet [10] is also a
one-stage object detector that predicts the key points of objects and regresses their sizes and
offsets, which allows for fast and accurate object detection without the need to generate
bounding boxes. EfficientDet [11] is a family of neural network architectures that combine
depth, width, and resolution scaling to outperform other CNN models. You Only Look
Once (YOLO) [12] takes a different approach by simultaneously detecting and classifying
objects using a single neural network.

3. Methods
3.1. CNN Vision Encoder

The CNN vision encoder proposed in this work N-splits the input image into horizon-
tal and vertical patches of different widths and generates a feature vector by convolving
each image block. The convolution layer applies a depth-separable convolution, passes
through a multi-layer perception (MLP) that non-linearizes the output of the convolution,
and performs global max pooling to compress the weights of the vision encoder model.

A splitting overlapping image patches in deep learning models, such as CNNs and
vision transformers, reduces information loss at the patch boundaries, maintains image
continuity, and enables richer and more robust feature learning. Overlapping patches help
prevent the loss of important information at the patch boundaries and better detect contin-
uous edges and textures that span across patch boundaries more effectively. This approach
mitigates the boundary effects and improves the model’s spatial awareness, leading to
smoother predictions and better generalization, despite the increased computational cost.

In this work, as shown in Figure 1 below, by dividing the image horizontally and
vertically so that some of the patches overlap, the spatial characteristics of the pixels are
preserved, and the structural information of the image is transferred to the convolutional
layer. The nested CNN vision encoder processes each patch of the image and generates
feature vectors.

Depthwise separable convolution is an efficient technique that can significantly re-
duce the size of the model and the computational cost when compared to the standard
convolution operations. It applies a 1 × 1 filter to each input channel independently and
extracts the spatial information across the channels, and then combines all the channels
using a 1 × 1 filter. In a normal convolution operation, each input channel is convolved
with a 1 × 1 filter, which results in the application of the same filter to all the channels. In
contrast, depthwise separable convolution applies independent filters to each channel and
extracts only spatial information across channels. This results in a significant reduction in
the number of parameters in the model.

Low-rank approximation (LRA) [13] has emerged as a valuable technique for com-
pressing a MLP with dense layers in neural networks. LRA can dramatically reduce the
number of parameters in dense layers, leading to a substantial decrease in the model size.
This translates to reduced storage requirements, faster model training, and more efficient
model deployment, particularly for resource-constrained environments such as mobile
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devices or embedded systems. By reducing the number of parameters, LRA also leads to a
significant reduction in computational complexity. This translates to faster model inference
speeds, enabling real-time applications and reducing the overall computational burden.
Despite parameter reduction, LRA can often maintain or even slightly improve model
accuracy. This is attributed to the ability of LRA to identify and retain the most important
features in the data while discarding redundant or less significant information.

J. Mar. Sci. Eng. 2024, 12, 1106 4 of 12 
 

 

 
Figure 1. The process of dividing an image into horizontal and vertical directions in a CNN vision 
encoder. 

Low-rank approximation (LRA) [13] has emerged as a valuable technique for com-
pressing a MLP with dense layers in neural networks. LRA can dramatically reduce the 
number of parameters in dense layers, leading to a substantial decrease in the model size. 
This translates to reduced storage requirements, faster model training, and more efficient 
model deployment, particularly for resource-constrained environments such as mobile 
devices or embedded systems. By reducing the number of parameters, LRA also leads to 
a significant reduction in computational complexity. This translates to faster model infer-
ence speeds, enabling real-time applications and reducing the overall computational bur-
den. Despite parameter reduction, LRA can often maintain or even slightly improve 
model accuracy. This is attributed to the ability of LRA to identify and retain the most 
important features in the data while discarding redundant or less significant information. 

LRA can be applied to a wide range of dense layer architectures, including fully con-
nected layers in feedforward neural networks, recurrent layers in long short-term memory 
(LSTM) networks, and fully connected layers in convolutional neural networks (CNNs). 
Xception [14] is a deep CNN architecture that proposes efficient low-rank approximation 
techniques for deep CNNs. It introduces depth-wise separable convolutions and a novel 
depth multiplier mechanism to control the depth and width of the network. Xception also 
employs low-rank approximation to compress the weight matrices, enabling efficient 
training and inference of deep CNNs. MobileNet [15] is a lightweight CNN architecture 
designed for efficient operation on mobile and embedded devices. It utilizes depth-wise 
separable convolutions and low-rank approximation to significantly reduce the number 
of parameters and computational cost without sacrificing accuracy. 

Global max-pooling, a technique commonly applied in convolutional neural net-
works (CNNs), offers several advantages that enhance the model performance. Global 
max-pooling selects the most prominent activations from the input feature map to gener-
ate its output. This enables the model to better capture and learn the dominant features 
within an image. Particularly in object recognition tasks, global max-pooling can improve 
the model accuracy. Unlike max-pooling, global max-pooling retains spatial information 
by considering all pixels within the feature map. This helps preserve the structural infor-
mation of the image, making it valuable for tasks like object detection. In a previous study, 
Network in Network (NIN) [16] employed global max-pooling for image classification. 
SqueezeNet [17] is an ultra-lightweight CNN architecture that achieves the accuracy of 
AlexNet [18] on ImageNet with fewer parameters, making efficient use of convolutional 
layers and global max-pooling layers. 

Figure 1. The process of dividing an image into horizontal and vertical directions in a CNN
vision encoder.

LRA can be applied to a wide range of dense layer architectures, including fully con-
nected layers in feedforward neural networks, recurrent layers in long short-term memory
(LSTM) networks, and fully connected layers in convolutional neural networks (CNNs).
Xception [14] is a deep CNN architecture that proposes efficient low-rank approximation
techniques for deep CNNs. It introduces depth-wise separable convolutions and a novel
depth multiplier mechanism to control the depth and width of the network. Xception
also employs low-rank approximation to compress the weight matrices, enabling efficient
training and inference of deep CNNs. MobileNet [15] is a lightweight CNN architecture
designed for efficient operation on mobile and embedded devices. It utilizes depth-wise
separable convolutions and low-rank approximation to significantly reduce the number of
parameters and computational cost without sacrificing accuracy.

Global max-pooling, a technique commonly applied in convolutional neural networks
(CNNs), offers several advantages that enhance the model performance. Global max-
pooling selects the most prominent activations from the input feature map to generate its
output. This enables the model to better capture and learn the dominant features within
an image. Particularly in object recognition tasks, global max-pooling can improve the
model accuracy. Unlike max-pooling, global max-pooling retains spatial information by
considering all pixels within the feature map. This helps preserve the structural information
of the image, making it valuable for tasks like object detection. In a previous study,
Network in Network (NIN) [16] employed global max-pooling for image classification.
SqueezeNet [17] is an ultra-lightweight CNN architecture that achieves the accuracy of
AlexNet [18] on ImageNet with fewer parameters, making efficient use of convolutional
layers and global max-pooling layers.

The diagram of the proposed CNN vision encoder is shown in Figure 2. An image
patch of variable width, divided horizontally and vertically, is generated as a feature
vector in latent space by depthwise separable convolution, which significantly reduces
computational parameters with a separate filter for each channel and a 1 × 1 convolution
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kernel for all channels. The global max-pooling layer compresses the vision encoder output
after passing through the dense layer block by low-rank adaptation.
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3.2. Artificial Neural Network Model for Glider Detection

In the proposed artificial neural network model for glider detection, as shown in
Figure 3, the image is divided into 2 × 2, 4 × 3, and 9 × 5 with horizontal and vertical,
respectively, considering the resolution of the camera mounted on the ROV, and each image
patch is converted into a feature vector by a CNN vision encoder.
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Feature vectors in latent space, which are the output of nested CNN vision encoders,
are concatenated according to the order of segmented positions, and the output dense
layers are mapped to the bounding box and center position to estimate the glider position.

4. Experiments and Results
4.1. Collecting Data in the Marine Environment

For data collection in the marine environment [19], a mothership control system is
set up in a dock at Yongho Pier in Busan, South Korea, as shown in Figure 4. The ROV is
steered towards the glider to acquire video data from the camera. The sensor information
and images are collected by moving the ROV platform closer to the glider as it floats on
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the sea surface [20]. Floating gliders have different postures, such as rolling or submerged,
which are affected by waves. Using the ROV-mounted PoE camera, the internal camera,
and the additional GoPro camera mounted on top of the ROV, the ROV captured video
from different approaches. The tracking API of OpenCV is used to mark the position of
the float in the recorded image with a bounding box and then automatically track it. The
bounding box of the glider object is set wide enough to include the center of the glider for
tracking purposes.
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Automated object bounding box detection methods quickly generate tagging informa-
tion for large amounts of image data. However, compared to manually setting bounding
boxes by humans, the accuracy of the location information is lower, and incorrect detection
information is sometimes mixed, which reduces the quality of the dataset. Datasets with
an imprecise ground truth are a factor that hinders the improvement of the model’s object
detection performance, but we used them appropriately to balance cost and resources. The
training dataset for the detection of gliders floating on the water surface has generated
approximately 2,250,000 samples in a variety of environments.

4.2. Evaluation of the Inference Performance of Artificial Neural Network for Glider Detection

The intersection over union (IOU), a common metric for evaluating detection models,
is used to evaluate the inference performance of the deep learning-based glider detection
model. The IOU used to evaluate the inference performance of the glider detection model
is the ratio of the overlap between two ground truth and predicted bounding boxes. If the
value is greater than or equal to the threshold of a given value, it is considered true positive
(TP), and if it is less than the threshold, it is considered false positive (FP). TP means that
the prediction is actually correct and FP means that the prediction is actually wrong. If it is
not possible to detect the ground truth, it is false negative (FN). For general classification
problems, the thresholds of IOU are 50%, 75%, and 95%.

However, in the case of glider position tracking detection, glider detection and center
position detection are more important than the need to accurately match the shape of the
glider object, so the IOU threshold does not need to be high.

Furthermore, since the ground truth bounding box is imprecise when the training
dataset is generated, and often only a specific part of the object is tagged instead of the whole
object, the IOU threshold to measure the inference performance of the glider detection
model is set to 50% and 75% for evaluation.
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Precision, also known as positive predictive value (PPV), measures the proportion
of true positives, or correctly predicted positive cases, among all positive predictions. It
reflects the accuracy of the model’s predictions and is an answer to the question of how
many of the cases the model predicted would be positive were actually positive. A high
PPV is an indication that the model is good at identifying true positives and does not
over-predict false positives.

Recall is also known as sensitivity or a hit rate and is a measure of the proportion of true
positives among all true positives. It reflects the model’s ability to identify positive cases
and answers the question of how many true positives the model has correctly identified. A
high recall rate is an indication that the model is good at identifying the majority of true
positives and that there are no misses.

Precision =
TP

TP + FP
=

TP
all detections

(1)

Recall =
TP

TP + FN
=

TP
all ground truths

(2)

The calculation formulas for precision and recall are described in Equations (1) and (2),
and the confusion matrix that explains the relationship between them is shown in Figure 5.
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There is a trade-off between precision and recall. That is, an improvement in one
metric often comes at the expense of the other. For example, a model that is very strict
in what it predicts will have high precision but low recall. This is because the model will
correctly identify most positive cases but miss some. Conversely, a model that is more
lenient in its predictions will have high recall but low precision because it will correctly
identify most positive cases, but it will also predict many false positives.

The average precision (AP) calculates the prediction results, sorts them in descending
order by the confidence score, which indicates the probability that an object is within the
prediction bounding box, and creates a precision–recall (P–R) curve, which is the average of
the area under the curve. In the COCO metric, the AP is obtained by 101-point interpolation,
adding the precision for each 0.01-unit section of the recall and averaging. For this metric, the
IOU ranges from 0.5 to 0.95 and is incremented by 0.05. In particular, an AP with an IOU of
0.50 is referred to as the PASCAL VOC metric, and an AP with an IOU of 0.75 is referred to as
the strict metric. Equation (3) is the definition of the AP calculation of the COCO metric.

AP =
1

101 ∑
r∈(0.0,0.01,...1)

max
r:r≥r

ρ(r) (3)

To evaluate the precision and recall of the glider detection, it is necessary to set an IOU
threshold t that classifies each detection as a TP or FP. The AP is a metric for the evaluation
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of precision and recall at different confidence levels. Thus, it is necessary to count the
number of classifications of a TP and FP at different confidence levels. Different precision
and recall values can be obtained by choosing a more restrictive threshold value for the AP.
When the precision and recall values are calculated using a more restrictive AP threshold,
the number of FP detections significantly reduces the recall values.

We compare it with the inference results obtained by EfficientDet. For this comparison,
the EfficientDet model was transfer trained using the glider detection dataset. The proposed
deep learning glider detection model, SingleDet, uses two modes with a different number
of internal layers and weight values, while EfficientDet uses three modes, D0, D1, and
D2, depending on the size of the input image and the backbone network. EfficientDet-D0
reportedly achieved 34.3 AP and EfficientDet-D2 achieved 43.5 AP on the COCO dataset.

To verify the inference performance of the model, the test dataset collected from the
ocean environment is kept separate from the training dataset. It is not used to train the
model, but only to measure the inference performance of the model.

The AP values for the IOU range of the EfficientDet models and the proposed SingleDet
models are compared in Table 1 below. In the result, EfficientDet models record an average
AP of about 0.67 for an IOU of 0.5 for a test dataset consisting of images collected directly
from the ocean environment for glider detection, which decreases exponentially as the IOU
increases. In contrast, the SingleDet model records an AP of about 0.78 or higher up to the
strict metric with an IOU of 0.75. On average, the SingleDet model performs 50% better
than the AP of the EfficientDet model. A graph comparing the AP of different models used
in the evaluation by IOU value is shown in Figure 6.

Table 1. Comparison of AP between EfficientDet and SingleDet models in the IOU range.

Model
IOU

mAP
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

EfficientDet-D0 0.670 0.635 0.593 0.550 0.515 0.454 0.371 0.266 0.112 0.083 0.425
EfficientDet-D1 0.656 0.629 0.594 0.555 0.507 0.437 0.351 0.240 0.094 0.053 0.412
EfficientDet-D2 0.692 0.659 0.628 0.601 0.556 0.505 0.426 0.318 0.134 0.029 0.455

SingleDet-01 0.997 0.993 0.976 0.938 0.879 0.789 0.663 0.517 0.288 0.217 0.726
SingleDet-02 0.989 0.978 0.955 0.916 0.865 0.786 0.655 0.459 0.258 0.092 0.695
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The graphical representation of the P–R curve for the inference of the SingleDet glider
detection models evaluated for the PASCAL VOC metric at IOU of 0.50 and the strict metric
at IOU of 0.75 are as Figure 7. In the P–R curve, the precision of the SingleDet model group
tends to be maintained constant even when the recall is increased, which means that the
model increases the detection rate while retaining the precision.
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For the SingleDet model group, using a less restrictive IOU threshold (t = 0.5) leads to
higher recalls with the highest precision. That is, the inference of the Singledet-01 model
can predict approximately 99.7% of the total ground truth without missing any detections.

The SingleDet-01 model achieves AP = 99.7% while the EfficientDet-D2 model achieves
AP = 69.2% at an IOU threshold of t = 0.5. Similarly, for an IOU threshold of t = 0.75, the
SingleDet-01 model achieves an AP of 78.9% and the EfficientDet-D2 model achieves an AP
of 50.5%. When we use the IOU threshold of t = 0.75, the inference of the glider detection
model becomes more sensitive to different confidence levels. This can be explained by the
degree to which the curve goes up and down.

A comparison of the inference performance of the SingleDet and EfficientDet glider
detection models is shown in Table 2. The computer specifications consist of an Intel i9-9980
CPU and an Nvidia RTX A3000 GPU used to perform the model inference. The results of
the comparison show that the SingleDet set of models has more than 1.5 times the average
precision of the EfficientDet set and uses about half the number of weight parameters,
resulting in a faster inference speed.

Table 2. Comparison of SingleDet and EfficientDet models’ AP, parameter size, and prediction time.

Model
Average Prediction (%) #Parameters

Predict Time
AP50 AP75 AP90 Params Ratio

SingleDet-01 99.7 78.9 28.8 2.5 M 1.0× 177 ms
SingleDet-02 98.9 78.6 25.8 2.9 M 1.2× 314 ms

EfficientDet-D0 67.0 45.4 11.2 3.9 M 1.6× 183 ms
EfficientDet-D1 65.6 43.7 9.4 6.6 M 2.6× 534 ms
EfficientDet-D2 69.2 50.5 13.4 8.1 M 3.3× 732 ms

The results of glider detection using different artificial neural network detection mod-
els by operating the ROV platform in the marine environment are shown in Figure 8 below.
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5. Conclusions

Underwater gliders use long missions to explore the oceans. Unlike other underwater
vehicles, they do not have a propulsion system. As a result, recovery of these gliders at the
end of their missions is currently a manual process that can be dangerous depending on
weather conditions.

In this study, we improve the CNN vision encoder of an artificial neural network
model for detecting a glider floating on the water from camera images during the stage of
performing glider recovery operations using the ROV platform, when the ROV and the
glider are in close proximity.

The proposed artificial neural network glider detection model divides the input image
horizontally and vertically into a number of variable-width patches and extracts feature
maps of different latent space scales by depthwise separable convolution. The output of
the glider detection model is information about the center position and bounding box of
the detected object. The proposed SingleDet-01 model showed an average precision of
99.7% when comparing the inference performance of the other detection models on the
IOU thresholds set to 0.5. It also had a tendency to maintain precision as recall increased,
so the actual detection rate is judged to be high over a wide range.

For future works, this artificial neural network model will be used to assist the ROV
platform in glider recovery. The time required for each unit task and the success rate of the
operation will be evaluated compared to when a human operator performs the recovery
operation with manual control alone. Our goal is to provide feedback on the performance
of the work support in the real marine environment and to advance an artificial neural
network model to a level where it can be used in practice.
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