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Abstract: Aiming at the problems of the underwater existence of some targets with relatively small
size, low contrast, and a lot of surrounding interference information, which lead to a high leakage
rate and low recognition accuracy, a new improved YOLOv7 underwater target detection algorithm is
proposed. First, the original YOLOV7 anchor frame information is updated by the K-Means algorithm
to generate anchor frame sizes and ratios suitable for the underwater target dataset; second, we
use the PConv (Partial Convolution) module instead of part of the standard convolution in the
multi-scale feature fusion module to reduce the amount of computation and number of parameters,
thus improving the detection speed; then, the existing Clou loss function is improved with the
Shapelou_NWD loss function, and the new loss function allows the model to learn more feature
information during the training process; finally, we introduce the SimAM attention mechanism after
the multi-scale feature fusion module to increase attention to the small feature information, which
improves the detection accuracy. This method achieves an average accuracy of 85.7% on the marine
organisms dataset, and the detection speed reaches 122.9 frames/s, which reduces the number of
parameters by 21% and the amount of computation by 26% compared with the original YOLOv7
algorithm. The experimental results show that the improved algorithm has a great improvement in
detection speed and accuracy.

Keywords: underwater target detection; YOLO?; loss function; attention mechanism

1. Introduction

Occupying a large part of the earth’s area, the ocean is an important source of oil,
natural gas, and mineral resources, attracting extensive attention from some adventurers
and researchers, which inevitably leads to an increasing number of ocean exploration
activities [1]. As an important technology for marine exploration activities, underwater
target detection is widely used in archaeology, marine environment monitoring, underwater
navigation, fish farming, and other fields, and has received continuous attention [2-7].
However, the harsh marine environment makes underwater target detection still face
various challenges.

The main challenges we are currently facing in underwater target detection are as
follows: first, we have found from existing underwater datasets and images from real
applications for which wavelength-dependent absorption and scattering [8] degrade the
quality of underwater images, causing visibility, weak contrast, and color variations, which
make the underwater targets blurry. Then, because some underwater organisms have
swarming habits and prefer to attach to objects such as mud, sand, and coral reefs, this
causes the underwater target and the background area to obscure each other, making the
detection accuracy suffer. Finally, because some embedded devices have limited compu-
tational power, which leads to the fact that some network models with large parameter
counts cannot be applied to underwater embedded devices, so people are also actively
pursuing underwater detection devices that can be applied to large parameters [9].
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In recent years, underwater target detection methods based on deep learning have
been widely studied and gradually applied in the field of underwater biological detection.
Deep learning-based underwater target detection is based on learning features iteratively,
taking the output of each layer as the input of the next layer, and transforming the detailed
features of the lower layer into the detailed features of the higher layer through nonlinear
mapping between the lower layer and the higher layer. However, due to the relatively small
dataset for underwater object detection, the available learning features are limited, and
most underwater organisms occur in groups and are relatively small and fuzzy. Current
deep learning-based detection algorithms are unable to effectively detect small objects,
which poses a great challenge to the target detection task. To cope with this challenge, the
YOLO series of algorithms now exist, including YOLOv1 [10], YOLO9000 [11], YOLOv3 [12],
YOLOV4 [13], YOLOVS5 [14], YOLOV6 [15], YOLOV? [16], YOLOVS [17], etc. The YOLO (You
Only Look Once) series comprises typical single-stage target detection algorithms, which
have faster detection speed and wider application scope than two-stage target detection
algorithms such as RCNN [18], Fast-RCNN [19], Faster RCNN [20], Mask-RCNN [21],
Cascade-RCNN [22], and SSD [23]. In order to adapt to different application scenarios
and improve the detection accuracy for different detection objects, many researchers have
successively proposed a variety of improved detection methods based on the YOLO series
of algorithms. The literature [24] has proposed an underwater target detection algorithm,
YOLOv5s-CA, based on an improved YOLOVS, to improve the detection accuracy by
embedding a Coordinate Attention (CA) module and a Squeeze-and-Excitation (SE) module.
The literature [25] also proposes a lightweight algorithm based on an improved YOLOv4,
aiming to make the model have a smaller number of parameters and smaller size by
combining MobileNetv2 and depth-separable convolution.

However, the target size of the underwater target detection studied in this paper is
relatively small, and the previous YOLOv3, YOLOv4, and YOLOVS5 algorithms are less
effective at detecting small targets, and only the YOLOvV7 algorithm has a better detection
performance in small target detection at present. Therefore, for the different characteristics
of underwater organisms, an underwater target detection algorithm based on the improved
YOLOV?7 is proposed, with the following four main improvements:

(1) The K-Means algorithm is used to re-cluster the underwater target dataset, and the
anchor frames produced by the clustering are more in line with the smaller size of the
underwater targets studied in this paper, which accelerates the convergence speed of
the model and improves the detection accuracy of small-sized targets.

(2) Pconv (Partial Convolution) is introduced to optimize the multi-scale feature fusion
module, which reduces the parameter count and computational workload while
improving the detection speed.

(3) The Shapelou_NWD loss function is used instead of the Clou loss function, which
effectively solves the problem of slow convergence and reduced prediction accuracy
during the training process by ignoring the shape and scale of the bounding box itself,
as well as the possibility of detecting targets that are too small.

(4) Introducing the SImAM attention mechanism after the multi-scale feature fusion mod-
ule enhances the detection accuracy of the network model without parameter increase.

Finally, several comparative experiments and ablation experiments are conducted to
prove the effectiveness of the improved algorithm in this paper.

2. Materials and Methods
2.1. YOLOv7 Model

Compared with its variants YOLOv7-D6, YOLOv7-E6, YOLOv7-E6E, YOLOV7-W6,
and YOLOv7-X, YOLOV? has the smallest number of parameters, the fastest detection
speed, and is most suitable to be applied to underwater target detection. Therefore, YOLOV7

is selected as the base algorithm to be improved in this paper. The network structure of
YOLOV?7 is shown in Figure 1.
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Figure 1. Illustration of the YOLOvV7 network structure.

As can be seen from Figure 1, the network structure of YOLOV7 consists of three
parts: Input, Backbone, and Head. Input scales the image to be detected to a fixed size
after inputting the image to fulfill the input demands of the Backbone, and then carries
out the feature extraction through the Backbone, which contains three structures: CBS
(Conv + BN + SiLU), ELAN_1, and MP. The CBS mainly uses convolutional layers for
feature extraction, and ELAN_1, as a kind of efficient layer aggregation network, greatly
improves the learning ability of the detected objects and enriches the diverse feature
learning. The MP structure adds a MaxPool layer on top of the CBS, and the upper and
lower layers are contacted. The MP structure adds the MaxPool layer on top of the CBS,
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which greatly improves the feature extraction ability by contacting the upper and lower
layers for feature fusion of the features extracted from the branches. In the Head part, the
SPPCSPC pyramid structure is employed to broaden the receptive field and make the Head
network suitable for multi-size inputs, and then the bottom information is passed upwards
from the bottom to the top through the pyramid network structure, so as to realize the
fusion of feature information of different scales, and after fusing semantic information
and spatial information at multiple scales, three target feature layers of different scales
are outputted, which are respectively reused through the RepConv structure. The three
obtained feature layers are reparametrized by the RepConv structure to adjust the number
of channels, then the preliminary prediction results are obtained by the YOLO Head, and
finally the preliminary prediction results are subjected to some post-processing operations,
such as confidence filtering, NMS (Non-Maximum Suppression), and so on, in order to
obtain the final results.

2.2. Kmeans

The a priori frame sizes used in YOLOV7 were obtained by clustering on the MS
COCO dataset using the K-Means [26] algorithm. The MS COCO dataset contains about
41% small targets (area < 32 x 32), and the rest are medium vs. large targets. However,
in the marine life dataset, marine organisms are predominantly small- to medium-sized
targets, which is significantly different from the size of the objects in the COCO dataset.
Therefore, the original anchor frame data size is not suitable for the dataset in this paper.
In order to improve the matching probability between the underwater targets and anchor
frames, the anchor frame size was redesigned using the K-means clustering algorithm. The
basic process is described as follows:

e Randomly select k samples from the dataset as initial clustering centers ¢ = {c1,
C2,eey Ck}

e  For each sample in the dataset, calculate its distance from the K cluster centers and
assign it to the class corresponding to the cluster center with the smallest distance.

e  For each category c;, recalculate its clustering center ¢; = \clT\ZXGCi x (i.e., the center of
mass of all samples belonging to the class).

e  Repeat steps 2 and 3 until the position of the clustering center no longer changes.

Compared with the K-Means++ [27] algorithm, the K-Means algorithm is simple in
principle and easy to implement, only one hyperparameter k needs to be adjusted, and the
K-Means++ algorithm relies on the already selected centroids each time the next centroids
are selected.

Therefore, in this paper, the K-Means algorithm is selected to recluster the anchor
frames. The anchor frames after reclustering using K-Means are presented in Table 1 below:

Table 1. Optimized K-Means algorithm for clustering anchor frame parameters.

Feature Map Size 80 x 80 40 x 40 20 x 20
(21,17) (52, 35) (80, 51)
YOLOv7 (28,24) (44, 46) (82,79)
(35,32) (57, 56) (140, 117)
2.3. ELAN_PC

ELAN [28], mainly composed of VoVNet [29] and CSPNet [30], is an efficient layer
aggregation network. It facilitates the network to acquire more features by regulating the
shortest and longest gradient pathways. ELAN is mainly composed of two branches, the
first branch mainly doing the change of channel number through the convolution of 1 x 1,
and the second branch firstly doing the change of channel number through the convolution
of 1 x 1, then doing the feature extraction through the four convolutional modules of
3 x 3, and finally superimposing the results of the two branches together. The ELAN can
then effectively alleviate the problem of gradient disappearance when the model reaches a
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certain depth. However, the optimization of the ELAN network in terms of the number of
parameters and the amount of computation is not ideal, so in this paper, while ensuring the
structural integrity of the ELAN network, PConv is introduced to construct the ELAN_PC_1
and ELAN_PC_2 network modules, which use PConv to replace the convolution kernel
of 3 x 3 convolutional layers in the ELAN network. The ELAN_PC_1 and ELAN_PC_2
network structures are shown in Figure 2.

——————
ELAN PC 1=
(ELAN PG 1 1= k= 1 =1 "L{ pconv |>>| pconv }-L{ pconv |>>| pconv
| CBS

7| k1, 571

! ﬁ‘_KN__IiE__%,I_ “"( k= (l:Bz 1 "I"{ pconv }'I’{ pconv }'I’{ pconv }'I"{ pconv
k=1, | k=L, =1 |
(b)
Figure 2. Improved ELAN structure; (a) ELAN_PC_1; (b) ELAN_PC_2.

PConv [31] is a new lightweight convolution module that reduces computational
redundancy while reducing memory accesses. In this module, we employ a convolutional
operation on a subset of the input channels to avoid excessive redundancy in the feature
map. This approach, illustrated in Figure 3, ensures that the convolutional operation is
applied to a select set of channels while the remaining channels remain unchanged.

Input Output
Identity

Fiters

Figure 3. The structure diagram of PConv module.

For continuous or regular memory accesses, the input or output ¢, channels are
computed as representative of the entire feature map. The PConv is computed as h X w x
k2 x C%, while the regular convolution is computed as i x w x k? x 2, the memory accesses
for the PConv are h x w X 2cp, and the memory accesses for the regular convolution are
h xw x 2c. If ¢, = c/4, then the PConv is computed as 1/16 of the regular convolution,
and the memory accesses are 1/4.

It can be seen that the introduction of the PConv convolution module into the ELAN
module can significantly reduce the amount of computation and memory access, thus
making the model lightweight and speeding up the inference.

2.4. ShapeloU_NWD

The YOLOv7 model employs the CIOU [32] loss function, which is designed to account
for the overlap area, centroid distance, and aspect ratio of the bounding box regression.
However, this loss function does not consider the influence of the inherent properties of the
bounding box itself, such as shape and scale. Consequently, the CIOU loss function may
prevent the model from optimizing the similarity when the aspect ratio is the same [33]. To
solve this problem, this paper adopts ShapeloU [34], a bounding box regression method



J. Mar. Sci. Eng. 2024, 12,1127

6 of 17

that focuses on the shape and scale of the bounding box itself. This method can calculate
the loss by focusing on the shape and scale of the bounding box itself, which makes the
bounding box regression more accurate. The parameter schematic of ShapeloU is presented
in Figure 4.

IoU — |B N BS!| .
° T BUBH| @
) gt scale
ww = x (wS) (2)

(wgt)scale + (hgt)scule

T — 2 % (hgt)scale @)
- r\scale \scale
(wst)™7 4 (h8?)

2
distance™ "¢ = hh x (x; — x8")" /2 + ww x (ye — y&') /c? (4)
ofare = (1- 1)’ 0 =4 5)
t=w,h
i e
Wy = hh X max(w,wgt) 6
I ©
Wy = ww X max(h,hgt)

where B represents the prediction frame, B3 t represents the real frame, w¢ t and hst represent
the width and height of the real frame respectively, scale is the scale factor, which is related
to the scale of the target in the dataset, ww and hh are the weight coefficients in the
horizontal and vertical directions, respectively, and their values are related to the shape of
the real frame. Its corresponding bounding box regression loss is as follows:

LShupeIoU =1-1IoU+ diStanceShaPC + 0.5 % QSWW (7)

In order to further improve the accuracy of underwater small target detection, we
have introduced the Normalized Wasserstein Distance [35]. In this approach, the Gaussian
distributions N, and Nj, modeled for the two bounding boxes A = (cxa, Cya, Wy, ha) and
B = (cyp, Cyb, Wy, hy), can be expressed as follows:

2
wa ha |7 w, T
sz(Nﬂ/Nb): H(l:cxﬂlcyﬂ/zalzu] /[belcyblzblzbj| )
2

However, since WZZ(NH, Np) is a distance measure and not a similarity measure, it
cannot be directly used as such. Therefore, in order to address this limitation, it is necessary
to normalize the distance by transforming W2 (N;, N) into a value between 0 and 1. This
process results in the normalized Gaussian Wasserstein distance (NWD), which enables
more effective and meaningful comparisons and evaluations in the context of detecting
small underwater objects. The formula is as follows:

(8)

W2(Na, Np)

NWD(N,, Ny) =exp| — c 9)

Here, C is a constant related to the dataset.

Therefore, the loss of our ShapeloU_NWD can be obtained by taking the form of a
weighted summation based on the introduced  gjgperou loss function and NWD metric with
the following formula:

LShapeIoU_NWD = (1 - 1’) X (1 - NWD<N41/ Nb)) +7X LShapeIoU (10)
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where r is a scaling factor.

In this paper, we use the ShapeloU_NWD loss function instead of the CIOU loss
function, which takes into account both the effects of changes in the shape and scale of the
bounding box itself, as well as the sensitivity of small target displacements, and provides a
significant improvement in the detection accuracy of small- and medium-sized targets.

w

A
v

hgt b o —

gt
(x&, ¥5)

|‘ > |
< >
gt
w

Figure 4. Shapelou parameter diagram.

2.5. SimAM

The size of underwater targets is relatively small, and because of the presence of
some mud, sand, and some other interfering background information, it occupies less
information in the whole image. In order to improve the accuracy of small target detection
and reduce the interference of background information, this paper adopts the attention
mechanism to adaptively focus on the detail information related to the small target, and
reduces the attention to other interference information. In contrast to the SE [36] (Squeeze-
and-Excitation) channel attention mechanism, which solely considers the internal channel
information, and the CBAM [37] (Convolutional Block Attention Module), which focuses
on the local spatial location range, the SImAM [38] attention mechanism does not introduce
additional network parameters for feature maps, thereby deriving 3D attention weights.
Furthermore, it is a plug-and-play feature that can be integrated into any position within the
model. Consequently, in this paper, three SimAM attention mechanisms are incorporated
after the multi-scale feature fusion module with the objective of enhancing the detection
accuracy of the model. The structure of the Sim AM attention mechanisms is depicted in
Figure 5.

s
Generation/ é’;% % \ixpansion
— g 5%,
X ) Fusion %éﬁ %

Figure 5. SimAM attention mechanism structure.

The core idea of SimAM is based on the local self-similarity of images. In an im-
age, neighboring pixels usually have strong similarity to each other, while the similarity
between distant pixels is weak. SImAM takes advantage of this property to generate at-
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tention weights by calculating the similarity between each pixel in the feature map and its
neighboring pixels. The formula is shown below:

).( = sigmoid(%) oX (11)

4(0? +A)

E= 5
(t—pu)"+20%+2A

(12)

—Z% (13)

E

1M ?
ot =) (xi—p) (14)

I\
—

where X is the input feature, E is the energy function on each channel. In order to prevent
the possibility of too large a value for E, a sigmoid function is used to limit it; t is the value
of the input feature, A is a constant value, which is 1 x 1074, y and o2 denote the mean and
variance on each channel in X, respectively, and M = H x W denotes the number of values
on each channel.

2.6. Proposed Improved Algorithm

In comparison to other one-stage target detection algorithms, such as YOLOv3 and
YOLOvV4, YOLOV? exhibits superior performance in detecting small targets. However, the
detection effect is less satisfactory when there are problems such as occlusion and low contrast
of the target. Therefore, the following improvements are made to YOLOV? to address these
problems. Figure 6 illustrates the network structure of the improved YOLOV?7 algorithm.
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Figure 6. Improved YOLOV7 network structure diagram.
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3. Experiments
3.1. Experimental Dataset

The images for underwater target detection studied in this paper are from the 2020
National Underwater Robotics Professional Competition (URPC) dataset, which consists of
5543 images, with an image size of 640 x 640. Based on the definition of small, medium,
and large targets in the COCO dataset, each type of target was divided into small, medium,
and large targets, where the number of holothurian tags was 5537, in which the number
of small targets was 61, the number of medium targets was 3487, and the number of large
targets was 1989; the number of echinus tags was 22,343, in which the number of small
targets was 2788, the number of medium targets was 13,696, and the number of large targets
was 5859; the number of scallop tags was 6720, with the number of small targets 603, the
number of medium targets was 1359, and the number of large targets 4758; and the number
of starfish tags 6841, with the number of small targets 588, the number of medium targets
4059, and the number of large targets 2194. The results are shown in Figure 7.

labels

14000

12000

10000

8000

6000

4000

2000

|
W small target
59
4758 B medium target
4059 .
3487 [ major target
278
| 94
/ 1359
603 588
61
holothurian echinus scallop starfish
Underwater target category

Figure 7. Number of tags for each type of target in the underwater target data set.

The sample images, labeled with location and category information, were subsequently
stored in PASCAL VOC format. The dataset was randomly divided into a training set of
4434 images and a validation set of 1109 images according to the corresponding marine
organism category in a ratio of 8:2.

3.2. Experimental Environment and Parameterization

This experiment is implemented in the ubuntu20.04 operating system based on the
PyTorch deep learning framework, the GPU selection for the size of the memory 12 G
NVIDIA GeForce RTX 3080Ti, the CPU configuration is a 12-core AMD Ryzen 9 5900X,
PyTorch version 2.0.1, CUDA version 11.7, and the python language environment is 3.8.17.

The hyperparameters for this experiment are configured as follows: in the model
training phase, the parameters are tuned using the SGD optimizer, with the initial learning
rate set to 0.01 and momentum to 0.937, and the learning rate decayed using warm up,
with the weight decay coefficient set to 0.0005. In addition, the batch size is set to 8, and a
total of 150 rounds are trained.
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3.3. Experimental Design
3.3.1. Evaluation Metrics

This experiment focuses on underwater target detection algorithms, which should
satisfy both real-time and good detection performance, so the values of FPS, FLOPS, Params,
mAP, precision and recall are used as evaluation indexes to compare the algorithms. FPS
represents the frame rate, indicating the number of images processed per second. FLOPS
represents the number of floating-point operations executed, serving as a measure of the
model’s computational complexity, Params is the sum of the model parameters, which are
used to evaluate the size of the model, and m AP is the average value of the precision of
each type of underwater target detection. The formula for mAP is as follows:

Y. AP(i)

mAP = =———
n

L=

(15)

where 7 is the number of underwater target classes and AP (Average Precision) is the
precision value of each class.
Additionally, the precision and recall values are derived through the following

calculations:
TP

Precision = TP L EP (16)
TP
Recall = TP—{——FI\I (17)

where TP is the number of positive samples predicted to be positive (true positive); FP is
the number of negative samples predicted to be positive (false positive); FN is the number
of positive samples predicted to be negative (false negative).

3.3.2. Experimental Results

Three images are extracted from the dataset for comparison. The three original images
extracted are shown in Figure 8a. Using YOLOV7 and this paper’s algorithm to detect these
three pictures, the results will be detected for comparison, and the comparison results are
presented in Figure 8b,c.

As illustrated in Figure 8, the YOLOV7 algorithm is more prone to miss detection and
partially occluded cases are not recognized or recognized with lower confidence values
compared to this paper’s algorithm, whereas this paper’s algorithm is able to detect as
accurately as possible all types of underwater targets on the map.

Figure 8. Cont.
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Figure 8. Comparison chart of detection results of two algorithms; (a) The raw image; (b) YOLOV7
algorithm detection results; (c¢) Improved YOLOV? algorithm detection results.

Figure 9 illustrates the precision-recall (P-R) curves of the original YOLOV?7 algorithm
and the modified YOLOV? algorithm after improving each module, which were trained on
the identical underwater target dataset. Specifically, Figure 9a illustrates the P-R curves of the
YOLOV? algorithm, Figure 9b represents the P-R curves of the YOLOv7_kmeans, Figure 9c
represents the P-R curves of the YOLOv7_kmeans with the addition of the ELAN_PC module,
and Figure 9d represents the P-R curves of the YOLOv7_kmeans with the addition of the
ELAN_PC module and the P-R curve of the Shapelou NWD loss function. Figure 9e represents
the P-R curve for the final addition of the SimAM attention mechanism. As can be seen from
Figure 9a,e, the AP of holothurian increased by 1.1%, the AP of echinus increased by 0.8%, the
AP of scallop increased by 0.4%, and the AP of starfish increased by 1.6%.
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Figure 9. Cont.
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Figure 9. (a) The P-R curves of the original YOLOV? algorithm; (b) P-R curve for the YOLOv7_kmeans;
(c) P-R curve of the ELAN_PC module added to YOLOv7_kmeans; (d) P-R curves with the ELAN_PC

module and the ShapeloU_NWD loss function added to the YOLOv7_kmeans; (e) Final improved
YOLOV7? algorithm.
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4. Discussion
4.1. Ablation Experiments

CBAM, CPCA, CA, GAM, and SimAM are introduced after the multi-scale feature
fusion module, and the network is trained on the basis of the K-Means algorithm, the
ELAN_PC structure, and the Shapelou NWD, the obtained detection results are compared
according to the average accuracy value, and the comparison results are presented in
Table 2.

As illustrated in Table 2, it is evident that the introduction of attention mechanisms
such as CBAM, CPCA, CA, and GAM reduced the average accuracy value compared to
the original algorithms that did not incorporate an attention mechanism, and the 85.5%
accuracy value of the algorithms that did not incorporate an attention mechanism was
reduced by 0.2%, 1.1%, 0.2%, and 2.7%, respectively. By integrating the SImAM attention
mechanism, the average accuracy value witnessed a 0.2% increase. In summary, the
utilization of the SImAM attention mechanism demonstrates a more pronounced impact
on enhancing the detection accuracy of small targets.

Table 2. The results of the attention mechanism ablation experiments.

Attention Mechanism Holothurian (%) Echinus (%) Scallop (%) Starfish (%) mAP (%)
CBAM 77.3 92.7 83.1 88.3 85.3
CPCA 77.8 92.1 80.1 87.8 84.4
CA 77.5 92.3 83.1 88.5 85.3
GAM 77.3 85.6 79.8 88.6 82.8
SimAM 77.6 92.9 83.2 89.0 85.7
Through the ablation experiments, the impact of the different modules in the improved
algorithm was examined, and the results are summarized in Table 3.
Table 3. The results of the ablation experiments.
Algorithm Params (M) FLOPs (G) mAP (%) FPS (frame/s)
YOLOv7 36.5 103.2 84.7 112.5
YOLOvV7 + Kmeans 36.5 103.2 85.4 113.2
YOLOvV7 + Kmeans + ELAN_PC 28.3 75.4 84.7 126.3
YOLOV7 + Kmeans + ELAN_PC + ShapeloU_NWD 28.3 75.4 85.5 125.3
YOLOV?7 + Kmeans + ELAN_PC + ShapeloU_NWD + SimAM 28.7 76.6 85.7 122.9

As can be seen from Table 3, by adding the K-means clustering algorithm, the average
accuracy is improved by 0.7%; by adding the ELAN_PC structure, although the accuracy
value decreases by 0.7%, the number of parameters decreases by 22%, the amount of
computation decreases by 27%, and the speed of detection is improved by 12%; and later on
the Shapelou_NWD loss function is utilized to increase the accuracy of detection to 85.5%
by keeping the number of parameters and the amount of computation constant. Finally, the
detection accuracy is improved to 85.7% using the SimAM attention mechanism. Therefore,
compared with the original YOLOv? algorithm, the whole improved algorithm increases
the average accuracy value of underwater target detection by 1% and the detection speed
by 9.2%.

4.2. Comparative Experiments

The improved YOLOvV7 model was compared to these algorithms including Faster
RCNN, SSD, YOLOv5, YOLOv7, YOLOvV7-W6, YOLOv7-E6E and YOLOVS algorithms on
an underwater target dataset using the aforementioned evaluation metrics. The comparison
results are presented in Table 4.
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Table 4. Comparison of the improved algorithm with several mainstream algorithms.

Algorithm Holothurian (%) Echinus (%) Scallop (%) Starfish (%) mAP (%) FPS (frame/s)

Faster RCNN 56.0 82.0 52.0 79.0 67.5 40.7
SSD 63.0 77.0 46.0 74.0 65.0 167.9
YOLOvV5 73.7 91.4 80.6 85.1 82.7 270.0
YOLOv7 76.5 92.1 82.8 87.4 84.7 112.5
YOLOv7-W6 74.2 90.8 75.2 87.1 81.8 114.2
YOLOV7-E6E 74.6 89.7 49.2 87.6 75.3 519
YOLOvVS8 74.9 91.4 80.3 88.3 83.7 1319
Ours 77.6 92.9 83.2 89.0 85.7 122.9

From Table 4, we can see that our improved YOLOv?7 algorithm has the highest
detection accuracy in each class of underwater targets and the highest mAP value in all
classes, which is 18.2% higher than the two-stage Faster RCNN algorithm, compared
with the single-stage algorithms SSD, YOLOv5, YOLOv?7, YOLOv7-W6, YOLOv7- E6E,
and YOLOVS, and the mAP of the improved algorithm is improved by 20.7%, 3%, 1%,
3.9%,10.4%, and 2%, respectively. In addition, although the detection speed of the SSD
algorithm, the YOLOV5 algorithm and the YOLOVS8 algorithm is slightly higher than
that of the improved YOLOV? algorithm, the detection accuracy is much different from
the improved algorithm in this paper, so the comprehensive comparison of this paper’s
algorithm has a great advantage over other algorithms.

From Table 5, we can see that the total accuracy of our improved algorithm is 38.8%
higher compared to the two-stage Faster RCNN algorithm, and for each class of underwater
targets, the accuracy value of our improved algorithm is higher. In addition, compared to
other one-stage algorithms, other algorithms, such as YOLOv5, YOLOv7, YOLOv7-W6,
and YOLOV7-E6E, are 1.1%, 1%, 3%, and 11.2% less accurate than ours, respectively, except
for the SSD algorithm and the YOLOVS algorithm, which are 1% and 0.6%, respectively,
more accurate than our algorithm.

Table 5. Precision comparison results for different algorithms.
Algorithm Holothurian (%) Echinus (%) Scallop (%) Starfish (%) All (%)

Faster RCNN 354 53.2 37.8 51.5 445
SSD 80.6 89.0 83.1 84.4 84.3
YOLOvV5 76.5 88.3 83.4 80.5 82.2
YOLOv7 75.1 88.0 84.6 81.5 82.3
YOLOvV7-W6 75.5 86.3 79.7 79.6 80.3
YOLOv7-E6E 79.9 88.6 34.8 85.2 721
YOLOVS8 77.8 89.0 85.6 83.4 83.9
Ours 78.0 88.7 85.1 81.6 83.3

As can be seen from Table 6, the improved YOLOV7 algorithm has the largest value
of Total Recall, improving 4% over the two-stage Faster RCNN algorithm and 32.9%,
1.9%, 0.6%, 3.2%, 6%, and 3.6% over the one-stage SSD, YOLOv5, YOLOv7, YOLOv7-W§,
YOLOvV7-E6E, and YOLOVS, respectively.

Table 6. Recall comparison results for different algorithms.
Algorithm Holothurian (%) Echinus (%) Scallop (%) Starfish (%) All (%)
Faster RCNN 65.6 88.2 61.5 85.1 75.1
SSD 50.5 514 27.7 55.1 46.2
YOLOv5 70.1 86.0 73.3 79.5 77.2
YOLOv7 71.8 86.4 729 82.8 78.5
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Table 6. Cont.

Algorithm Holothurian (%) Echinus (%) Scallop (%) Starfish (%) All (%)
YOLOv7-W6 68.5 85.9 66.5 82.7 75.9
YOLOvV7-E6E 66.3 82.4 64.1 79.6 73.1

YOLOvVS 68.4 83.1 68.4 82.0 75.5
Ours 73.3 87.4 72.5 83.3 79.1

5. Conclusions

In this paper, an underwater target detection algorithm based on an improved YOLOv7
is proposed for underwater targets with some smaller sizes, complex backgrounds, and
low contrast. By introducing the SimAM attention mechanism, the improved ELAN_PC
structure and the Shapelou NWD loss function are used to improve the ability to extract
features for smaller underwater targets and to reduce the loss of feature information. Mean-
while, in order to enhance the robustness of the algorithm in this paper, the K-Means anchor
frame clustering algorithm is used to enhance the performance of the algorithm. Several
comparison experiments and ablation experiments show that the improved YOLOvV? target
detection algorithm achieves an average accuracy value of 85.7%, which is 1% higher
than the original YOLOV7, and the speed reaches 122.9 frames/s, which is a good balance
between detection speed and accuracy. Afterwards, the main feature extraction part of
the model will be improved by using a lighter weight module to allow the algorithm to
increase the inspection accuracy of underwater targets while being lighter weight.
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