Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experiments
2.3. Sedimentology Analysis
2.4. Data Series Processing
2.4.1. Time and Frequency Domain Processing
2.4.2. Wave Steepness and Breaking Wave Percentage
2.4.3. Principal Component Analysis (PCA)
2.4.4. Estimated Suspended Sediment Concentration from Acoustic Backscattered (ABS)
2.4.5. Estimation of Suspended Sediment Transport
3. Results
3.1. Wave Breaking
3.2. Nearshore Hydrodynamics
3.2.1. Spatial and Temporal Evolution of SS-Waves and IG-Waves
3.2.2. Spatial and Temporal Evolution of Alongshore and Cross-Shore Currents
3.3. Inter-Seasonal Changes in Subaerial and Submerged Beach Morphology
3.3.1. The Cross-Shore Suspended Sediment Transport
3.3.2. The Beach Slope and Morphological Changes of the Subaerial Zone of the Beach
3.3.3. The Wave Steepness as a Control Parameter in the Formation and Migration of Submerged Bar
3.3.4. Inter-Seasonal Volume Variability and the Emerged Beach Morphology
3.4. Physical Factors Controlling Suspended Sediment Transport Using PCA
4. Discussion
4.1. Implications of Indirect SSC Estimates for Suspended Sediment Transport
4.2. The Role of Cross-Shore Currents in Suspended Sediment Transport
4.3. Contribution of SS and IG Wave Energy to Suspended Sediment Transport
4.4. Relationship between Wave Steepness and Beach Morphological Changes
4.5. Interactions between Suspended Sediment Transport and Morphological Changes on the Nearshore Subaerial Beach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Biausque, M.; Senechal, N. Seasonal morphological response of an open sandy beach to winter wave conditions: The example of Biscarrosse beach, SW France. Geomorphology 2019, 332, 157–169. [Google Scholar] [CrossRef]
- Bagnold, R.A. Sand movement by waves: Some small-scale experiments with sand of very low density. J. Inst. Civ. Eng. 1947, 27, 447–469. [Google Scholar] [CrossRef]
- Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [Google Scholar] [CrossRef]
- Brand, E.; Montreuil, A.; Houthuys, R.; Chen, M. Relating Hydrodynamic Forcing and Topographic Response for Tide-Dominated Sandy Beaches. J. Mar. Sci. Eng. 2020, 3, 151. [Google Scholar] [CrossRef]
- Aagaard, T.; Hughes, M.; Baldock, T.; Greenwood, B.; Kroon, A.; Power, H. Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Mar. Geol. 2012, 326, 154–165. [Google Scholar] [CrossRef]
- Trowbridge, J.; Elgar, S. Turbulence Measurements in the Surf Zone. J. Phys. Oceanogr. 2001, 31, 2403–2417. [Google Scholar] [CrossRef]
- Ruessink, B.G. Observations of turbulence within a natural surf zone. J. Phys. Oceanogr. 2010, 40, 2696–2712. [Google Scholar] [CrossRef]
- Conley, D.C.; Beach, R.A. Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res. 2003, 108, C06011. [Google Scholar] [CrossRef]
- Aagaard, T.; Greenwood, B. Oscillatory infragravity wave contribution to surf zone sediment transport-the role of advection. Mar. Geol. 2008, 251, 1–14. [Google Scholar] [CrossRef]
- Aagaard, T.; Hughes, M. Breaker turbulence and sediment suspension in the surf zone. Mar. Geol. 2010, 271, 250–259. [Google Scholar] [CrossRef]
- Vidal, C.; Losada, M.A.; Medina, R.; Losada, Í. Modelos de Morfodinámica de Playas. Ing. Del Agua 1995, 2, 55–74. [Google Scholar] [CrossRef]
- IOC. 2022. Available online: https://iocaribe.ioc-unesco.org/en/member-countries/colombia (accessed on 15 May 2022).
- Aagaard, T.; Greenwood, B.; Hughes, M. Sediment transport on dissipative, intermediate and reflective beaches. Earth Sci. Rev. 2013, 124, 32–50. [Google Scholar] [CrossRef]
- Restrepo, J.; Otero, L.; Casas, A.; Henao, A.; Gutiérrez, J. Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island Archipelago (Caribbean of Colombia). Ocean Coast. Manag. 2012, 69, 133–142. [Google Scholar] [CrossRef]
- Pérez, R.; Ortiz, R.; Bejarano, A.; Otero, D.; Restrepo, L.; Franco, A. Sea breeze in the Colombian Caribbean coast. Atmosfera 2018, 31, 389–406. [Google Scholar] [CrossRef]
- Otero, L.; Ortiz-Royero, J.; Ruiz-Merchán, J.; Higgins, A.; Henriquez, S. Storms or cold fronts: What is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Nat. Hazards Earth Syst. Sci. 2016, 16, 391–401. [Google Scholar] [CrossRef]
- Cueto, J.; Otero, L. Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches. Appl. Ocean Res. 2020, 101, 102283. [Google Scholar] [CrossRef]
- Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter- decadal hasta la escala diurna por ciencias de la tierra. Rev. Acad. Colomb. Cienc. 2004, 107, 201–222. [Google Scholar]
- Conde-Frias, M.; Otero, L.; Restrepo, J.; Ortiz, J.; Ruiz, J.; Osorio, A. Experimental analysis of infragravity waves in two eroded microtidal beaches. Acta Oceanol. Sin. 2017, 36, 31–43. [Google Scholar]
- Anfuso, G.; Rangel-Buitrago, N.; Correa Arango, I.D. Evolution of Sandspits along the Caribbean Coast of Colombia: Natural and Human Influences. In Sand and Gravel Spits. Coastal Research Library; Randazzo, G., Jackson, D., Cooper, J., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- IDEAM, TIEMPO Y CLIMA. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/cartilla-pronostico-pleamares-bajamares-costa-atlantica-colombiana?p_p_id=110_INSTANCE_sgxGOQ77WWFo&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1 (accessed on 6 June 2022).
- Blott, S.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Holthuijsen, L. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Roelvink, J.A.; Stive, M.J.F. Bar generating cross-shore flow mechanisms on a beach. J. Geophys. Res. 1989, 94, 4785–4800. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M.G.; Knight, J. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Hodder Education: London, UK, 2011. [Google Scholar]
- Battjes, J.A.; Janssen, J.P.F.M. Energy loss and set-up due to breaking of random waves. Coast. Eng. 1978, 1978, 569–587. [Google Scholar]
- Fabbri, S.; Giambastiani, M.S.; Sistilli, F.; Scarelli, F.; Gabbianelli, G. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 2017, 295, 436–451. [Google Scholar] [CrossRef]
- Mullison, J. Backscatter estimation using broadband acoustic Doppler current profilers-Updated. In Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12 July 2017; pp. 9–12. [Google Scholar]
- Lohrmann, A. Monitoring Sediment Concentration with Acoustic Backscattering Instruments. Technical Report 03, Nortek AS. Available online: https://www.nortekgroup.com/assets/documents/Monitoring-sediment-concentration-with-acoustic-backscattering-instruments.pdf (accessed on 20 June 2022).
- Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [Google Scholar] [CrossRef]
- Vandebroek, E.; Claeys, S.; Plancke, Y.; Verwaest, T.; Mostaert, F. Agenda for the Future—Hydrodynamics and Sediment Dynamics in the Schelde Estuary: Sub Report 11—Factual Data Report for Frame-Measurements at Drempel van Frederik in December 2015 and January 2016; Version 3.0. FHR Reports, 14_024_11; Flanders Hydraulics Research & Antea Group: Antwerp, Belgium, 2017. [Google Scholar]
- Ainslie, M.A.; McColm, J.G. A simplified formula for viscous and chemical absorption in seawater. J. Acoust. Soc. Am. 1998, 103, 1671–1672. [Google Scholar] [CrossRef]
- Deines, K.L. Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement, San Diego, CA, USA, 13 March 1999. [Google Scholar]
- Campbell Scientific (CANADA) Corp. OBS-3A Turbidity and Temperature Monitoring System. Operator’s Manual. Available online: https://s.campbellsci.com/documents/ca/manuals/obs-3a_man.pdf (accessed on 20 February 2019).
- De Bakker, A.T.M.; Brinkkemper, J.A.; van der Steen, F.; Tissier, M.F.S.; Ruessink, B.G. Cross-shore sand transport by infragravity waves as a function of beach steepness. J. Geophys. Res. Earth Surf. 2016, 121, 1786–1799. [Google Scholar] [CrossRef]
- Svendsen, I.A.; Madsen, P.A.; Hansen, J.B. Wave characteristics in the surf zone. Coast. Eng. 1978, 520–539. [Google Scholar] [CrossRef]
- Ruju, A.; Lara, J.; Losada, I. Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coast. Eng. 2012, 68, 44–55. [Google Scholar] [CrossRef]
- De Bakker, A.; Herbers, T.; Smit, P.; Tissier, M.; Ruessink, B.G. Nonlinear infragravity-wave interactions on a gently sloping laboratory beach. J. Phys. Oceanogr. 2015, 45, 589–605. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Houwman, K.T.; Hoekstra, P. The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Mar. Geol. 1998, 152, 295–324. [Google Scholar] [CrossRef]
- Guza, R.T.; Thornton, E.B. Ascend/descend oscillations on a natural beach. J. Geophys. Res. 1982, 87, 483–491. [Google Scholar] [CrossRef]
- DIMAR, 2020. Cecoldo. Repositorio Digital Marítimo, Fluvial and Costero. Available online: https://cecoldodigital.dimar.mil.co/view/divisions/ISSN/ (accessed on 5 November 2022).
- Janssen, T.T.; Battjes, J.A. Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res. 2003, 108, 3252. [Google Scholar] [CrossRef]
- Battjes, J.A.; Bakkenes, H.J.; Janssen, T.T.; van Dongeren, A.R. Shoaling of subharmonic gravity waves. J. Geophys. Res. 2004, 109, C02009. [Google Scholar] [CrossRef]
- Masselink, G. Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res. 1995, 15, 1525–1547. [Google Scholar] [CrossRef]
- Baldock, T.E. Dissipation of incident forced long waves in the surf zone-Implications for the concept of “bound” wave release at short wave breaking. Coast. Eng. 2012, 60, 276–285. [Google Scholar] [CrossRef]
- Contardo, S.; Symonds, G. Infragravity response to variable wave forcing in the nearshore. J. Geophys. Res. Ocean. 2013, 118, 7095–7106. [Google Scholar] [CrossRef]
- Symonds, G.; Huntley, D.A.; Bowen, A.J. Two-dimensional surf beat: Long wave generation by a time-varying breakpoint. J. Geophys. Res. 1982, 87, 492. [Google Scholar] [CrossRef]
- Pomeroy, A.; Lowe, R.; Symonds, G.; Van Dongeren, A.; Moore, C. The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res. 2012, 117, C11022. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Battjes, J.; Janssen, T.; van Noorloos, J.; Steenhauer, K.; Steenbergen, G.; Reniers, A. Shoaling and shoreline dissipation of low-frequency waves. J. Geophys. Res. 2007, 112, C02011. [Google Scholar] [CrossRef]
- De Bakker, A.T.M.; Tissier, M.F.S.; Ruessink, B.G. Shoreline dissipation of infragravity waves. Cont. Shelf Res. 2014, 72, 73–82. [Google Scholar] [CrossRef]
- Komar, P. Beach Processes and Sedimentation, 2nd ed.; Prentice-Hall: Englewood-Cliffs, NJ, USA, 1998. [Google Scholar]
- Elgar, S.; Raubenheimer, B.; Guza, R.T. Current Meter Performance in the Surf Zone*. J. Atmos. Ocean. Technol. 2001, 18, 1735–1746. [Google Scholar] [CrossRef]
- Beach, R.A.; Sternberg, R.W. Infragravity driven suspended sediment transport in the swash, inner and outer surf zone. In Proceedings of the Specialty Conference on Quantitative Approaches to Coastal Sediment, Seattle, WA, USA, 25–27 June 1991; pp. 114–128. [Google Scholar]
- Russell, P.E. Mechanisms for beach erosion during storms. Cont. Shelf Res. 1993, 13, 1243–1265. [Google Scholar] [CrossRef]
- Ortiz, J.; Otero, L.; Restrepo, J.; Ruiz, J.; Cadena, M. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat. Hazards Earth Syst. Sci. 2013, 11, 2797–2804. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf-Zone Dynamics. Annual Review of Fluid Mechanics. Ann. Rev. Fluid Mech. 1988, 20, 257–293. [Google Scholar] [CrossRef]
- Brand, E.; Montreuil, A.; Dan, S.; Chen, M. Macro-tidal beach morphology in relation to nearshore wave conditions and suspended sediment concentrations at Mariakerke, Belgium. Reg. Stud. Mar. Sci. 2018, 24, 97–106. [Google Scholar] [CrossRef]
- Bocard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R Use R; Springer Science + Business Media: New York, NY, USA, 2011; pp. 115–140. [Google Scholar]
- Brand, E.; Montreuil, A.-L.; Chen, M. The effect of turbulence and particle size on suspended sediment concentration measurements in the intertidal zone. In Coastal Sediments; Tampa: St. Pete, FL, USA, 2019. [Google Scholar]
- Battisto, G.M.; Friedrichs, C.T.; Miller, H.C.; Resio, D.T. Response of OBS to Mixed Grain Size Suspensions during Sandy Duck’97. In Proceedings of the 4th International Symposium on Coasting Engineering and Science of Coastal Sediment Processes, Hauppauge, NY, USA, 21–23 June 1999; Volume 99, pp. 297–312. [Google Scholar]
- Brand, E.; Chen, M.; Montreuil, A.L. Optimizing measurements of sediment transport in the intertidal zone. Earth-Sci. Rev. 2020, 200, 103029. [Google Scholar] [CrossRef]
- Merckelbach, L.; Ridderinkhof, H. Estimating suspended sediment concentration using backscatter from an acoustic Doppler profiling current meter at a site with strong tidal currents. Ocean Dyn. 2006, 56, 153–168. [Google Scholar] [CrossRef]
- Nauw, J.J.; Merckelbach, L.M.; Ridderinkhof, H.; van Aken, H.M. Long-term ferrybased observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. J. Sea Res. 2014, 87, 17–29. [Google Scholar] [CrossRef]
- Ding, Y.; Styles, R.; Kim, S.; Permenter, R.; Frey, A. Cross-Shore Sediment Transport for Modeling Long-Term Shoreline Evolution. J. Waterw. Port Coast. Ocean. Eng. 2020, 147, 4. [Google Scholar] [CrossRef]
- Masselink, G.; Black, K.P. Magnitude and cross-shore distribution of bed return flow measured on natural beaches. Coast. Eng. 1995, 25, 165–190. [Google Scholar] [CrossRef]
- Aagaard, T.; Black, K.P.; Greenwood, B. Cross-shore sediment transport in the surf zone: A field-based parameterization. Mar. Geol. 2002, 185, 283–302. [Google Scholar] [CrossRef]
- Masselink, G.; Austin, M.J.; O’Hare, T.J.; Russell, P.E. Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach. J. Geophys. Res. 2007, 112, C10022. [Google Scholar] [CrossRef]
- Aagaard, T.; Greenwood, B. Suspended sediment transport and the role of Infragravity waves in a barred surf zone. Mar. Geol. 1994, 118, 2348. [Google Scholar] [CrossRef]
- Black, K.; Vincent, C. High-resolution field measurements and numerical modelling of intra-wave sediment suspension on plane beds under shoaling waves. Coast. Eng. 2001, 42, 173–197. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Prediction of dune erosion due to storms. Coast. Eng. 2009, 56, 441–457. [Google Scholar] [CrossRef]
- Choi, J.; Roh, M.; Hwang, H. Observing the laboratory interaction of undertow and nonlinear wave motion over barred and nonbarred beaches to determine beach profile evolution in the surf zone. J. Coast. Res. 2018, 34, 1449–1459. [Google Scholar]
- Van Rijn, L.C. Principles of Sedimentation and Erosion Engineering in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 2012; Available online: www.aquapublications.nl (accessed on 20 February 2019).
- Meyer, R.D. A Model Study of Wave Action on Beaches; Department of Civil Engineering, University of California: Berkeley, CA, USA, 1936. [Google Scholar]
- Saville, T. Model studies of sand transport along an infinitely straight beach. Am. Geophys. Union Trans. 1950, 31, 555–556. [Google Scholar]
- Masselink, G.; Russell, P.; Turner, I.; Blenkinsopp, C. Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar. Geology. 2009, 267, 18–35. [Google Scholar] [CrossRef]
- Johnson, J.W. Scale effects in hydraulic models involving wave motion. Trans Amer. Geophys. Union 1949, 30, 517–525. [Google Scholar]
- Masselink, G.; Russell, P.; Blenkinsopp, C.; Turner, I. Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Mar. Geol. 2010, 274, 50–68. [Google Scholar] [CrossRef]
- Larson, M.; Kraus, N.C. Sbeach: Numerical Model for Simulating Storm-Induced Beach Change; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1989. [Google Scholar]
- Jackson, N.L. Evaluation of criteria for predicting erosion and accretion on an estuarine sand beach, Delaware Bay, Jew Jersey. Estuaries 1999, 22, 215–223. [Google Scholar] [CrossRef]
- Dall, H.J.; Merrifield, M.A.; Bevis, M. Steep beach morphology changes due to energetic wave forcing. Mar. Geol. 2000, 162, 443–458. [Google Scholar] [CrossRef]
- Ruggiero, P.; Walstra, D.J.R.; Gelfenbaum, G.; van Ormondt, M. Seasonal-scale nearshore morphological evolution: Field observations and numericl modeling. Coast. Eng. 2009, 56, 1153–1172. [Google Scholar] [CrossRef]
- Gallagher, E.L.; Elgar, S.; Guza, R.T. Observations of sand bar evolution on a natural beach. J. Geophys. Res. 1998, 103, 3203–3215. [Google Scholar] [CrossRef]
- Masselink, G.; Pattiaratchi, C.B. Seasonal changes in beach morphology along the sheltered coastline of Perth, Western Australia. Mar. Geol. 2001, 172, 243–263. [Google Scholar] [CrossRef]
- Quartel, S.; Kroon, A.; Ruessink, B.G. Seasonal accretion and erosion patterns of a microtidal sandy beach. Mar. Geol. 2008, 250, 19–33. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Estuarine Beaches: An Introduction to Physical and Human Factors Affecting Use and Management of Beaches in Estuaries, Lagoons, Bays and Fjords; Elsevier Applied Science: London, UK, 1992; p. 217. [Google Scholar]
- Jiang, S.; Dickey, T.D.; Steinberg, D.K.; Madin, L.P. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 608–636. [Google Scholar] [CrossRef]
- Ghaffari, P.; Azizpour, J.; Noranian, M.; Chegini, V.; Tavakoli, V.; Shah-Hosseini, M. Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel. Ocean Sci. Discuss. 2011, 8, 1601–1630. [Google Scholar]
- Nortek. Welcome to the Nortek Support Center. Available online: https://support.nortekgroup.com/hc/en-us/categories/360001447411-Manuals (accessed on 15 September 2022).
- Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K. Laboratory and field evaluations of the LISST- 100 instrument for suspended particle size determinations. Mar. Geol. 2001, 175, 199–219. [Google Scholar] [CrossRef]
- Thorne, P.D.; Vincent, C.E.; Hardcastle, P.J.; Rehman, S.; Pearson, N. Measuring suspended sediment concentration using acoustic backscatter devices. Mar. Geol. 1991, 98, 7–16. [Google Scholar] [CrossRef]
Season | Sensor/ Symbology | Instrument | Location | Distance from the Coast [m] | Depth [m] |
---|---|---|---|---|---|
Wet | W0 | Nortek Aquadopp Profiler | Shoaling zone | 400 | ~7.9 |
W1 | Nortek Aquadopp Profiler | Breaking zone | 150 | ~2.8 | |
W2 | Nortek Aquadopp Profiler | Surf zone | 34 | ~1.3 | |
W3 and OBS 5+ | Nortek Aquadopp Profiler HR and OBS5+ | 23 | ~1.2 | ||
W4 | Nortek Aquadopp Profiler HR | 16 | ~1.1 | ||
W5 | RBR | Near the Swash zone | 10 | ~1.0 | |
Dry | D0 | RBR | Shoaling zone | 400 | ~7.9 |
D1 | Nortek Aquadopp Profiler | Breaking zone | 150 | ~2.8 | |
D2 and OSB 3+ | Nortek Aquadopp Profiler and OBS3+ | Surf zone | 30 | ~1.4 | |
D3 | Nortek Aquadopp Profiler HR | 21 | ~1.3 | ||
D4 and LISST | Nortek Aquadopp Profiler HR and LISST | Near the Swash zone | 13 | ~1.1 |
Climatic Season | Sample | Coastal Zone | Textural Group | Very Fine Sand (%) | Fine Sand (%) | Medium Sand (%) | Coarse Sand (%) | Very Coarse Sand (%) | Gravel (%) |
---|---|---|---|---|---|---|---|---|---|
Wet | 1 | Surf zone | Slightly gravelly sand | 0.8 | 12.3 | 27.1 | 47.7 | 10.7 | 1.4 |
2 | Near the swash zone | Sandy gravel | 0.4 | 3.1 | 5 | 23.9 | 30.1 | 37.5 | |
3 | Subaerial zone | Slightly gravelly sand | 1.0 | 24.6 | 51.7 | 20.4 | 2.1 | 0.2 | |
Dry | 4 | Surf zone | Gravelly sand | 0.2 | 3.1 | 18.7 | 36.5 | 20.0 | 21.5 |
5 | Near the swash zone | Sandy gravel | 0.1 | 0.7 | 9.8 | 34.6 | 22.3 | 32 | |
6 | Subaerial zone | Slightly gravelly sand | 0.7 | 9.5 | 52.5 | 33.8 | 3.3 | 0.2 |
Season/Coastal Zone | Wet/Inner Surf Zone | Wet/Near the Swash Zone | Dry/Inner Surf Zone | Dry/Near the Swash Zone | ||||
---|---|---|---|---|---|---|---|---|
1st Principal Component | 2nd Principal Component | 1st Principal Component | 2nd Principal Component | 1st Principal Component | 2nd Principal Component | 1st Principal Component | 2nd Principal Component | |
0.52 | 0.3 | 0.52 | 0.17 | 0.01 | 0.79 | 0.36 | 0.55 | |
0.36 | −0.23 | 0.08 | 0.54 | 0.47 | 0.15 | 0.58 | 0.16 | |
Sea level | 0.53 | 0.29 | 0.52 | 0.22 | 0.48 | 0.18 | 0.25 | 0.19 |
Wave steepness | 0.49 | −0.2 | 0.49 | 0.13 | −0.4 | 0.32 | −0.24 | 0.51 |
Cross-shore currents | 0.07 | 0.51 | 0.29 | −0.52 | 0.36 | −0.35 | −0.5 | 0.36 |
Alongshore currents | −0.19 | 0.27 | −0.21 | −0.1 | −0.34 | 0.06 | 0.43 | −0.17 |
SSC | −0.19 | 0.63 | −0.3 | 0.57 | 0.41 | 0.28 | −0.07 | −0.48 |
Variance | 11% | 11% | 12% | 14% | 15% | 12% | 16% | 14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, A.M.; Otero, L.; Ospino, S.; Cueto, J. Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. J. Mar. Sci. Eng. 2024, 12, 1141. https://doi.org/10.3390/jmse12071141
Guerrero AM, Otero L, Ospino S, Cueto J. Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. Journal of Marine Science and Engineering. 2024; 12(7):1141. https://doi.org/10.3390/jmse12071141
Chicago/Turabian StyleGuerrero, Anlly Melissa, Luis Otero, Silvio Ospino, and Jairo Cueto. 2024. "Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach" Journal of Marine Science and Engineering 12, no. 7: 1141. https://doi.org/10.3390/jmse12071141
APA StyleGuerrero, A. M., Otero, L., Ospino, S., & Cueto, J. (2024). Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach. Journal of Marine Science and Engineering, 12(7), 1141. https://doi.org/10.3390/jmse12071141