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Abstract: Underwater vehicles heavily depend on the integration of inertial navigation with Doppler
Velocity Log (DVL) for fusion-based localization. Given the constraints imposed by sensor costs,
ensuring the optimization ability and robustness of fusion algorithms is of paramount importance.
While filtering-based techniques such as Extended Kalman Filter (EKF) offer mature solutions to
nonlinear problems, their reliance on linearization approximation may compromise final accuracy.
Recently, Invariant EKF (IEKF) methods based on the concept of smooth manifolds have emerged to
address this limitation. However, the optimization by matrix Lie groups must satisfy the “group affine”
property to ensure state independence, which constrains the applicability of IEKF to high-precision
positioning of underwater multi-sensor fusion. In this study, an alternative state-independent
underwater fusion invariant filtering approach based on a two-frame group utilizing DVL, Inertial
Measurement Unit (IMU), and Earth-Centered Earth-Fixed (ECEF) configuration is proposed. This
methodology circumvents the necessity for group affine in the presence of biases. We account for
inertial biases and DVL pole-arm effects, achieving convergence in an imperfect IEKF by either
fixed observation or body observation information. Through simulations and real datasets that are
time-synchronized, we demonstrate the effectiveness and robustness of the proposed algorithm.

Keywords: AUV; navigation; invariant error; IEKF; DVL

1. Introduction

Autonomous Underwater Vehicles (AUVs) employ a diverse array of methods to
determine their geographic location. This includes the use of inertial components, a Global
Navigation Satellite System (GNSS) for satellite-based multipoint positioning, environ-
mental perception through cameras and Doppler Velocity Logs (DVLs), acoustic ranging
techniques for distance estimation, and pressure sensors for depth measurements. Given
the limitations of electromagnetic wave propagation in the underwater environment, partic-
ularly about GNSS-based positioning and acousto-optic ranging, various fusion techniques
utilizing an Inertial Navigation System (INS)/DVL have been utilized to improve the
accuracy of positioning [1,2]. To overcome the nonlinear optimization challenges related to
the fusion of multiple sensor sources, state estimation can be achieved using optimization
methods such as the Extended Kalman Filter (EKF) or least squares techniques [3,4]. In
a more complex manner, SLAM localization is achieved through data correlation and
loopback detection, which can be accomplished by image sonar or underwater vision [5,6].

Nevertheless, conventional filtering techniques, which depend on the linearization of
nonlinear problems, result in error accumulation, particularly noticeable in long-duration
positioning tasks [7]. The property of Lie groups to maintain smooth structures on man-
ifolds enables the effective description of robot positioning characteristics [8,9]. The In-
variant Extended Kalman filter (IEKF) algorithm gives a novel solution [10,11], with
applications extending to legged robots and beyond [12]. Unfortunately, for IEKF to
attain trajectory-independent error with left–right invariance, the state must adhere to
a group affine property. In the optimization problem of Earth frame-based navigation,
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researchers often introduce an auxiliary velocity vector, which leads to increased computa-
tional complexity [13–16].

Hence, drawing inspiration from [17], we propose a new method for representing
observations in different coordinate systems using two frames, which enables the opti-
mization of invariant filtering. This approach eliminates the need for auxiliary vectors and
improves localization accuracy. Overall, the contributions of this paper can be delineated
as follows:

• Utilizing a novel two-frame group filtering approach, along with a comprehensive
formulation and validation, encompassing both fixed and body observations.

• Leveraging DVL and depth sensor data as primary observations, the methodology
facilitates underwater navigation filtering, obviating the necessity for intricate trans-
formations to satisfy group affine requirements.

• Algorithmic validation is conducted using simulated datasets and proprietary real-
world underwater data, ensuring robustness and efficacy.

In the subsequent sections of this paper, we delve into specific aspects of our research.
Section 2 provides an overview of recent advancements and limitations in underwater
navigation optimization and the application of Lie group optimization. Section 3 presents
the Lie group theory with a specific emphasis on the two-frame group theory, detailing its
enhancements and application in underwater navigation. Section 4 outlines the validation
process of both simulation and experimental data, followed by a comprehensive analysis
and evaluation of the results in Section 5. Finally, Section 6 summarizes the whole paper
and gives future research directions.

2. Related Works
2.1. Underwater Navigation Methods

With the advancement of marine science and technology, underwater navigation meth-
ods have diversified, ranging from traditional inertial navigation to acoustic localization,
multi-sensor fusion navigation, and sense-calibrated navigation. For attitude estimation,
Shi et al. achieved high accuracy for an INS on an underwater dynamic base using Maha-
lanobis distance-based outlier suppression and real-time measurement noise covariance
estimation via variational Bayesian approximation [18]. Jorgensen et al. introduced a novel
exogenous Kalman filter-based observer structure for attitude estimation utilizing Time
Difference of Arrival (TDOA) measurements [19]. Subsequent research has focused on
optimizing underwater multi-sensor fusion errors. Li et al. integrated robust navigation
algorithms based on the maximum correlation entropy criterion and factor graph opti-
mization [20]. Huang et al. used the SRAKF algorithm to compute the exact solution
for the prediction error covariance matrix and measurement noise matrix, leveraging the
traceless transform [21]. OuYang et al. posited an affine transformation correlation between
the matched and real trajectories, estimating optimal positions using the Particle Swarm
Optimization (PSO) algorithm [22]. Jin et al. formulated a mathematical model for precise
alignment by utilizing the SQP algorithm to determine direction vectors and leading to
rapid convergence to high-precision attitude estimation [23]. Russo et al. employed an
expanded 1D convolutional layer to compress the input signal into a set of high-level fea-
tures and utilized jump joins to enhance model capture [24]. This methodology facilitated
attitude denoising that supports diverse filters and notably diminishes the Root Mean
Square Error (RMSE).

Recently, underwater navigation has advanced to calibrate positioning errors using
sensory information. Zhang et al. proposed an MBES subgraph construction method,
solving error loopback issues with Frechet distance for effective SLAM data correlation [25].
Rahman et al. used a bag-of-words location recognition module for global relocation via
geometric validation with PnP RANSAC [26]. Advanced deep learning methods have also
been employed to adaptively learn time-varying parameters in underwater navigation.
Ma et al. used deep learning to generate low-frequency position data and employed
VB-based adaptive filters for navigation estimation [27]. He et al. designed a purely
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inertial deep learning navigation system using Convolutional Neural Network (CNN) and
transformer networks for AUV motion states [28]. Li et al. achieved robust navigation
during DVL failures using a NARX model [29]. Zhao et al. used a Long Short-Term Memory
Network (LSTM) to process time series data, combining the accuracy of EKF with the
real-time performance of federated learning (FL) to optimize underwater localization [30].
Qin et al. found that geometry-based methods typically outperform deep learning-based
methods in positioning accuracy through experiments on the public underwater dataset
AQUALOC [31]. Kim et al. improved INS fault diagnosis using the Nomoto model with
enhanced preprocessing and input features [32].

In underwater navigation, filtering or optimization methods are employed for achiev-
ing optimal state estimation based on sensor measurements and a kinematics model. The
current challenge in achieving high-precision underwater navigation is not merely select-
ing an optimization method and enhancing the filter’s performance sensor characteristics.
Costanzi et al. proposed a method for detecting and rejecting affected measurements based
on single-axis fiber optic gyro (FOG) signals, utilizing complementary filters to address
magnetic perturbations from locally indistinguishable sources [33]. Ngatini et al. developed
an AUV position estimation approach employing an integrated Kalman filter and a fuzzy
Kalman filter (FKF) [34]. Shariati et al. tackled nonlinear state and parameter estimation
by proposing a method to identify the nonlinear dynamic model of an AUV, particularly
in the presence of unmeasured states [35]. Pei et al. redefined the process model using
the Lie group of the constant attitude matrix between two inertial systems as states and
designed a state-dependent Lie group filter [36]. Xu et al. applied the conditional adaptive
gain expansion Kalman filter (CAEKF) to various sensor noise models and introduced
a confidence assessment method to smooth the positioning trajectory of the AUV [37].
Fossen employed a discrete-time, unit-quaternion error-state Kalman filter to determine
the position of an AUV using range measurements from a hydroacoustic network, along
with improved time-delay estimation and compensation methods [38]. Comparison and
conclusion of different algorithms are shown in Table 1.

Table 1. Comparison of related filtering/optimization algorithms.

Author Methodology Conclusion

Shi et al. [18] Variational Bayesian Robust Adaptive Kalman Filter
(VBRAKF) Error of 95.61% of KF

Huang et al. [21] Statistical Regression Adaptive Kalman Filter (SRAKF) 93.83% improvement over UKF

Ngatini et al. [34] Integrated Kalman Filter and Fuzzy Kalman Filter Position error is 92% of FKF; an-
gle error is 93% of FKF

Pei et al. [36] State-Dependent Lie Group-based Filter Accuracy is 70% improved over
Quaternion KF

Xu et al. [37] Conditional Adaptive gain Expansion Kalman Filter
(CAEKF) 83% improvement over EKF

Proposed Underwater Two-Frame Group IEKF 77% improvement over IEKF

2.2. Li Group Optimization and Application to Underwater Navigation

Utilizing non-Euclidean geometric structures to model rotation and attitude spaces,
Lie groups offer a more precise characterization of kinematic constraints and attitude
changes. The logarithmic mapping of Lie groups transforms elements into vectors within
their tangent spaces. This mapping facilitates the conversion of group multiplication
operations into vector addition operations, thereby simplifying the derivation process.
Barrau, in his Ph.D. thesis, introduced the theory of detached invariant observers on
Lie groups and proposed a framework that enables the optimization of nonlinear error
variables controlled by linear differential equations. He further implemented local stability
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verification [10]. Subsequently, he proposed the invariant Kalman filtering framework [39]
and demonstrated the log-linear characterization of the Inertial Measurement Unit (IMU)
equation in discrete time. Additionally, he proposed a pre-integration formula based on
the Lie exponential coordinates concerning noise and bias [14]. Chang et al. utilized
the analytical and concrete form of manifold to derive log-linear differential equations in
continuous time without any approximation and provide left-invariant and right-invariant
errors within the matrix Lie group [40]. Li et al. used exponential formulas to correct the
base and fuselage attitudes and linear formulas to correct the inertial navigation coefficient
errors [41].

With advancements in Lie group theory in machine learning and optimization, it has
become a powerful tool for optimizing inertial and fusion navigation systems. Barfoot
applied Special Euclidean (SE) groups and Baker–Campbell–Hausdorff (BCH) formulations
to link uncertainty with the transformation matrix, improving the description of noise-
variable perturbations [42]. Brossard et al. related uncertainty to a matrix of five extended
poses, providing detailed uncertainty propagation for IMU states and deriving accurate
pre-integration formulas considering Earth’s rotation [15]. Pardos used Sagittal Kinematics
Dividing (SKD) analysis to model humanoid robots and employed Lie groups to solve
the inverse kinematic problem [8]. Roux combined an incomplete RIEKF with a CNN to
dynamically optimize the measurement noise covariance matrix, enhancing the estimation
of the position, velocity, and direction of a projectile [43]. Hartley derived a continuous-time
right-invariant EKF (RIEKF) for the IMU/contact process model, successfully applying it
to the Cassie bipedal robots [12]. Chang developed right-vector and left-vector error state
models that account for Earth’s rotation and Coriolis effect, suited for arbitrarily unaligned
attitude initialization, and applied them for pre-integration on the manifold [44].

Li group optimization theory has been widely applied to the initial error alignment
and multi-sensor fusion problems of underwater sensor systems. Xu et al. introduced the
SO(3) group state-space model, utilizing the degree of variation of auxiliary parameters to
detect outliers and proposed a DVL calibration method based on the SO(3) [45]. Luo et al.
devised a closed-loop scheme based on a linear state-space model to mitigate the effects of
IMU bias, DVL lever arm, and mounting misalignment angle between the IMU and the
DVL [46]. This scheme concurrently estimates and compensates for parameter errors and a
body attitude matrix using Davenport’s q method, thereby enhancing vector observation
accuracy. Qian et al. developed an integrated navigation Lie group error model based on
Euler angles utilizing the Proper Weighting and Conditioning Strategy (PWCS) matrix of
the Lie group model [47]. Additionally, Potokar et al. extended the conventional invariant
measurement model to accommodate measurements that capture only a subset of the 3D
state. They incorporated additional information, such as underwater depth measurements,
into the IEKF framework [48].

In this work, pre-integration-based synchronization is conducted on INS, DVL, and PS
data, followed by the application of the TFG method for invariant filtering. We address the
limitations associated with group affine in underwater navigation filtering by employing a
novel approach that preserves positioning accuracy.

3. Methodology
3.1. Lie Group Theory

The concept of Lie group encompasses the notions of both group and smooth manifold
and unifies them within a mathematical framework. In the process of robot state estimation,
Lie groups, mainly the special orthogonal group SO(3) and the special Euclidean group
SE(3), are employed to represent rotational and attitude transformations, respectively.

The orientation R of a rigid body in space is typically modeled as

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1} (1)

where R3×3 denotes the set of 3 × 3 vectors.
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For the transformation matrix, which contains the rotation matrix R and the translation
vector t, it is denoted by [49]

SE(3) =
{

T =

[
R t
0 1

]
∈ R4×4

∣∣∣R ∈ SO(3), t ∈ R3
}

(2)

For the extended pose containing position P, velocity V, and direction R, it is expressed by

SE2(3) :=

T =

 R V P
01,3 1 0
01,3 0 1

∣∣∣∣∣∣(R, V , P) ∈ SO(3)×R3

 (3)

where SE2(3) is called the “double direct isometric group” [50]. Matrix multiplication
provides the group composition of two elements of SE2(3).

A Lie algebra resides within a vector space and corresponds to a Lie group structure.
The Lie algebras so(3) and se(3) corresponding to SO(3) and SE(3) are, respectively,

so(3) = {ϕ ∈ R3, (ϕ×) ∈ R3×3} (4)

se(3) =
{

ξ =

[
ϕ
ρ

]
∈ R6, ϕ ∈ so(3), ρ ∈ R3, ξ∧ =

[
(ϕ×) ρ

0T 0

]
∈ R4×4

}
(5)

where ϕ represents a three-dimensional rotation vector, × denotes the antisymmetric matrix
operation applied to a three-dimensional rotation vector, and ρ is a three-dimensional
translation vector. It is noteworthy that, in se(3), the symbol ∧ is extended to convert a six-
dimensional vector to a four-dimensional matrix. Conversely, in so(3), the antisymmetric
matrix is commonly denoted by either ∧ or ×.

As in classical Lie group theory, small perturbations of extended posets can be de-
scribed in terms of elements of the Lie algebra SE2(3). The operator ∧ similarly represents
a linear mapping operation that transforms the elements ξ := (ϕT , vT , ρT)T ∈ R9 into
elements of the Lie algebra, as follows:

ξ∧ :=

ϕ
v
ρ

∧

=

(ϕ×) v ρ
01×3 0 0
01×3 0 0

 (6)

The exponential mapping conveniently maps small perturbations encoded in R9 to
SE2(3). For the matrix Lie group, it is defined as exp(ξ) := expm(ξ∧), where expm(·)
denotes the classical matrix exponential mapping.

The Lie algebra space of SE2(3) is equivalent to the nine-dimensional Euclidean
space represented as an operation. Its Lie algebra and Lie group can be expressed by the
exponential map exp(·) and the logarithmic map log(·) as follows:

χ = expm
(
ξ∧

)
=

expm(ϕ×) Jlv Jlρ
01×3 1 0
01×3 0 1

 (7)

ξ = log (χ) =

 θa
J−1
l v

J−1
l ρ

 (8)

When θ is a small angle, expm(ϕ×) ≈ I3 + (ϕ×). jl and j−1
l are given by the follow

ing equation:

Jl =
sin θ

θ
I3 +

(
1 − sin θ

θ

)
aaT +

(
1 − cos θ

θ

)
(a×) (9)
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J−1
l =

θ

2
cot θ

2
I3 +

(
1 − θ

2
cot θ

2

)
aaT − θ

2(a×)
(10)

The BCH formula shows that, for ξ1, ξ2 ∈ R9, there is exp(ξ1) exp(ξ2) ≈ exp(ξ1 + ξ2).
The so-called concomitant operator is defined by analogy with SE (3) as

AdT =

 R 03,3 03,3
(V)×R R 03,3
(P)×R 03,3 R

 ∈ R9×9 (11)

The system demonstrates a property known as group affine, as the deterministic
dynamical model adheres to the following criterion:

fu(χχ̃) = fu(χ)χ + χ fu(χ̃)− χ ˜fu(I)χ (12)

Dynamic systems that adhere to the aforementioned relations are classified as ex-
hibiting group affine dynamics. A notable characteristic of group affine dynamics is the
independence of its error state model from the global state estimate. Specifically, both the
left-invariant error and the right-invariant error remain unaffected by the trajectory.

3.2. Two Frame Groups

In addressing the multi-source data fusion navigation problem, particularly in fusion
with other observation sensors, the formulation often encompasses various coordinate
systems. These include the inertial coordinate system (i system), the navigation coordinate
system (n system), and the Earth coordinate system (e system), among others [51]. For the
characterization of underwater vehicle motion, a fixed navigation frame and a time-varying
self-frame are typically defined [17]. Here, the state space is designated by

χ = (R, x, X)T (13)

where the rotation matrix Rn signifies the transformation mapping vectors represented
in the body frame to the world frame at time step n. Notably, x denotes variables within
the fixed frame, while X represents variables within the body frame. In a product space
G × V × B, where R ∈ G, x ∈ V, and X ∈ B,

Define the ∗ operator as of G on W, where the vector space W = RNd; i.e., W is an
N-vector tuple of Rd, as follows:

R ∗ (x1, ..., xN) := (Rx1, ..., RxN) (14)

Define the natural output in the fixed frame and body frame as follows:{
Fixed-frame: h(R, x, X) = Hx

x + R ∗ [HX
X + B]

Body-frame: H(R, x, X) = R−1 ∗ [b − Hxx]− HX
X

(15)

Define discrete-time natural vector dynamics as χn = fn(χn − 1), where

fn

R
x
X

 =

 R
[Fnx + dn] + R ∗ [CnX + Un]

[ΦnX +Dn] + R−1 ∗ [Γnx + un]

 (16)

where the matrices Fn : V 7→ V, ϕn : B 7→ B, Cn : B 7→ V, and Γn : V 7→ B are all exchanged
under the action of G.
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Define the natural frame dynamics as χn = sn(χn − 1), where

sn

R
x
X

 =

sR
n (χ)

x
X

 =

OnRΩn
x
X

 (17)

where Ωn ∈ G has known elements.
Define a natural two-frame observed system as follows:

χn = sn ◦ fn(χn−1)
yn = hn(χn) or Yn = Hn(χn)

(18)

Define the group structure on the two-frame state space G × V × B as follows:R1
x1
X1

 •

R2
x2
X2

 =

 R1R2
x1 + R1 ∗ x2

X2 + R−1
2 ∗ X1

 (19)

where those having the structure G × V × B are denoted by G+
V,B.

Define the group action on the output space in terms of the operator ⋆ as follows:

G+
V,B × Υ 7→ Υ

(R, x, x) ⋆ β = Hxx + R ∗ [HxX + β]
(20)

For χn = ϕn(χ(n − 1)) and χ1, χ2 ∈ G+
V,B, if φn : G+

V,B → G+
V,B:

ϕn(χ1 • χ2) = ϕn(χ1) • ϕn(Id)−1 • ϕn(χ2) (21)

Then the dynamics are considered to satisfy the “group affine property”.

3.3. Two Frame Groups IEKF

A linear observational system on a group is a dynamical system observed by measur-
ing yn or Yn, denoted as follows:{

Left action case : χn = ϕn(χn−1) yn = χn ⋆ b
Right action case : χn = ϕn(χn−1) Yn = χ−1

n ⋆ b
(22)

where ϕn satisfies the group affine property.
Building alternative innovation terms,

Zn = χ̂−1
n|n−1 ⋆ yn − b or zn = χ̂n|n−1 ⋆ Yn − b (23)

The propagation and update steps of a linear observer are defined as follows:
Propagation step : χ̂n|n−1 = ϕn(χ̂n−1|n−1)

Update step :
{

χ̂n|n = χ̂n|n−1 · Ln(Zn)

χ̂n|n = Ln(zn) · χ̂n|n−1

(24)

The left-invariant error variable and the right-invariant error variable are denoted
as follows: {

En|n = χ̂−1
n|n · χn

en|n = χn · χ̂−1
n|n

(25)

The updated terms for IEKF are as follows:{
Ln(Zn) = expG+

V,B
(KnZn)

Ln(zn) = expG+
V,B

(Knzn)
(26)
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where expG+
V,B

is the exponential mapping of TFG and Kn represents Kalman gain.
The linearization error is defined as follows:{

ξn|n−1 = As
n Av

nξn−1|n−1
ξn|n = (I − Kn Hn)ξn|n−1

(27)

where the Jacobi matrices as As
n, Av

n, and Hn correspond to the frame dynamics, vector
dynamics, and output mapping, respectively, tuned by the following Riccati equations.

The gain of TFG-IEKF is tuned using the following equation, and the final solution is
shown in Figure 1. 

Pn|n−1 =As
n Av

nPn−1|n−1(As
n Av

n)
T + Q̂n

sn =HnPn|n−1HT
n + N̂n

Kn =Pn|n−1HT
n S−1

n

Pn|n =(I − KnHn)Pn|n−1

(28)

High-rate 
IMU

DVL

Output 
Prediction TFG-Model

EKF 
Update

AUV 
Kinematic

𝑏𝑏𝜔𝜔, 𝑏𝑏𝑎𝑎

Innovation 
Variable

Body Frame

Fixed Obesrver

Depth 
Sensor

𝐾𝐾n

𝐴𝐴𝑆𝑆, 𝐴𝐴v

Χ𝑛𝑛|𝑛𝑛

Figure 1. AUV is localized by multi-source data from underwater TFG-IEKF.

3.4. Algorithmic Implementation

The innovation variable is associated with the fixed frame output as follows:Zn = R̂−1
n|n−1 ∗ (yn − Hx x̂n|n−1)− HXX̂n|n−1 − Bn

zn = R̂n|n−1 ∗
(

Yn + HXX̂n|n−1

)
+ Hx x̂n|n−1 − bn

(29)

After applying vector dynamics and frame dynamics and considering observations,
respectively, the estimate of moment n is expressed as χ̂n− |n−1, χ̂n|n−1 and χ̂n|n. Then, the
fixed frame observer of the left-invariant observer is implemented as follows:

χ̂n−|n−1 = fn(χ̂n−1|n−1)

χ̂n|n−1 = sn(χ̂n−|n−1)

χ̂n|n =

 R̂n|n−1LR
n (Zn)

x̂n|n−1 + R̂n|n−1 ∗ Lx
n(Zn)

LX
n (Zn) + LR

n (Zn)−1 ∗ X̂n|n−1

 (30)

Similarly, under the observation of the body frame, the constant observation value is
written as follows:
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χ̂n−|n−1 = fn

(
χ̂n−1|n−1

)
χ̂n|n−1 = sn

(
χ̂n−|n−1

)
χ̂n|n =


LR

n (zn)R̂n|n−1

Lx
n(zn) + LR

n (zn) ∗ x̂n|n−1

X̂n|n−1 + R̂−1
n|n−1 ∗ LX

n (zn)


(31)

Rewrite the left invariant error En|n using the TFG method as follows:

En|n =


R̂−1

n|nRn

R̂−1
n|n ∗ (xn − x̂n|n)

Xn −
(

R−1
n R̂n|n

)
∗ X̂n|n

 (32)

Similarly, the right invariant error is represented in the body frame as follows:

en|n =


RnR̂−1

n|n
xn −

(
RnR̂−1

n|n

)
∗ x̂n|n

R̂n|n ∗
(

Xn − X̂n|n

)
 (33)

3.5. Underwater Multi-Sensor TFG Model

This section provides details on the Multi-Sensor TFG Model for the AUV, bottoming
velocity measurements via DVL and depth measurements via manometers, which perfectly
matches the TFG assumptions. Based on the transformations of Equation (30) and consid-
ering the innovation variable (Equation (29)), the discrete-time dynamics are expressed
as follows: 

Rn− |n−1 = Rn−1|n−1

vn− |n−1 = vn−1|n−1 + ∆t
(

g + Rn−1|n−1(an + ba
n−1)

)
pn− |n−1 = pn−1|n−1 + ∆tvn−1|n−1

bω
nω−|n−1 = bω

n−1|n−1, ba
n = ba

n−1|n−1

(34)


Rn|n−1 = Rn−|n−1 exp(∆t[ωn + bω

n−1]x)

vn|n−1 = vn−|n−1

pn|n−1 = pn−|n−1

bω
n|n−1 = bω

n−|n−1, ·ba
n = ba

n−|n−1

(35)



R̂n|n = R̂n|n−1 expSO(3)(K
R
n zn)

v̂n|n = v̂n|n−1 + R̂n|n−1 ∗ ν3(KR
n zn)Kv

nzn

p̂n|n = p̂n|n−1 + R̂n|n−1 ∗ ν3
(
KR

n zn
)
Kp

nzn

b̂ω
n|n = ν3(−KR

n zn)Kbω

n zn + (ν3(−KR
n zn)KR

n zn)
−1 ∗ b̂ω

n|n−1

b̂a
n|n = ν3(−KR

n zn)Kba

n zn + (ν3(−KR
n zn)KR

n zn)
−1 ∗ b̂a

n|n−1

(36)

where Rn ∈ G denotes the transformation of the body frame attached to the IMU mapped
to the fixed frame of Earth at moment n, pn ∈ R3 denotes the position of the body in space,
vn ∈ R3 denotes the velocity of the body, g is Earth’s gravity vector, a,ωn ∈ R3 denote the
accelerometer and gyroscope signals, ba

n denotes the accelerometer bias, and bω
n denotes

the gyroscope bias, ν3(ξ) = I3 +
1−cos(∥ξ∥)

∥ξ∥2 (ξ)× + ∥ξ∥−sin(∥ξ∥)
∥ξ∥3 (ξ)2

×.
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In this paper, we set xn = (pn, vn) ∈ R3 ×R3, and Xn = (bω
n , ba

n) ∈ R3 ×R3. According
to Equations (16) and (17), we obtain the following:

Fn =

(
I3 03

∆tI3 I3

)
Cn =

(
03 ∆tI3
03 03

)
dn =

(
∆tg

0

)
Un =

(
∆tan

03,1

)
Φn =

(
I3 03
03 I3

)
Γn = 06

Dn = un = 06,1

(37)

For observation, it is necessary to establish that the velocity measurements are of the
fixed system and the IMU measurements belong to the body frame. Additionally, velocity
and depth information are acquired within our body coordinate system via the DVL and
PS, denoted as follows:

yn =

VDVL
3,1
02,1

Depth

 (38)

According to the formula, it is possible to obtain the following:

Hx =

 I3 03,1 03,2
01,3 I1 01
02,3 02,1 02,2


HX = 03,6

B = 0

(39)

The Jacobian matrix of En|n for fixed frame observations is as follows:

Av
n =

 Id 0d,q 0d,r
−(un)∗ Fn Cn
−(Dn)∗ Γn Φn


Hn =

(
−(Bn)∗ Hx H×

)
As

n =

Ad−1
Ωn

0d,q 0d,r
0q,d (Ω−1

n O−1)∗ 0q,r
0d,r 0q,r Ir


(40)

Proposition: the Jacobian of the above frame dynamics is written as follows:
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Av
n =


I3 03,3 03,3 03,3 03,3

−∆t(an)× I3 03,3 03,3 ∆tI3
03,3 ∆tI3 I3 03,3 03,3
03,3 03,3 03,3 I3 03,3
03,3 03,3 03,3 03,3 I3


Hn =

(
03,3

(
I4

02,2

)
03,6

)

As
n =


I3 03×3 03×3 M1 03×3

03×3 M4 03×3 03×3 03×3
03×3 03×3 M4 03×3 03×3
03×3 03×3 03×3 I3 + (b̂w

n−|n−1)× · M1 03×3

03×3 03×3 03×3 (b̂a
n−|n−1)× · M1 I3



(41)

where 

M1 = ∆tR̂n|n−1 J̄ R̂T
n−|n−1

M4 = (Rn−|n−1 · Rn|n−1)
T

J̄ = I3 −
1 − cos(∥µ∥)

∥µ∥2 (µ)× − sin(∥µ∥)− ∥µ∥
∥µ∥3 (µ)2

×

µ : = ω + b̂ω

(42)

Proof. We study the effect of propagation through frame dynamics, Rn = Rn−1 expm(∆t[ωn +

bω
n−1]×) and R̂n|n−1 = R̂n−|n−1 expm

(
∆t[ωn + b̂ω

n−|n−1]×
)

. After frame propagation, the

error eR is equal to

RnR̂−1
n|n−1 =Rn−1 expm(∆t

[
ωn + bω

n−1
]
×)

expm

(
−∆t

[
ωn + b̂ω

n−|n−1
]
×

)
R̂T

n−|n−1

(43)

For small error perturbations, this can be written as ωn + bω = ωn + b̂ω + δbω, then:

expm(∆t[ω + bω ]×) = expm

(
∆t[ω + b̂ω + δbω ]×

)
≈ expm(∆t[ω + bω ]×) expm(∆t[Jδbω ]×)

(44)

Thus, we can write R = RR̂T R̂ = eRR̂. These indices make Rn−1 = eR
n−|n−1R̂n−|n−1.

Since we have that

eR
n|n−1 = eR

n−|n−1R̂n|n−1 expm(∆t[Jδbω ]×)R̂T
n|n−1

= eR
n−|n−1 expm

(
∆t

[
R̂n|n−1 Jδbω

]
×

) (45)

Since the BCH values of both terms are small, they can be approximated by expm([ξ
R +

∆tR̂Jδbω ]×), and we recall that eR = expm([ξ
R]×). The right invariant error of the bias is

defined as ξω := R̂
(
bω − b̂ω

)
= R̂δbω.Then

R̂n|n−1 Jδbω
n−|n−1 = R̂n|n−1 JR̂T

n−|n−1R̂n−|n−1δbω
n−|n−1

=
(

R̂n|n−1 JR̂T
n−|n−1

)
ξω

n−|n−1

(46)

The left-invariant error is denoted as ex = R̂−1 ∗ (x − x̂). For example, for veloc-
ity v, we have R̂(v − v̂) := ξv. The frame dynamics are expressed as R̂−1

n|n−1(v − v̂) =

R̂−1
n|n−1R̂T

n−|n−1R̂n−|n−1(v − v̂) = M4ξv.
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In the case of gyro bias error, it can be written as ebω
= bω − (R−1

n R̂n|n)b̂ω = bω − eRT b̂ω.
As shown in Equation (46) and based on the properties of skew-symmetric matrices, it
can be obtained that bω − (eR expm[M1ξω]×)

T b̂ω ≈ bω − eRT b̂ω − [M1ξω]×b̂ω = ebω
+

[b̂ω]×M1ξbω
.

4. Experimental Setup

Given the intrinsic relationship between lateral stability and navigation accuracy, we
have utilized a rotary-body underwater vehicle to conduct comprehensive navigation
tests. The evaluation encompasses navigation data acquired from both simulated scenarios
and real-world lake–sea navigation environments. Subsequently, all obtained results are
compared with those generated by an EKF-based solver.

4.1. Comparison Term

This paper presents a comparative analysis of classical and advanced Lie group-based
underwater localization techniques, all leveraging IMU and DVL data sources.

1. IEKF [39]: By exploiting the “log-linear” property of error evolution, this method
exhibits enhanced filtering capabilities and accelerated convergence, particularly
addressing the challenges posed by initial large errors while maintaining group
affine satisfaction.

2. U/W-IEKF [48]: Tailored for IMU and DVL-equipped underwater vehicles, this
approach integrates non-standard single-case measurements, such as depth readings
from pressure transducers, into the Iterated Extended Kalman Filter framework via
“pseudo” measurements. These pseudo measurements encapsulate current state
estimates modeled with infinite covariance.

3. Underwater-TFG-IEKF: This method, proposed in our study, introduces novel tech-
niques for underwater localization.

4.2. Simulation

The simulation data employed in this study was generated using HoloOcean 0.5.0 [52,53],
a simulation environment built upon Unreal Engine 4. A torpedo-type AUV, equipped with
an IMU, DVL, and PS, was employed. The sensor noise characteristics are detailed in
Table 2. Specifically, the IMU data were sampled at a frequency of 200 Hz, DVL at 10 Hz,
and pressure sensors at 100 Hz, with synchronization performed at the lowest frequency
available. The simulated navigator and underwater environment are shown in Figure 2.

Table 2. Noise statistics for simulation.

Sensor Noise Type Noise Standard Bias

IMU

Angular velocity 0.00277 rad/s/Hz

Linear acceleration 0.00123 m/s2/Hz

Angular velocity bias 0.00141 rad/s2/ Hz

Linear acceleration bias 0.00388 m/s3/ Hz

DVL
Velocity per beam 0.02626 m/s

Range per beam 0.1 m

PS Depth sensor 0.255 m

The heading and depth adjustments of the navigator are achieved through control
of the tail fin angle and thruster parameters. In simulation, four distinct trajectories are
employed, and the navigation is conducted within an open water environment. As setup
errors were superimposed on the trajectories during the simulation, the treatment of
individual trajectories was insufficient to demonstrate the effectiveness of the filter. To
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address this issue, the algorithm was evaluated using multiple trajectories generated from
identical inputs, with consistent propeller and rudder angles. Therefore, by varying the
starting point, each trajectory set was subjected to 100 Monte Carlo simulations to eliminate
the effects of random errors and biases on the filter.

(a) (b)

Figure 2. HoloOcean simulation environment and vehicles, where (a) is the simulation environment
of HoloOcean in open water, and (b) is the slewing body-type vehicle in HoloOcean [53].

The simulator delivers highly accurate positional data directly, effectively avoiding
the inaccuracies and costs associated with acquiring actual positional data in real-world
applications. To replicate real-world conditions, fixed-depth sailing is adopted for data
generation. The location and depth of the starting point of each track are (1.4,−100.5,−151.0),
(233.9, 41.7,−172.5), (−659.3,−12.4,−126.0), and (158.7209.9,−169.0), respectively. A com-
parative analysis of algorithmic outcomes across diverse trajectories is presented in Figure 3.
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Figure 3. Comparison of localization results for four sets of trajectories in the simulation environment.
The original data represent the online data after INS/DVL fusion by the AUV in a specific way
(integrated within the Inertial Unit), with (a) trajectory 1, (b) trajectory 2, (c) trajectory 3, and
(d) trajectory 4.

4.3. Natural Scenario Data

The dataset from a previous study [54] is employed in this research to conduct practical
validation of the proposed algorithm using data gathered from natural environments. The
validation process includes offline computation of global data, followed by comparison
with the GNSS positions of the vehicle when it was not submerged in water. It is important
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to note that the GNSS positions are obtained in differential mode, and any errors associated
with them are not considered in this study. Figure 4 illustrates both the vehicle and the
acquisition environment employed for data collection. The INS and DVL are equipped
with pole arm of dimensions l = [0, 26, 9] mm. The mounting angle is negligible as it can be
pre-measured, thus eliminating its effect. The GPS trajectory differs from the true trajectory
only in terms of time delay, and the overall consideration of the trajectory allows the pole
arm between the GPS and the body to be ignored.

(a) (b)

Figure 4. Vehicle used for data acquisition and data acquisition environment, where (a) shows the
AUV for data acquisition in a lake, and (b) shows the data acquisition in a marine environment.

For the navigator data collected at different latitudes and salinities, the proposed
algorithm is used to perform a multi-sensor fusion of waypoint projection. The algo-
rithm is set up with uniform parameters where Q = diag([I3, I3, I3, 0.1 · I3, 0.001 · I3]),
CovDVL = 0.6 · I3, N = diag(CovDVL, I2, 0.01). The trajectory results are shown in Figure 5.
The true position is converted from latitude and longitude to a local position using the
European Petroleum Survey Group (EPSG) database [55], starting at (0, 0) in meters.
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Figure 5. Comparison of REs between the proposed algorithm and the state-of-the-art Underwater
IEKF method for each set of trajectories at different time scales. with (a) scenario 1, (b) scenario 2,
(c) scenario 3, and (d) scenario 4.
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5. Results and Discussion

The comparison of simulation results (Figure 3) reveals that the proposed TFG-IEKF
algorithm exhibits superior localization accuracy across various trajectories compared
with the underwater IEKF algorithm, which similarly employs Lie group optimization
techniques. This superiority can be attributed to the sequential solving of IEKF, where the
solving procedure data are conducted only upon input of a particular sensor class, whereas
the proposed algorithm optimizes all data types within a uniform framework following
frequency synchronization.

The algorithm’s effectiveness is demonstrated by its ability to manage random data
errors. We examine the role of the algorithm on trajectory accuracy using RMSE. The results
are averaged over multiple times for the same trajectory, and the results are shown in
Table 3. The quantitative analysis reveals that the proposed algorithm improves positional
accuracy by 77.00% compared with the classical IEKF algorithm and by 57.21% compared
with the U/W-IEKF method. It should be noted that the U/W-IEKF method is not stable
enough, especially for trajectory 2, resulting in a large error. Excluding trajectory 2, the
proposed method shows a 76.01% improvement over the U/W-IEKF method. Regarding
attitude accuracy, the proposed method improves by 74.52% over the IEKF method and
by 7.32% over the U/W-IEKF method. In conclusion, while the U/W-IEKF method is
relatively effective for attitude optimization, the proposed algorithm provides significant
improvements in both positional and attitude accuracy.

Table 3. The RMSE of the AUV position and attitude.

Trajectory No. Traj.1 Traj.2 Traj.3 Traj.4

Position (m)

IEKF 56.5914 69.6770 73.3606 48.9478

U/W-IEKF 50.8412 93.0147 72.7105 45.4038

Proposed 11.6488 16.8054 20.5661 9.4366

Attitude (rad)

IEKF −0.0249 0.0238 −0.0208 0.0082

U/W-IEKF 0.0136 0.0205 0.0023 −0.0142

Proposed −0.0057 0.0074 −0.0066 −0.0013

To assess the robustness of the algorithm throughout the trajectory optimization pro-
cess, we employ metrics such as Relative Error (RE) [56]. The set S̃ = {dk}K

k ,
dk = {x̂s, x̂s}, of K pairs of states is chosen from X̂ based on some criteria (e.g., distances
along the trajectory). Then RE is denoted by the following:

RE = {∥pe − ∆Rk p̂′e∥2}K−1
k=1 (47)

where K is the distance or time interval. In this paper, the time step size criterion
K = {3, 7, 13, 19, 29, 37}s is selected. The comparison results between the proposed algo-
rithm and the U/W-IEKF method are shown in Figure 6. It can be observed that, although
the proposed algorithm exhibits significant uncertainty in the short term, this uncertainty
decreases over time and consistently outperforms the U/W-IEKF method.

For real underwater navigation data, the position of AUV upon surfacing and acquir-
ing the Real-Time Kinematic (RTK) signal is regarded as the definitive endpoint. The total
navigation error for the entire voyage is computed using the relative metric of horizontal
position error (Hori-Error) percentage (PEP) [57] as follows:

PEP =
Hori-Error

D
× 100% (48)

where D is the Total Distance Traveled for each trajectory.
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We computed the total distance traveled for each trajectory, along with the PEP error
at the endpoint. The calculated results are presented in Table 4. The results demonstrate
that the proposed algorithm achieves superior accuracy across most trajectories, with the
U/W-IEKF method showing the second-best performance. In certain trajectories, both
the proposed algorithm and the U/W-IEKF method yield the same results. Overall, the
proposed algorithm enhances accuracy by 77.73% compared with the IEKF method and by
52.69% compared with the U/W-IEKF method.

Based on the results of simulation and dataset optimization, the proposed algorithm
exhibits significant benefits in improving the precision of underwater navigation. State
updating is achieved by relying on Equations (34)–(36) without the need for auxiliary vec-
tors. Evaluation with the latest U/W-IEKF method demonstrates comparable performance.
However, as depicted in Figure 6, the proposed algorithm shows dispersion in positioning
accuracy over short time intervals, yet it demonstrates enhanced optimization capability
over longer durations. This illustrates the algorithm’s stability throughout the optimization
process. Subsequent research efforts will focus on conducting rigorous stability analyses
and validation to substantiate the algorithm’s efficacy.
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Figure 6. Various types of AUV tracks in different regions, with (a) RE of Traj. 1, (b) RE of Traj. 2,
(c) RE of Traj. 3, and (d) RE of Traj. 4. In the figure, circles indicate outliers, triangles indicate means,
and the horizontal line in the box indicates the median.

The algorithm presented exhibits improved performance compared with the current
underwater Lie groups’ filtering algorithm when tested on actual datasets. However, the
algorithm’s performance is constrained in a few trajectories, likely due to interference from
water currents or significant inertial misalignments during specific intervals. Notably, the
proposed algorithm achieves high accuracy without necessitating intricate transformations.
Furthermore, the algorithm demonstrates better outcomes with ideal data (errors following
a Gaussian distribution) in comparison with actual navigation data. Nevertheless, the
algorithm’s enhanced accuracy across all trajectories highlights its efficacy.
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Table 4. PEP for multiple trajectories in the dataset.

Traj. Seq. Total Mileage
(m)

PEP

IEKF U/W-IEKF Proposed

20210428_1_1 791.4829 0.0247 0.0052 0.0052

20210605_0_0 753.1149 0.0653 0.0208 0.0192

20220718_1_1 409.2852 0.1083 0.1010 0.0148

20220718_2_1 451.1789 0.0307 0.0141 0.0122

20220719_1_2 235.1641 0.0414 0.0249 0.0197

20220816_0_4 1138.8411 0.1127 0.0143 0.0142

6. Conclusions

This paper addresses the challenge of multi-sensor fusion in underwater navigation by
employing Lie group theory for invariant error-based fusion. The proposed algorithm cir-
cumvents the necessity of auxiliary vectors, a common limitation in conventional methods
to meet group affine constraints, thereby facilitating predictions and updates within both
fixed and body frameworks. The algorithm achieves a 77% improvement in accuracy over
the standard IEKF and a 52% improvement over U/W-IEKF by incorporating fixed inputs
from DVL and depth data through simulations and actual data analyses. Future work will
concentrate on enhancing the algorithm’s adaptability to navigators with diverse dynamics
and exploring the impact of parameter settings. Similar to AI-IMU research, investigating
dynamic parameters through deep learning will be a compelling avenue.
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