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Abstract: Port development is a critical component in constructing a resilient transportation infrastruc-
ture. The burgeoning integration of automated guided vehicles (AGVs) within container terminals,
in conjunction with the orchestrated scheduling of unmanned container trucks (UCTs), is essential for
the sustainable expansion of port operations in the future. This study examined the influence of AGVs
in automated container terminals and the synergistic scheduling of UCTs on port operations. Com-
parative experiments were meticulously designed to evaluate the feasibility of integrated scheduling
schemes. Through the development of optimization models that consider conflict-free paths for both
AGVs and UCTs, as well as strategies for conflict resolution, a thorough analysis was performed.
Advanced genetic algorithms were engineered to address task-dispatching models. In contrast, the
A* optimization search algorithm was adapted to devise conflict-free and conflict-resolution paths
for the two vehicle types. A range of scaled scenarios was utilized to assess the impact of AGVs
and UCTs on the joint-scheduling process across various configuration ratios. The effectiveness of
the strategies was appraised by comparing the resultant path outcomes. Additionally, comparative
algorithmic experiments were executed to substantiate the adaptability, efficacy, and computational
efficiency of the algorithms in relation to the models. The experimental results highlight the viability
of tackling the joint-scheduling challenge presented by AGVs and UCTs in automated container
terminals. When juxtaposed with alternative scheduling paradigms that operate independently,
this integrated approach exhibits superior performance in optimizing the total operational costs.
Consequently, it provides significant insights into enhancing port scheduling practices.

Keywords: unmanned container trucks; joint scheduling; automated guided vehicles; improved
genetic algorithm; conflict-resolution strategies

1. Introduction

Ports are indispensable to the development of the Silk Road Economic Belt, acting
as the linchpin that connects economic development with openness under the Belt and
Road Initiative. From the perspective of smart city advancement, automated container
terminals have become central to the integrated transportation systems in numerous coastal
urban centers. Confronted with escalating labor costs and rising service expectations, these
terminals are progressively adopting cutting-edge technologies to achieve comprehensive
situational awareness and promote the global sharing of big data platforms. These facilities
are set to act as essential pathways for the development and enhancement of interna-
tional logistics networks and the seamless integration of global supply chains. Therefore,
improving port operational efficiency, mitigating congestion, and reducing operational
costs in specialized settings depend on enhancing efficiency across various aspects of
automated terminals.
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In China, several emerging smart ports have begun using unmanned container trucks
for horizontal container transportation tasks. Unmanned container trucks present signifi-
cant cost benefits over automated guided vehicles (AGVs) regarding equipment expendi-
ture; however, their economic viability depends on the terminal’s operational efficiency.
Notably, the Phase IV strategy at the Shanghai Yangshan Port incorporates collaborative
transportation with AGVs and unmanned container trucks. AGVs are responsible for
intra-port container loading and unloading transfers. In contrast, unmanned container
trucks predominantly oversee external transportation routes from the Yangshan Port to the
Donghai Bridge and Lingang Logistics Park. The incorporation of unmanned container
trucks has become a key area of research in the scheduling of multi-type horizontal trans-
portation equipment within automated container terminals. Given the dynamic trends
in smart port development across various sectors and industries, research into the joint
scheduling of AGVs and unmanned container trucks in automated container terminals
provides valuable insights for optimizing port resource utilization.

The assessment of operational efficiency and cost reduction in automated container
terminals extends beyond the singular focus on AGV operations. Scholars are increas-
ingly investigating cooperative operations among diverse equipment types within ports.
Comprehensive research on the joint scheduling of AGVs and unmanned container trucks
considers factors that impact port efficiency both within and outside terminals. It formulates
models to analyze the optimal ratio of AGV and unmanned container truck configurations
to minimize total time costs and compares the advantages of overall terminal scheduling
against scheduling that is solely terminal-centric. The joint scheduling of AGVs and un-
manned container trucks introduces a novel business paradigm for automated container
terminals. The improvements in efficiency derived from joint scheduling are expected to
propel sustainable port development and establish a more holistic and superior mode of
port service delivery.

The subsequent sections of this paper are organized as follows: Section 2 reviews
the pertinent research on AGVs and unmanned container trucks. Section 3 elucidates the
factors and models considered in this study. Section 4 details the heuristics and algorithms
applied to solve the proposed model. Section 5 presents the case studies. Finally, Section 6
encapsulates the conclusions drawn from this research.

2. Literature Review

Most studies concerning the scheduling of horizontal transportation equipment in
container terminals have primarily concentrated on task assignments and path planning for
container trucks, with the considerations varying based on the type and complexity of the
ports. As ports progress in their developmental stages, research into AGV scheduling issues
commenced with replacing container trucks (tractors) with AGVs for horizontal transporta-
tion. The introduction of automated quay cranes (AQC) and automated rail-mounted
gantry cranes (ARMG) has spurred further investigation into multi-resource coordination
scheduling for automated container terminals. Given the distinctive features of AGVs,
which employ embedded magnetic guidance for fixed-route navigation and are powered
by new energy sources, recent research on AGV scheduling has begun incorporating factors
such as conflict congestion, energy consumption costs, and charging strategies.

2.1. Research on the Scheduling of Various Types of Container Trucks in Automated
Container Terminals

The existing literature predominantly addresses AGV scheduling challenges, encompass-
ing task assignment and optimization problems such as path optimization and congestion
management. Due to the varied complexities inherent in actual port operations, AGV schedul-
ing is subject to the influence of multiple factors, resulting in diverse scheduling approaches.

(1) Analysis of simulation- and algorithm-based scheduling optimization models

Luo et al. [1] proposed an AGV scheduling optimization model to minimize berth
waiting times during unloading and loading processes, employing a genetic algorithm (GA)
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to address large-scale instances. Zaghdoud-R et al. [2] tackled AGV path-planning, task
assignment, and scheduling issues utilizing a hybrid algorithm combining Dijkstra and GA,
demonstrating adaptability to different scenarios and robust convergence capabilities. Tao
et al. [3] devised a mathematical model for scheduling container trucks (traditional trailers),
accounting for empty scheduling and location balance. They employed a discrete-time
approach to determine fitness function factors, integrating it with an evolutionary search
algorithm to enhance vehicle service time efficiency and reduce empty vehicle rates. Hu
et al. [4] focused on AGV scheduling by incorporating container clustering operations to
minimize empty travel distances, thereby achieving shorter working times. They compared
the performance of fuzzy membership and Pareto functions in transforming multi-objective
functions into single-objective function models for optimal solution finding, validating
that Pareto functions effectively reduce empty travel distances and expedite completion
times. In a separate study, Hu et al. [5] modeled vehicle-scheduling and storage-allocation
problems when Automatic Lifting Vehicles (ALVs) and AGVs alternately operated at
terminals. They proposed a three-stage decomposition method leveraging particle swarm
optimization and greedy algorithms to address the model, demonstrating the adaptability
of the algorithms in model resolution and their efficacy in reducing vehicle operation costs.

(2) AGV path conflict scheduling optimization models

Yue et al. [6] addressed AGV delay issues arising from uncertainties related to quay-
crane wait times. They proposed a two-stage hybrid model to minimize transportation costs
by integrating Dijkstra’s and Q-learning algorithms to tackle the problem. Additionally,
they introduced a graph-based conflict-avoidance strategy to resolve operational conflicts
among AGVs. Su [7] designed a two-tier objective function model to minimize both
the task completion time and the shortest AGV travel distance, thereby mitigating AGV
path conflicts. They developed adaptive algorithms based on this model and validated
their effectiveness through case studies. These studies commonly utilized shortest-path
algorithms to address AGV conflicts, leveraging graph theory-related algorithms to not
only plan the shortest routes but also prevent operational conflicts related to the specific
nature of AGV travel paths.

(3) Energy saving and carbon emissions in scheduling optimization models

Traditional fuel-powered container trucks (trailers) operating at ports inevitably con-
tribute to environmental pollution due to exhaust emissions. Chen et al. [8] addressed the
carbon-emission issue of container trucks at ports by establishing a dual-objective model to
reduce the truck waiting time to meet emission-reduction goals. With the increasing adop-
tion of new energy vehicles, such as AGVs and unmanned container trucks at automated
terminals, carbon emissions from AGV operations have been minimized. However, energy
conservation has emerged as a new challenge in scheduling AGVs, unmanned container
trucks, and other vehicles at automated terminals. More studies focusing on energy savings
and emission reduction at automated terminals often explore this issue in conjunction with
overall terminal resource coordination. Research into optimizing resource coordination
at automated terminals not only effectively reduces carbon emission costs but also holds
significant importance for enhancing resource efficiency and cutting costs at terminals.

2.2. Research on Cooperative Scheduling of Multiple Equipment Resources in Automated
Container Terminals

Cooperative scheduling problems involving multiple equipment resources in au-
tomated container terminals primarily revolve around quay cranes, yard cranes, and
horizontal transportation equipment. These problems entail modeling equipment task se-
quences and considering actual operational scenarios to design various types of algorithms
for resolution.

(1) Equipment interactions in cooperative scheduling

In the operational phase of automated terminals, due to the interconnected task
processes, models are frequently devised to minimize the shortest completion time for
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containers. Lu et al. [9] delved into the problem of multi-resource cooperative schedul-
ing under uncertain conditions and proposed a cooperative scheduling model aimed at
minimizing the operation time. They employed a particle swarm algorithm to solve this
uncertain model and noted its superior stability and performance in case studies. Yang
et al. [10] established a bi-level planning model to minimize the maximum completion
time for solving multi-resource cooperative scheduling issues. They compared the rolling
horizon process algorithm (RHP) with the congestion prevention strategy bi-level genetic
algorithm (CRP-BGA) regarding algorithm convergence and cost calculations, affirming
the latter’s effectiveness in addressing cooperative scheduling problems. Additionally,
alongside the earlier approaches, research on modeling specific equipment relationships
offers solutions to resource coordination scheduling issues. Homayouni et al. [11] examined
the placement of containers and the operational status of terminal equipment to tackle the
optimization problem of resource coordination scheduling for quay cranes, yard cranes, and
AGVs. They demonstrated the superiority of genetic algorithms over simulated annealing
algorithms in solving this problem, validating the feasibility of enhancing terminal work
efficiency through resource coordination scheduling. Kizilay et al. [12] accounted for the
safety and interference effects of inbound and outbound containers on terminal cranes,
resolving multi-resource cooperative scheduling problems using a two-stage optimization
CP model and algorithm. Zhou C et al. [13] considered the dynamic movement of yard
cranes and container trucks, establishing a cooperative optimization model for yard cranes
and container trucks. They utilized a two-stage heuristic algorithm based on tabu search
to address the model, comparing and analyzing the superiority of tabu search over other
benchmark algorithms in dynamic scenarios and assessing the model’s effectiveness in
reducing the working time. Yue et al. [14] researched the cooperative scheduling optimiza-
tion problem of dual-trolley quay cranes and AGVs, proposing a two-tier, dual-layer model
to maximize customer satisfaction and minimize AGV delays. They introduced a two-stage
optimization algorithm to solve the model, validating the effectiveness of this method in
configuring scheduling plans based on customer satisfaction.

(2) Cooperative scheduling problems in terminal loading and unloading

Considering the characteristics of terminal loading and unloading processes, especially
the disparities in time and space between automated terminals with novel equipment and
conventional container-loading and -unloading processes, the cooperative scheduling
problem of different loading and unloading processes emerges as a pivotal research area.
Hop et al. [15] studied the problem of minimizing the loading and unloading processes and
transportation time of terminal container tasks, advocating the use of an adaptive particle
swarm algorithm. They conducted case studies to verify its performance advantages
over fixed particle swarm and grey wolf optimization algorithms in time calculations.
Xu et al. [16] considered the U-shaped layout and loading and unloading processes of
automated terminals, examining the optimization problem of cooperative scheduling of
resources for dual-trolley quay cranes, twin-arm rail-mounted yard cranes, and AGV
vehicles. They eradicated the interaction waiting time to achieve temporal and spatial
synchronization between AGVs and twin-arm, rail-mounted yard cranes. They reduced
the task completion time by employing a reinforcement learning metaheuristic genetic
algorithm with a reward and penalty mechanism to address the model. They conducted
case studies to confirm the universality and effectiveness of this algorithm independent of
specific problems, with the model and algorithm yielding satisfactory solutions to the issue
of AGV conflicts.

(3) Consideration of Cooperative Scheduling problems in AGV conflicts

In the area of container truck scheduling, resource coordination scheduling serves as a
crucial foundation for AGVs or other types of container trucks during the transportation
process. At the same time, conflicts and congestion often arise in horizontal transportation.
Thus, comprehensive coordination of terminal resources can not only prevent conflicts and
reduce congestion rates but also enhance terminal efficiency. Shou et al. [17] addressed
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the issues of AGV conflicts, congestion, and multi-resource cooperative scheduling and
devised a dual-layer scheduling model for loading and unloading processes alongside
AGV transportation processes involving the same loading and unloading. They applied
a dual-layer genetic algorithm and a dual-layer adaptive genetic algorithm, integrating
conflict-resolution strategies into top- and bottom-level models, and validated the effec-
tiveness of the algorithms through experiments with previous data, showcasing their
adaptability in tackling AGV congestion and cooperative scheduling of automated terminal
resource equipment. Similarly, Zhong et al. [18] addressed known task assignments to
establish a resource coordination scheduling problem model focusing on path planning,
cooperative scheduling, and AGV conflict-deadlock minimization. They devised a particle
swarm algorithm based on fuzzy control to address the model. They verified its effective-
ness in resolving AGV conflict deadlocks, demonstrating its capacity to enhance the overall
efficiency of automated terminals. Cooperative scheduling of port equipment resources
encompasses various sub-problems, including path optimization, task assignment, and
conflict congestion, all requiring consideration. Solving individual sub-problems in iso-
lation fails to achieve the overarching goals of optimization and efficiency improvement.
Thus, formulating a framework for cooperative scheduling of equipment resources lays the
groundwork for research in this area, which should be guided by such principles to realize
the objective of global optimization.

2.3. Research on Cooperative Scheduling of Multiple Types of Automated Container Trucks

Scheduling problems involving interactions between automated terminals and exter-
nal container trucks typically manifest in two scenarios: delivery and pickup of loaded
containers. The subsequent studies delve into the scheduling problem of external container
trucks under the single-flow mode (i.e., external trucks do not return empty containers to
the terminal after delivery).

Cui et al. [19] considered a single-flow transportation scenario by devising a two-stage
framework to minimize time and operational costs. They ensured adequate task sequences
for external trucks and employed a hybrid algorithm combining a large neighborhood
search, and tabu search to tackle the problem. Tang et al. [20] addressed a single-flow
transportation scenario by modeling the problem to minimize the maximum completion
time. They proposed an enhanced particle swarm algorithm with a novel velocity update
strategy to address the model, demonstrating the adaptability of heuristic algorithms
compared to exact algorithms through experiments.

In addition to the aforementioned modeling approaches, studies in this category
also aimed to optimize external truck queue waiting times to achieve the minimum cost
objective using time window constraints. Chen et al. [21] considered the problem of vehicle
dispatching with time windows (VDTWs) and estimated the queue length of external trucks
based on the time-window predictions while minimizing the total cost. They developed a
hybrid algorithm combining GA and another improved genetic algorithm (IGA) to solve
this problem, thus validating the effectiveness of VDTWs in controlling external truck
arrival times and reducing congestion. Nossack et al. [22] formulated a full truck pickup
and delivery problem with time windows (FTPDPTW), minimizing the operation time of
external trucks with time window constraints at both the terminal and customer ends. They
devised a two-stage heuristic algorithm to solve the model and confirmed the adaptability
of heuristic algorithms over exact algorithms in addressing this problem. Additionally,
alongside the utilization of time window constraints, modeling analysis was conducted
to minimize the operation time. Chen et al. [23] addressed the external truck queuing
problem with random service market distribution by formulating a convex non-linear
programming model to minimize total truck turning and waiting times. They employed a
two-stage adaptive optimization algorithm to solve the model. Azab et al. [24] considered
the long waiting times and harmful emissions of external trucks, establishing a deterministic
scheduling model to minimize the external truck turnaround time. They used simulation
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experiments to verify the model’s performance and established an IoT-based reservation
system to significantly enhance terminal efficiency.

Through in-depth studies on the delivery and pickup problems of external trucks,
scholars have gradually addressed issues such as typical cross-dock transportation prob-
lems at terminals. This problem primarily focuses on optimizing waiting times and costs
from external trucks exchanging cargo containers at terminals. Rijal et al. [25] established a
scheduling model for external truck scheduling and mixed terminal port operations (simul-
taneous inbound and outbound operations) based on external truck round trips between
terminals and customer sites. They designed an adaptive large-neighborhood algorithm to
solve the model, effectively reducing transportation costs compared to sequential methods.
Heidari et al. [26] considered uncertainties in external truck round trips between terminals
and customer sites, formulating a model to minimize costs under unknown arrival times
of external trucks. They developed a MODE algorithm and a nondominated sorting ge-
netic algorithm-II (NSGA-II) hybrid algorithm to solve the model, demonstrating superior
performance compared to genetic algorithms based on a random search. Xi et al. [27]
considered uncertainties in external truck round trips between terminals and customer
sites, introducing the concept of conflicts and minimizing their costs and quantities. They
established a two-stage model and designed column and constraint generation algorithms,
validating the effectiveness of the model and algorithms through case studies.

Research on scheduling problems involving various types of automated container
trucks in automated terminals has predominantly focused on task sequences, path opti-
mization, and conflict congestion. Studies addressing the cooperative scheduling of multi-
resource equipment aim to optimize AGV scheduling and task sequences, considering
loading and unloading processes and the interplay among terminal equipment. Scheduling
challenges concerning the interactions between external container trucks and terminals
primarily concentrate on optimizing waiting times outside terminals and task-order se-
quences to minimize terminal transportation costs and maximize efficiency. This research
emphasizes multi-resource equipment scheduling at terminals, waiting times for external
truck queues, AGV operation conflicts and congestion, loading and unloading processes,
cost issues, and carbon emissions to further reduce costs and optimize overall efficiency.

3. Model

AGVs rely on ground magnetic nail navigation, with their travel paths being fixed.
Path conflicts may arise when container tasks are concentrated in specific areas. AGVs are
relatively slow in resolving path conflicts, and uneven task assignments can result in early
arrival at task nodes, leading to terminal congestion. Therefore, both conflict and congestion
are critical factors affecting the efficiency of automated container terminal operations.

3.1. Problem Description

AGVs and unmanned container trucks handle container tasks, with AGVs responsible
for seaside container transport and unmanned container trucks for landside container
transport. Utilizing an automated container terminal featuring a vertical distribution of
shore crane lines and stacking yards provides ample operating space for AGVs on the land
side, enabling them to operate effectively in the front working area and forming a barrier
with minimal interference from the internal yard and landside operations. As illustrated
in Figure 1, AGVs traveling from an automated quay crane (AQC) to an automated rail-
mounted gantry (ARMG) have multiple paths within a specified traffic direction at the
terminal. The paths of the two AGVs intersect at certain points, potentially resulting in
path conflict if both AGVs enter the intersection simultaneously. Common conflicts include
overtaking and node conflicts. Adopting conflict-resolution strategies allows AGVs to make
decisions based on the encountered conflicts, thus resolving them and completing tasks.
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This section divides the joint-scheduling optimization problem for AGVs and un-
manned container trucks at automated container terminals into two stages. In the first
stage, container tasks are allocated, resulting in sequences of tasks to be serviced by
AGVs and unmanned container trucks. In the second stage, optimization is applied to
the AGV paths to obtain the optimal route. Using the two-stage model, conflict situations
are addressed by implementing strategies such as high-priority passage and low-priority
parking/waiting when planning AGV paths. These considerations are integrated into the
overall joint scheduling cost.

3.2. Model Assumptions

(1) Terminal handling equipment with AGVs and unmanned container trucks operating
on individual containers are averaged over time;

(2) Unmanned container trucks continue transportation from the yard to the logistics
park for the entire ship unloading task. Unmanned container trucks wait for task
instructions without considering dispatching entry times;

(3) Unmanned container trucks travel unidirectionally depending on the flow direction
of the terminal lanes, considering queue congestion issues and ignoring path conflicts;

(4) During the unloading process of a ship’s imports, the positions of the containers in
the vessel and yard are not considered. The unloading sequence of the container tasks
is randomly determined;

(5) Both AGV and unmanned container trucks have sufficient battery levels, and the
battery capacity allows them to complete their entire transportation tasks.

3.3. Joint-Scheduling and Task-Allocation Model

The task assignment model is similar to the scenario considered in Section 4. The
primary approach involves allocating container tasks to AGVs and unmanned container
trucks based on the terminal operating rules. Both AGVs and unmanned container trucks
meet the standard requirements for container loading. The parameters, variables, and sets
are listed in Table 1.

The task-dispatch model primarily illustrates the operational interactions between the
loading/unloading equipment and the horizontal transportation equipment throughout
the container-transportation process. This determines the service sequence of each piece of
equipment during container unloading. Simultaneously, AGVs and unmanned container
trucks achieve joint scheduling, utilizing containers as the medium. Through continuous
optimization of scheduling tasks, the overall task time at the terminal is ultimately reduced,
leading to optimized objectives in terms of cost.
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Table 1. Parameters, variables, and sets of the joint-scheduling and task-allocation model.

Notation Sets

L The set of sequential numbers for unloading container task orders,
L = {1, 2, . . ., l};

Q The set of quay cranes, Q = {1, 2, . . ., q};

D The set of yard container areas, D = {1, 2, . . ., d};

A The set of all AGVs, A = {1, 2, . . ., a};

K The set of all unmanned container trucks, K = {1, 2, . . ., k};

Z The set of terminal gates, Z = {1, 2, . . ., z};

W The set of container areas in the logistics park, W = {1, 2, . . ., w};

P The number of buffer racks in a single container area, indicating the quantity of buffer racks available for
placing containers;

Tr
lq The scheduled time for quay crane q to handle the l-th container;

TR
lq The actual time for quay crane q to handle the l-th container;

Tal The time when the l-th container-handling task begins for the a-th AGV at either the quay crane or in the yard;

Tdl The time when the l-th container is placed on the buffer rack in yard d;

αl The average operation time for quay crane unloading container l;

βl The average operation time for the yard crane to extract container l and place it at the destination position;

γl
The average operation time for unloading container l from the unmanned container truck to the yard in the

logistics park;

αl,l+1 The time taken for the next container task, after handling container l, to be processed at the quay crane;

βl,l+1 The time taken for the next container task, after handling container l, to be processed in the yard;

[ETlc, LTlc] The time window during which the AGV places container l on the buffer rack in the yard’s ARMG area;

tal The time taken for the a-th AGV to transport container l to its destination;

tal,al+1
The time taken for the a-th AGV to travel empty from the delivery point of container l to the next task point at

l + 1;

tm
aql The waiting time for the a-th AGV when transporting container l to quay crane q;

tm
adl The waiting time for the a-th AGV when transporting container l to yard crane d (under the buffer rack);

tm
kdl The waiting time for the k-th unmanned container truck when retrieving container l from quay crane d;

tm
kzl

The waiting time for the k-th unmanned container truck when retrieving container l at gate z, including the
queuing time;

Tkl The arrival time of the k-th unmanned container truck at the yard to retrieve container l;

T′
dl The time when the yard crane handles the l-th container;

Tzkl The time when the k-th unmanned container truck, loaded with the l-th container, exits the gate;

Twkl The time when the k-th unmanned container truck unloads the l-th container in the logistics park;

tkl The average time taken by the k-th unmanned container truck to transport container l to its destination;

tw The average operation time for loading and unloading containers in the logistics park;

tzw The average travel time on the bridge for an unmanned container truck after leaving the terminal gate;

M A large positive integer.

The decision variables of the model are as follows:

xal : A binary variable that equals one if container l is assigned to the a-th AGV; other-
wise, it equals zero.

yql : A binary variable that equals one if container l is handled by quay crane q; other-
wise, it equals zero.
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zdl : A binary variable that equals one if container l is handled by yard crane d; otherwise,
it equals zero.

xal,al+1: A binary variable that equals one if the a-th AGV continues to work on container l
+ 1 after delivering container l; otherwise, it equals zero.

Objective:
fmin = f1 + f2 + f3 + f0 (1)

f1 = ε1 ∑
a∈A

∑
l∈L

(tal + tal,al+1) (2)

f2 = ε2

(
∑
l∈L

∑
a∈A

∑
q∈Q

tm
aql + ∑

l∈L
∑

d∈D
∑

q∈Q
tm
adl

)
(3)

f3 = ε2

(
∑
k∈K

∑
l∈L

∑
d∈D

tm
kdl + ∑

k∈K
∑
l∈L

∑
z∈Z

tm
kzl

)
(4)

Equation (1) represents the minimization of the overall cost of the joint scheduling
problem, where f0 denotes the fixed operational cost. Equation (2) aims to minimize the
total transportation cost f1 for AGVs, with ε1 as the coefficient for the total transportation
cost. Equation (3) accounts for the penalty cost f2 associated with the AGV waiting for
the AQC operation and under the buffer rack, where ε2 is the penalty cost coefficient.
Equation (4) represents the penalty cost f3 for unmanned container trucks waiting under
the ARMG at the landside and queuing at the gate, where ε2 is the penalty cost coefficient.

The objective is subject to the following constraints:

l

∑
L=1

xal = 1, ∀a ∈ A (5)

l

∑
L=1

xkl = 1, ∀k ∈ K (6)

a

∑
A=1

xal = 1, ∀l ∈ L (7)

a

∑
A=1

xal,a(l+1) = 1, ∀l ∈ L (8)

k

∑
K=1

xkl = 1, ∀l ∈ L, ∀k ∈ K (9)

k

∑
K=1

xkl,k(l+1) = 1, ∀l ∈ L, ∀k ∈ K (10)

q

∑
Q=1

yql = 1, ∀l ∈ L (11)

d

∑
D=1

zdl = 1, ∀l ∈ L (12)

TR
(l+1)q = max

[
Tr

lq + αl,l+1, TR
(l+1)q

]
, ∀l ∈ L, ∀q ∈ Q (13)

TR
lq = max

[
Tal , Tr

lq

]
, ∀l ∈ L, ∀q ∈ Q, ∀a ∈ A (14)

Tr
lq ≤ TR

lq , ∀l ∈ L, ∀q ∈ Q (15)

Tr
(l+1)q − Tr

lq ≤ TR
(l+1)q − TR

lq , ∀l ∈ L, ∀q ∈ Q (16)
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ETdl = Tdl − pβl,l+1, LTdl = Tdl , ∀l ∈ L, ∀d ∈ D (17)

ETdl ≤ Tdl + tal ≤ LTdl , ∀l ∈ L, ∀d ∈ D, ∀a ∈ A (18)

tm
adl = max{ETdl − Tal − tal , 0}, ∀l ∈ L, ∀d ∈ D, ∀a ∈ A (19)

tm
aql = max

{
TR

lq − Tal , 0
}

, ∀l ∈ L, ∀q ∈ Q, ∀a ∈ A (20)

Tal + tal + tm
adl + tal,a(l+1) + tm

ad(l+1) ≤ Ta(l+1) + M
(

1 − xal,a(l+1)

)
, ∀l ∈ L, ∀d ∈ D, ∀a ∈ A (21)

Tal + tal + tm
adl + tal,a(l+1) + tm

aq(l+1) ≤ Ta(l+1) + M
(

1 − xal,a(l+1)

)
, ∀l ∈ L, ∀d ∈ D, ∀q ∈ Q, ∀a ∈ A (22)

Tdl + βl,l+1 ≤ T′
dl , ∀l ∈ L, ∀d ∈ D (23)

tm
kdl = max

{
T′

dl − Tkl , 0
}

, ∀l ∈ L, ∀d ∈ D, ∀k ∈ K (24)

T′
dl + βl ≤ Tkl , ∀l ∈ L, ∀d ∈ D, ∀k ∈ K (25)

Tzk(l+1) = tm
kzl + Tzkl , ∀l ∈ L, ∀z ∈ Z, ∀k ∈ K (26)

Twkl = Tzkl + tzw, ∀l ∈ L, ∀w ∈ W, ∀k ∈ K, ∀z ∈ Z (27)

Constraints (5) and (6) stipulate that each AGV and unmanned container truck can only
complete one container task at a time. Constraints (7)–(10) specify that each container task
can only be executed by either an AGV or an unmanned container truck. Constraints (11)
and (12) specify that each container task must be handled by either a quay or yard crane.
Constraint (13) denotes the operation time for quay cranes’ container-handling tasks other
than the initial task, while constraint (14) represents the actual operation time for the quay
crane unloading the container. Constraint (15) illustrates the relationship between the
actual operation time and the planned operation time for a quay crane. Constraint (16)
ensures that the operation interval for the same quay crane between adjacent tasks meets the
planned operation interval. Constraint (17) guarantees that the actual operation time for the
AGV transporting unloaded containers to the buffer rack complies with the time-window
constraint. Constraint (18) ensures that the time required for the AGV to extract and transfer
containers meets the time-window constraint. Constraint (19) reflects the waiting time
for the AGV to deliver the unloaded containers under the quay crane. Constraint (20)
represents the waiting time for the AGV to extract the unloading containers under the
quay crane, and Constraints (21) and (22) outline the time constraints for the AGV to
handle the next transfer or unloading container after delivering the unloading containers.
Constraint (23) ensures that the time required for the yard crane to handle the containers
leaving the terminal complies with the time-window constraint. Constraint (24) denotes
the waiting time for an unmanned container truck to extract containers from the yard crane
terminal. Constraint (25) ensures that the time when the unmanned container truck begins
handling containers leaving the terminal meets the time-window constraint. Constraint (26)
defines the time at which an unmanned container truck exits the terminal gate. Constraint
(27) represents the time at which unmanned container trucks unload the containers in a
logistics park.

3.4. Path-Optimization Model Considering Conflict Strategies

The conflict-resolution strategy adopted in the path-optimization model prioritizes
vehicle task sequences, allowing the preceding vehicle to proceed while subsequent vehicles
wait. The parameters, variables, and sets of the model are presented in Table 2.
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Table 2. Parameters, variables, and sets of the path-optimization model considering conflict strategies.

Notation Sets

N The set of various operation points in the automated container terminal, including quay cranes, buffer racks in
the yard, and intersection points in the AGV driving process. Here, i and j are node identifiers within this set.

V The set of AGV quantities in the automated container terminal, v = 1, 2, . . . , V;

F The set of quay crane unloading nodes and logistics park unloading nodes, f = 1, 2, . . . , F;

rij The lines connecting the nodes in the AGV travel path;

B The set of nodes for unmanned container truck operations, including the yard gantry crane operation points,
terminal gate, and logistics park;

U The set of unmanned container trucks, u = 1, 2, . . . , U;

G The set of all horizontal transport vehicles, G = U ∪ V, g = 1, 2, . . . , G;

Tijv The time at which the AGV arrives at node j;

dij The distance from node i to node j;

v0 The average travel speed of the AGV;

Tin
ijv, Tout

ijv The time at which the AGV enters or leaves the path;

Tin
ijg, Tout

ijg The time at which all horizontal transport vehicles enter or leave the path;

RLij The number of AGVs that the current path can accommodate;

H0
The distance between the front of the AGV and a node

(assuming the AGV maintains a maximumsafe distance that is 2 times its body length, H0 ≥ 2H )

H The length of the AGV’s body;

gtijv The total time it takes for a container to travel from the quay crane to the buffer stand;

rtijv The safe time interval required between two AGVs passing through the same node;

tij The time it takes to traverse a specific path.

The decision variables for the model are as follows:

xijg: A binary variable that equals one if the g-th horizontal transport vehicle (including
the unmanned container truck and AGV) passes from node i to node j; otherwise, it
equals zero.

xijv: A binary variable that equals one if the g-th AGV passes from node i to node j;
otherwise, it equals zero.

xiju: A binary variable that equals one if the u-th unmanned container truck passes from
node i to node j; otherwise, it equals zero.

Objective:
froad = minε3 ∑

g∈G
∑
i∈N

∑
j∈N

xijgtij (28)

Equation (28) regards the minimum transportation cost as the objective function, with
time being the primary variable for path optimization. Its goal is to minimize the total
transportation duration in order to achieve the lowest transportation cost, where ε3 is the
transportation cost coefficient.

The objective is subject to the following constraints:

∑
i∈N

∑
v∈V

xijv = 1, ∀j ∈ N (29)

∑
j∈N

∑
v∈V

xijv = 1, ∀i ∈ N (30)

∑
v∈V

xijv = 1; ∀i ∈ N, j ∈ N (31)



J. Mar. Sci. Eng. 2024, 12, 1190 12 of 24

∑
i∈B

∑
u∈U

xiju = 1, ∀j ∈ B (32)

∑
j∈B

∑
u∈U

xiju = 1, ∀i ∈ B (33)

∑
u∈U

xiju = 1; ∀i ∈ B, j ∈ B (34)

∑
i∈N

∑
j∈N

xiju ≤ 0, ∀u ∈ U (35)

∑
i∈B

∑
j∈B

xijv ≤ 0, ∀v ∈ V (36)

∑
i∈N∪B

xijg = ∑
i∈N∪B

xjig, ∀j ∈ (N ∪ B) ∩ (CRF), g ∈ G (37)

xijgrij ̸= xijgrji ̸= 0, ∀i ∈ (N ∪ B), j ∈ (N ∪ B), g ∈ G (38)

xijg ̸= xjig, ∀i ∈ N, j ∈ N, g ∈ G (39)

P(m,n) = Pm ∩ Pn (40)

PATijv =
H + H0

v0
, ∀i ∈ N, j ∈ N, v ∈ V (41)∣∣INTijv − INTijv′

∣∣ < min
{

PATijv, PATijv′
}

, ∀i ∈ N, j ∈ N, v ∈ V (42)

PATijv < PATijv′ (43)

εijv = Ceil

(
PATijv − PATijv′

max
{

PATijv, PATijv′
}) (44)

DT =
0 − v0

−a0
(45)∣∣INTijv − INTijv′

∣∣ > DT, ∀i ∈ N, j ∈ N, v ∈ V (46)

UT =
v0 − 0

a0
(47)

tm
ijv =

(
DT + UT −

∣∣INTijv − INTijv′
∣∣)•(1 − εijv

)
(48)

R(m,n) = Rm
ijv ∩ Rn

ijv (49)

RLij ≤ Round
( rij

H + H0

)
, ∀i ∈ N, j ∈ N (50)

Constraints (29) and (30) stipulate that during the transportation process of containers
by the v-th AGV, only one path from node i to node j can be selected. Constraint (31)
ensures that each container task is completed by only one AGV. Constraints (32) and (33)
express that during the transportation process of containers by the b-th unmanned container
truck, only one path from node i to node j can be selected. Constraint (34) ensures that
each container task is completed by only one unmanned container truck. Constraints (35)
and (36) assert that the operation areas of AGVs and unmanned container trucks do not
interfere with each other. Constraint (37) represents the flow balance constraint, ensuring
the flow balance of entering and leaving nodes by relaxing the nodes other than quay crane
unloading and logistics park unloading. Constraint (38) indicates that the travel routes
between nodes are unidirectional guide routes, meaning that the planned routes in the
form of AGVs remain unchanged for the current task. Constraint (39) similarly states that
the travel routes between nodes are unidirectional guide routes, ensuring the stability of
AGV routes planned for the current task. Constraint (40) is used for determining AGV
conflict nodes. Constraints (41) and (42) determine AGV path conflicts when the time
difference between two AGVs passing through the same node is less than the time taken by
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the faster AGV to enter and completely exit the node. Constraints (43) and (44) represent
the AGV priority passing strategy. According to the principle of prioritizing the AGV with
the shortest time to pass through the node, when a conflict is detected between two AGVs
passing through the same node, the instruction for priority passing is provided based on
the AGV with the shortest time to pass through the node in the current state. Here, εijv
is the ceiling function. When εijv is 1, it indicates that the vehicle has higher priority and
should pass first; when εijv is 0, it is the opposite. Constraint (45) represents the time it
takes for the following vehicle to decelerate to 0 while parking/waiting. Constraint (46)
states that the time required to decelerate to 0 must be less than the time difference between
successive vehicles arriving at the node. Constraint (47) represents the time it takes for
the following vehicle to accelerate to the original speed. Constraint (48) represents the
parking/waiting time for the following vehicle. Constraint (49) determines AGV congestion
sections, divided into congestion due to node conflicts and congestion caused by path
planning. Constraint (50) ensures that the number of AGVs traveling on the path maintains
a safe distance, where Round() is the rounding-down function.

4. Algorithm Design

In this study, an improved genetic algorithm (IGA) was utilized to solve the task
allocation model and derive container task assignment results. To address the path opti-
mization model, AGV paths were converted into a node matrix, where matrix coordinates
were assigned as path time values. An A* optimization search algorithm was integrated to
generate the optimal path. The comparison of features of algorithms relevant to solving
this problem is documented in the Appendix A. The overall algorithmic process is depicted
in Figure 2.
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4.1. Solving the Task-Allocation Model Using Improved Genetic Algorithm

Step 1: Utilize dual-layer real-number encoding to generate double-chromosome
matrix sequences. The number of chromosomal genes corresponds to the container tasks to
be performed. The first chromosome denotes the AGV numbers for container tasks, while
the second chromosome represents the number of unmanned container trucks. Figure 3
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illustrates the distribution of ten container tasks among three AGVs and five unmanned
container trucks.
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Step 2: Implement a random-generation method to create the initial population,
ensuring diversity within the population while adhering to Constraints (5)–(12). An
initial population is generated in appropriate quantities at each gene position within the
double chromosome;

Step 3: Execute the task process based on unloading conditions to minimize the total
transportation costs as the objective function. The reciprocal of the objective function
is adopted as the fitness function. Excellent chromosomes with high fitness values are
selected for reproduction in the offspring generation. The fitness function is represented by
Equation (51):

fs =
1

f (s)
(51)

where fs is the fitness function and f (s) is the objective function.
Step 4: Utilize a roulette wheel selection strategy to retain superior individuals, ensur-

ing their exclusion from mutation and crossover operations to prevent loss and maintain
optimal overall solutions;

Step 5: Conduct crossover and mutation operations under adaptive probabilities.
Exchange the chromosomes of the two parent individuals to generate new offspring under
adaptive probability. These offspring inherit the original parent AGV and unmanned truck
transport sequences for crossover operations. Mutation operations involve exchanging
non-identical gene positions within the same chromosome, yielding new-chromosome
offspring in Figure 4.
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Step 6: Check whether the algorithm reaches the maximum iteration limit. If the
condition is satisfied, the algorithm is halted; otherwise, the computation continues.
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4.2. Solving Conflicting Paths Using A* Optimization Search Algorithm

The A* search algorithm generates multiple nodes on a two-dimensional plane and
connects them to determine the least costly path. It is commonly employed for pathfinding
and traversing two-dimensional plane positions. Building upon the performance improve-
ments of Dijkstra’s algorithm, the A* search algorithm offers a more efficient and accurate
approach for calculating the shortest routes.

The section employs Equation (52) as the cost function and is represented as f (n) for
the A* algorithm. Here, the actual cost function g(n) calculates the basic transportation cost
incurred between the current node n and its child node n′ due to the distance. The heuristic
function h(n) factors in the cost generated by the initial exploration command and ensures
that the heuristic result for the current node satisfies h(n) ≤ c(n, n′) + h(n′), where c(n, n′)
denotes the actual movement cost from node n to node n′.

f (n) = g(n) + h(n) (52)

In this study, the A* optimization algorithm was employed to resolve conflicting paths,
as depicted in Figure 5.
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(1) Establishment of two-dimensional plane node set and path assignment: Generate com-
binations of position nodes and assign path values based on actual operating distances;

(2) Decoding and data processing to generate the initial set: Utilize the IGA to obtain the
scheduling task sequence for decoding. Generate a scheduling program and reprocess
the data with a three-point coordinate matrix, where the three-point coordinates
correspond to the two-dimensional plane horizontal coordinates, vertical coordinates,
and time parameters, respectively. As depicted in Figure 6, the decoding result of the
AGV1 task is to service containers 1-4-6-10, which is transformed into the initial time
t0 when the location is (AQCx, AQCy). It is then added to the initial time dimension
to generate coordinates (AQCx, AQCy, t0) in accordance with the AGV operation
path. Based on the IGA scheduling result, a new set of coordinates is generated and
stored in the search list op[ ];
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(3) Path search and iterative optimization: (a) Traverse the search list op[], find the
starting point value, and move it into the stop search list cl[]. (b) Move the node to
the surroundings, transfer the surrounding nodes into op[], record the target value
and node state after movement, and ignore the nodes that do not meet the conditions.
(c) Repeat “Step b” in a loop search until the endpoint is found and added to op[],
outputting the path optimization results;

(4) Conflict path resolution: Determine path conflicts based on the obtained coordinates.
A path conflict occurs when judging the starting time of the task to establish priority.
High priority is given to pass, while low priority stops and waits for the node time
to be updated. Invoke the A* algorithm from the point of conflict to generate subse-
quent task routes until no conflicting paths remain, reaching the end to generate the
optimal path.

5. Case Study Analysis

Various scenarios were chosen to assess the feasibility of employing the improved
genetic algorithm in conjunction with the A* algorithm to tackle the joint-scheduling
model of AGVs and unmanned container trucks while considering conflict-resolution
strategies. Furthermore, comparative experiments were devised to scrutinize the disparities
in scheduling methodologies and path-optimization outcomes between conflict-free path
algorithms and those integrating conflict-resolution strategies, as well as to evaluate the
efficacy of these strategies. The experiments were conducted on a computer equipped with
an Intel(R) Core(TM) i5-10400 CPU @ 2.90 GHz processor and 32 GB of RAM, utilizing
example programs within the Python framework PyCharm version 2023.
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5.1. Experimental Layout and Parameters

For this study, the layout of the automated container terminal at Yangshan Port Phase
IV served as a benchmark. During the path-optimization phase, a node simulation layout,
depicted in Figure 7, was generated. The operational area spans 300 m in length and 120 m
in width at the front operating terminal. The AGV driving range encompasses 120 nodes,
encompassing quay crane operation nodes, yard crane operation nodes (representing yard
buffer rack positions), and AGV turn nodes. One-way lanes are designated for the loading
and unloading areas, whereas the buffer lanes feature two-way lanes facilitating AGV
reversal and turning. The driving area includes two-way lanes for AGV maneuvering,
encompassing turning, reversing, and turning around. Notably, the driving area for
unmanned container trucks excludes complex path optimization and is thus not simulated
with nodes.
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Other experimental parameters were set, as shown in Table 3.

Table 3. List of other parameters.

Notation Parameterization Notation Parameterization

L 10–200 αl 100 s
Q 2 βl 120 s
D 3–6 γ1 50 s
A 3–12 tkl 200 s
K 3–12 P 2
Z 6 v0 (unloaded) 2 m/s
W 6 v0 (reloading) 1 m/s

5.2. Algorithm Validation and Result Analysis

In this section, 20 different sets of calculations were generated to validate the effec-
tiveness of the improved genetic algorithm (IGA) and A* optimization search algorithm
employed in this study. Additionally, a standard genetic algorithm (GA) was used as a
control to compare path-optimization performance. The path-optimization tasks in this
example were executed using the A* algorithm, while the control experiment utilized a
GA. The average values from ten program runs were recorded for each algorithm. Table 4
presents the parameter settings for the algorithms.

Table 5 presents the experimental results, where f represents the value of the objective
function calculated by the GA algorithm and f * represents the value of the objective
function calculated by the IGA + A* algorithm. The difference degree was computed
using the formula. The average computing time of the GA algorithm is 66.55 s, while
that of the IGA + A* algorithm is 64.01 s. The disparity between the two algorithms’
computing times is negligible, with the IGA + A* algorithm being only 0.04% lower than
the GA algorithm. Additionally, when comparing the objective function values of the
two algorithms, the average difference between the GAP values of the IGA + A* algorithm
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and the GA algorithm is 3.21%. This indicates that the IGA + A* algorithm exhibits superior
optimization capabilities compared to the GA algorithm. Therefore, the results of the
IGA + A* algorithm utilized in this example demonstrate satisfactory performance and
robust optimization abilities, thereby verifying the algorithm’s effectiveness in solving the
model. T denotes the runtime of the computer algorithm when using the GA algorithm to
complete the test case; T* denotes the runtime of the computer algorithm when using the
IGA + A* algorithm to complete the test case.

Table 4. Algorithm parameter list.

Parameter Object Parameter Value Parameter Meaning

Pop_size 100 IGA population size

Iter_Max (small, large) 100, 200 Maximum number of iterations for
different sizes of IGAs

Pc, Pm Adaptation values IGA crossover, mutation probability
ε1 0.8 CNY/s Base transportation cost factor
ε2 0.3 CNY/s Penalty cost factor

Table 5. Comparison of the joint-scheduling optimization algorithms while considering conflicts.

Serial
Number

Number
of Tasks

Number
of AGVs

Number of Unmanned
Collector Trucks

Configuration
Ratio

GA IGA + A*
GAP%

f T f* T*

1 10 5 5 1.00 2495 10.64 2357 8.03 5.85%
2 10 7 7 1.00 2464 10.91 2337 8.74 5.43%
3 10 7 5 1.40 2460 10.67 2342 8.94 5.04%
4 10 5 7 0.71 2499 10.73 2357 8.98 6.02%
5 20 7 7 1.00 3879 20.30 3744 17.47 3.61%
6 20 12 12 1.00 3717 21.02 3604 19.86 3.22%
7 20 7 12 0.58 3702 20.46 3599 18.97 2.86%
8 20 12 7 1.71 3789 20.49 3629 18.42 4.41%
9 50 9 9 1.00 9204 47.03 8995 40.41 2.32%

10 50 12 12 1.00 9197 48.26 8976 41.97 2.46%
11 50 9 12 0.75 9291 48.39 9001 41.71 3.22%
12 50 12 9 1.33 9374 49.97 9014 41.83 3.99%
13 100 9 9 1.00 18,049 85.88 17,697 73.49 1.99%
14 100 12 12 1.00 17,991 94.45 17,603 81.51 2.20%
15 100 9 12 0.75 17,997 94.03 17,699 81.25 1.68%
16 100 12 9 1.33 18,006 93.97 17,710 82.54 1.67%
17 200 9 9 1.00 38,321 185.71 37,463 171.41 2.29%
18 200 12 12 1.00 38,002 184.36 37,298 170.57 2.12%
19 200 9 12 0.75 38,079 186.02 37,254 172.79 2.21%
20 200 12 9 1.33 37,902 184.25 37,297 172.44 1.62%

At the same scale of container tasks, an increase in the number of AGVs and unmanned
container trucks resulted in a noticeable decrease in the objective function value, for
instance, in Experiments 1 and 2, 5 and 6, 9 and 10, and 17 and 18. Similarly, with the same
scale of container tasks, as the ratio of AGVs to unmanned container trucks approached 1,
the objective function value was lower than that in cases where the ratio was significantly
different. For example, in Experiments 10–12, with a task scale of 50, the objective function
values obtained with a ratio of 0.75 and 1.33 were higher than those obtained with a ratio of
1. This further demonstrates that the ratio and quantity of AGVs and unmanned container
trucks affect the objective function.

5.3. Validation of Strategy Effectiveness

To validate the effectiveness of the conflict-resolution strategy employed in this study
for joint-scheduling problems, a validation group was established with 10 container tasks,
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three AGVs, and three unmanned container trucks. The task allocation results for the AGVs
are presented in Table 6.

Table 6. AGV task allocation results.

AGV No. AGV Tasking Results AGV Initial Path List

AGV1 8-3-6 (1,3,103) (9,6,941) (1,3,1019) (9,12,1289) (1,3,1404)
(9,6,1723)

AGV2 10-2-1-9-7 (1,6,98) (9,4,478) (1,3,500) (9,2,841) (1,3,974) (9,10,1451)
(1,3,1501) (9,2,1876) (1,6,98) (9,8,1876)

AGV3 4-5 (1,6,278) (9,8,699) (1,6,1093) (9,2,1649)

In the initial task list for the AGVs, AGV2 was assigned a relatively large number
of tasks, resulting in more complex routes. However, the running time for each task was
shorter for AGV2 than AGV1 and AGV3, leading to a longer total transportation time for
AGV2. Nonetheless, the time difference between the completion of the final tasks by the
three AGVs was relatively small, indicating a minor impact on subsequent tasks. The initial
task list was generated by the IGA and primarily consisted of point-to-point paths. The
path optimization results obtained using the A* algorithm for this initial list are presented
in Tables 5–7. After implementing the path conflict-resolution strategy for AGVs, the results
had different coordinates and time dimensions, indicating the absence of conflicts in the
generated AGV paths. The optimized AGV path times were close to the initial objective
function values obtained from the first scheduling using the IGA, and in some cases, the
total time was even shorter. After path optimization, the total objective function decreased
by 1.04%, 3.78%, and 1.51% for AGV1, AGV2, and AGV3, respectively. Figure 8 illustrates
a spatiotemporal path diagram depicting the generation of conflicting paths in a specific
case and the generation of optimal paths using the conflict-resolution strategy.

Before conflict optimization, nodes 6-7-8-9 of AGV1 conflicted with nodes 9-10-11-12
of AGV2, resulting in the temporal and spatial overlap of paths in Figure 8. Conflict
optimization entails replanning routes to ensure conflicting paths do not occur within the
same timeframe. In summary, the effectiveness of the IGA and A* algorithms in resolving
conflicts was demonstrated. Adopting this strategy can optimize conflicting paths and
improve transportation efficiency.
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To further validate this strategy, we compared data with the same configuration ratio
but different scales with the conflict-free paths generated by the optimized particle swarm
algorithm. The Optimized Particle Swarm Optimization (OPSO) algorithm adopts various
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iterative strategies to ensure the final results are conflict-free when solving optimal path
problems. By comparing scenarios where the IGA and A* algorithms, as used in this study,
were employed to solve path scenarios with conflicts and scenarios where OPSO was used
to directly generate the conflict-free paths, we validated the algorithm’s effectiveness. This
comparison helps demonstrate how OPSO contributes to conflict resolution in pathfinding
tasks alongside the traditional IGA and A* approaches.

Table 7. AGV path optimization results.

Serial
Number

Task
Allocation AGV Initial Path List

AGV1 8-3-6

(1,3,103) (1,4,143) (2,4,176) (3,4,190) (3,5,206) (4,5,238) (5,5,251) (6,5,277) (7,5,303) (7,6,322)
(8,6,344) (9,6,362) (9,6,381) (8,6,417) (7,6,437) (7,5,449) (6,5,483) (5,5,499) (4,5,522) (3,5,546)
(3,4,557) (2,4,588) (1,4,608) (1,3,640) (1,3,663) (1,4,684) (2,4,716) (3,4,730) (3,5,744) (4,5,768)

(5,5,791) (6,5,811) (7,5,833) (7,6,856) (7,7,887) (7,8,901) (8,8,918) (8,9,941) (8,10,971) (9,10,994)
(9,11,1013) (9,12,1041) (9,12,1067) (9,11,1089) (9,10,1101) (8,10,1131) (8,9,1153) (8,8,1171)

(7,8,1196) (7,7,1210) (7,6,1237) (7,5,1262) (6,5,1278) (5,5,1304) (4,5,1319) (3,5,1347) (3,4,1365)
(2,4,1386) (1,4,1404) (1,3,1435) (1,3,1463) (1,4,1486) (2,4,1509) (3,4,1535) (3,5,1547) (4,5,1578)

(5,5,1603) (6,5,1622) (7,5,1643) (7,6,1663) (8,6,1689) (9,6,1705)

AGV2 10-2-1-9-7

(1,6,98) (1,5,109) (2,5,124) (2,4,132) (3,4,140) (4,4,154) (5,4,178) (6,4,192) (7,4,213) (8,4,225)
(9,4,240) (9,4,253) (8,4,265) (7,4,290) (6,4,309) (5,4,320) (4,4,341) (3,4,355) (2,4,371) (1,4,381)
(1,3,403) (1,3,418) (2,3,432) (3,3,451) (4,3,468) (5,3,482) (6,3,498) (6,2,520) (7,2,536) (8,2,554)
(9,2,575) (9,2,591) (8,2,610) (7,2,624) (6,2,635) (6,3,658) (5,3,676) (4,3,686) (3,3,708) (2,3,726)
(1,3,739) (1,3,761) (1,4,774) (1,5,791) (1,6,801) (2,6,819) (2,7,838) (3,7,852) (4,7,863) (5,7,882)
(5,8,902) (6,8,914) (7,8,925) (7,9,944) (8,9,965) (8,10,976) (9,10,992) (9,10,1012) (8,10,1028)

(8,9,1046) (7,9,1060) (7,8,1074) (6,8,1091) (5,8,1099) (5,7,1121) (4,7,1137) (3,7,1151) (2,7,1175)
(2,6,1190) (1,6,1202) (1,5,1218) (1,4,1235) (1,3,1246) (1,3,1268) (2,3,1280) (3,3,1297) (4,3,1317)
(5,3,1331) (6,3,1346) (6,2,1369) (7,2,1384) (8,2,1398) (9,2,1421) (9,2,1436) (8,2,1446) (7,2,1472)
(6,2,1488) (6,3,1497) (5,3,1516) (4,3,1531) (4,4,1553) (3,4,1563) (2,4,1582) (2,5,1595) (1,5,1610)
(1,6,1623) (1,6,1644) (2,6,1659) (2,7,1674) (3,7,1692) (4,7,1710) (5,7,1728) (5,8,1745) (6,8,1757)

(7,8,1769) (8,8,1789) (9,8,1805)

AGV3 4-5

(1,6,278) (2,6,297) (3,6,328) (4,6,429) (5,6,424) (5,7,425) (6,7,530) (7,7,584) (8,7,544) (8,8,636)
(9,8,640) (9,8,741) (8,8,737) (8,7,760) (7,7,857) (6,7,896) (5,7,919) (5,6,971) (4,6,979) (3,6,1038)
(2,6,1058) (1,6,1065) (1,6,1131) (1,5,1175) (2,5,1160) (2,4,1251) (2,3,1279) (3,3,1346) (4,3,1379)

(5,3,1429) (6,3,1406) (7,3,1462) (8,3,1479) (9,3,1579) (9,2,1624)

The formula for calculating the difference between the objective function values of the
two strategies is GAP = (f − f *)/f *, where Wf and Wf * represent the waiting objective value
of the conflict-free path scheduling result and the conflict-resolution strategy scheduling
result, respectively.

Further details are presented in Table 8.

Table 8. A comparative analysis of strategies.

Serial
Number

Number
of Tasks

Number of
AGVs

Number of
Unmanned

Collector Trucks

Conflict-Free Path Conflict-Resolution Strategies
GAP%

f Wf f* Wf*

1 10 5 5 2361 279 2357 249 0.17%
2 10 7 7 2363 284 2337 271 1.11%
5 20 7 7 3740 511 3744 504 −0.11%
6 20 12 12 3593 527 3604 515 −0.31%
9 50 9 9 9032 1120 8995 1098 0.41%
10 50 12 12 9009 1349 8976 1246 0.37%
13 100 9 9 17,708 2677 17,697 2554 0.06%
14 100 12 12 17,689 2703 17,603 2740 0.49%
17 200 9 9 37,157 5662 37,463 5599 −0.82%
18 200 12 12 37,327 5832 37,298 5702 0.08%
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Based on the analysis of the experimental results, the average difference in the objective
function values between the conflict-free path strategy and the conflict-resolution strategy
employed in this study was 0.14%. This indicates that the optimization capabilities of the
algorithms for the two strategies are similar. Further analysis of the waiting objective values
under both strategies revealed that the waiting objective values under the conflict-resolution
strategy joint scheduling were consistently lower than those under conflict-free path joint
scheduling. Therefore, for the optimization problem of the joint scheduling of AGVs and
unmanned trucks, using conflict-free paths and planning paths with conflict resolution
strategies can achieve the expected results. Additionally, under the conflict-resolution
strategy, the waiting cost for AGVs at the terminal is lower, whereas the transportation cost
is higher.

In this study, when conflicts arose in the paths, a conflict-resolution strategy was
employed to address the issue. The proposed conflict-resolution strategy model integrates
conflict path detection and imposes constraints on AGVs at specific nodes during con-
flicts, following a strategy of allowing high-priority vehicles to proceed while low-priority
ones wait. An enhanced genetic algorithm was developed to generate scheduling solu-
tions. These scheduling results were then decoded to create initial solution sets for the
A* optimization search algorithm to begin the path search iterations. Various scenarios
were designed to compare the performance of the algorithms and the effectiveness of the
strategies. Based on the experimental findings, the viability of solving the joint schedul-
ing problem of AGVs and unmanned trucks at automated container terminals using the
conflict-resolution strategies proposed in this study was confirmed. Moreover, the efficacy
of the improved genetic algorithm and A* optimization search algorithm in solving the
model was demonstrated.

6. Conclusions

In this study, we conducted a systematic investigation into the operational intricacies
of the Shanghai Yangshan Port Phase IV automated container terminal, with the spotlight
on the integrated scheduling of AGVs and UCTs. Our research delineated the critical impact
of this joint-scheduling approach on augmenting the terminal’s operational efficiency. The
manuscript unfolds in a coherent manner, beginning with an extensive feasibility analysis.
This analysis was meticulously executed through a review and synthesis of the literature,
empirical field investigations, and comparative studies. The comparative analysis of the
task completion times under various operational modalities—fixed service object mode, in-
dependent scheduling, and joint scheduling—provided a robust evidence base supporting
the efficacy of the joint-scheduling paradigm. The theoretical constructs developed within
this study offer a comprehensive framework that elucidates the structural hierarchies,
cost dynamics, and overarching scheduling architecture. These theoretical underpinnings
not only validate the feasibility of the joint scheduling approach but also provide a solid
foundation for the mathematical model employed. Addressing the path-conflict challenges
inherent in joint scheduling, this study introduces a dual-layer joint-scheduling optimiza-
tion model integrating strategic conflict-resolution mechanisms. Applying an enhanced
genetic algorithm for task allocation and an A* optimization algorithm for pathfinding
exemplifies an innovative approach to addressing complex operational challenges. This
methodology ensures the identification of optimal paths, the detection of conflict paths,
and the strategic updating of node information through conflict-resolution strategies.

The comparative analysis of the proposed algorithms across varying scales of case
studies substantiates the effectiveness of the methodologies employed. It confirms the fea-
sibility of utilizing the enhanced genetic algorithm and A* optimization algorithm to tackle
joint-scheduling challenges, especially when considering conflict strategies. Moreover, this
study verifies the efficacy of the conflict-resolution strategy through a rigorous examination
of the algorithm’s path-generation outcomes. The findings of this study not only enhance
our understanding of operational efficiencies but also offer a blueprint for future studies
seeking to optimize automated terminal operations. Future research could explore inte-
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grating real-time data and dynamic environmental factors into the current model, further
refining the scheduling paradigm and its applicability in real-world scenarios.
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Abbreviations

AGV Automated Guided Vehicles
UCTs Unmanned Container Trucks
AQC Automated Quay Cranes
ARMG Automated Rail-Mounted Gantry Cranes
GA Genetic Algorithm
IGA Improved Genetic Algorithm
ALVs Automatic Lifting Vehicles
RHP Rolling Horizon Process algorithm
VDTWs Vehicle Dispatching with Time Windows
CRP-BGA Congestion Prevention strategy Bi-level Genetic Algorithm
NSGA-II Nondominated Sorting Genetic Algorithm-II
OPSO Optimized Particle Swarm Optimization

Appendix A

Advantage Disadvantage

GA
Capable of handling non-linear, non-

differentiable objective functions
with less sensitivity to the initial solution.

Genetic algorithms typically require more
computational resources and time to converge
compared to single-point search algorithms.

IGA
By optimizing selection, crossover, and mutation

strategies, it is possible to accelerate the
convergence process.

May not always find the globally optimal solution.

A-star
Widely used and well-understood, with

extensive research and
optimization techniques available.

Requires a good heuristic function to perform well;
finding such a heuristic can be challenging.

Optimized A-star
Mitigates memory usage concerns by limiting

the size of the explored set or dividing the search
space into manageable parts.

Specific variants may require additional
computational overhead for managing state spaces

or integrating with domain-specific constraints.
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Advantage Disadvantage

Other

Greedy Best-First Search can be effective when a
simple heuristic is available, and the graph

structure allows for quick expansion of
promising paths;

Dijkstra’s Algorithm guarantees the shortest
path in non-negative weighted graphs.

Both may not scale well to very large graphs or
complex search spaces without

additional optimizations.

Heuristic Algorithms

Heuristics are generally faster than exact solvers
because they sacrifice optimality for efficiency,
and often easier to implement, and require less

computational resources.

It can be challenging to analyze the performance and
theoretical guarantees of heuristic algorithms due to

their non-deterministic nature.

Solvers
Solvers guarantee finding the optimal solution (if
one exists), ensuring the best possible outcome.

Implementing and fine-tuning exact methods can
require a deep understanding of algorithmic

complexities and optimization techniques. They may
struggle with certain types of constraints or problem

structures that are not well-suited to the
problem-solving approach.
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