Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants
Abstract
:1. Introductions
2. Contextualization of Tenerife Island
Desalination Water in Tenerife
3. Materials and Methods
3.1. Input Variables to HOMER Software
3.2. Electrical Loads
3.3. Solar Radiation
3.4. Wind Speeds
3.5. PV System
3.6. Wind Turbine System
3.7. Economic Analysis
3.7.1. Total Net Present Cost (NPC)
3.7.2. Levelized Cost of Energy (COE)
4. Results and Discussion
4.1. Optimization Results in Santa Cruz de Tenerife
4.2. Optimization Results in Special Nature Reserve “Montaña Roja”
4.3. Polluting Gas Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reboso, J.V. Current State of Water Resources in the Canary Islands. MITIMAC Project Report. 2022. Available online: https://accedacris.ulpgc.es/bitstream/10553/127051/1/211ULPGC11.pdf (accessed on 2 July 2024).
- Instituto Tecnológico de Canarias (ITC), (Canary Islands Institute of Technology). Desal+ Living Lab Results Report 2017–2022. 2023. Available online: https://www.desalinationlab.com/wp-content/uploads/2023/03/Memoria-de-resultados-DESAL-Living-Lab-2017-2022-2.pdf (accessed on 2 July 2024).
- Avila, D.; Marichal, G.N.; Hernández, A.; San Luis, F. Chapter 2—Hybrid renewable energy systems for energy supply to autonomous desalination systems on Isolated Islands. In Design, Analysis, and Applications of Renewable Energy Systems; Azar, A.T., Kamal, N.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 23–51. [Google Scholar]
- Gils, H.C.; Simon, S. Carbon neutral archipelago-100% renewable energy supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar] [CrossRef]
- Avila, D.; Marichal, G.N.; Quiza, R.; San Luis, F. Prediction of Wave Energy Transformation Capability in Isolated Islands by Using the Monte Carlo Method. J. Mar. Sci. Eng. 2021, 9, 980. [Google Scholar] [CrossRef]
- Padrón, I.; Avila, D.; Marichal, G.N.; Rodríguez, J.A. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- Padrón, I.; García, M.; Marichal, G.; Avila, D. Wave energy potential of the Coast of El Hierro Island for the exploitation of a Wave Energy Converter (WEC). Sustainability 2022, 14, 12139. [Google Scholar] [CrossRef]
- Instituto Tecnológico y de Energías Renovables (ITER), (Renewable Energies Technological Institute). Photovoltaic Installations. Available online: https://www.iter.es/portfolio-items/plantas-fotovoltaicas/?portfolioCats=56 (accessed on 23 November 2023).
- Instituto Tecnológico y de Energías Renovables (ITER), (Renewable Energies Technological Institute). New Wind Parks. Available online: https://www.iter.es/portfolio-items/parques-eolicos/?portfolioCats=56 (accessed on 23 November 2023).
- Insular Council of Water of Tenerife (CIATF). Hydrological Plan of Tenerife Hydrological (Planning Cycle 2015–2021). 2018. Available online: https://aguastenerife.org/images/pdf/PHT1erCiclo/2_ciclo/ES124_PHD.pdf (accessed on 5 July 2024).
- HOMER Software (2.72), HOMER Energy. 2012. Available online: http://homerenergy.com/ (accessed on 13 June 2023).
- Alphen, K.; Sark, W.; Hekkert, M.P. Renewable energy technologies in the Maldives—Determining the potential. Renew. Sustain. Energy Rev. 2007, 11, 1650–1674. [Google Scholar] [CrossRef]
- Demiroren, A.; Yilmaz, U. Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example. Renew. Sustain. Energy Rev. 2010, 14, 323–333. [Google Scholar] [CrossRef]
- Iqbal, M.T. A feasibility study of a zero energy home in Newfoundland. Renew. Energy 2004, 29, 277–289. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renew. Energy 2005, 30, 835–854. [Google Scholar] [CrossRef]
- Alam, M.D.; Denich, M. Assessment of renewable energy resources potential for electricity generation in Bangladesh. Renew. Sustain. Energy Rev. 2010, 14, 2401–2413. [Google Scholar]
- Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 2010, 35, 3245–3255. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Chan, P.L. Life cycle cost analysis of fuel cell based cogeneration system for residential application in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 416–426. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software. Sol. Energy 2010, 84, 710–714. [Google Scholar] [CrossRef]
- Rahmat, M.A.A.; Abd-Hamid, A.S.; Lu, Y.; Ishak, M.A.A.; Suheel, S.Z.; Fazlizan, A.; Ibrahim, A. An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability 2022, 14, 13684. [Google Scholar] [CrossRef]
- Singh, A.; Baredar, P.; Gupta, B. Computational Simulation and Optimization of a Solar, Fuel Cell and Biomass Hibrid Energy System Using HOMER Pro Software. Procedia Eng. 2015, 127, 743–750. [Google Scholar] [CrossRef]
- Ali, G.; Aly, H.H.; Little, T. Using HOMER software to investigate, size and apply renewable energy sources in a convention center in Sabratha, Libya. In Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 12–13 June 2021; pp. 1–6. [Google Scholar]
- Rehman, S.; El-Amin, I.M.; Ahmad, F.; Shaahid, S.M.; Al-Shehri, A.M.; Bakhashwain, J.M.; Shash, A. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew. Sustain. Energy Rev. 2007, 11, 635–653. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 2010, 35, 4986–4995. [Google Scholar] [CrossRef]
- Shaahid, S.M.; Elhadidy, M.A. Technical and economic assessment of grid-independent hybrid photovoltaic–diesel–battery power systems for commercial loads in desert environments. Renew. Sustain. Energy Rev. 2007, 11, 1794–1810. [Google Scholar] [CrossRef]
- Shaahid, S.M.; Elhadidy, M.A. Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions—A step to clean future. Renew. Sustain. Energy Rev. 2008, 12, 488–503. [Google Scholar] [CrossRef]
- Shaahid, S.M.; El-Amin, I. Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—A way forward for sustainable development. Renew. Sustain. Energy Rev. 2009, 13, 625–633. [Google Scholar] [CrossRef]
- Balbin, J.R.; Bautista, J.R.T.; Manalansan, E.J.S.; Tumaliuan, J.P. Hybrid Renewable Energy System Model Using HOMER as Support to the Power Crisis in the Philippines. In Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6. [Google Scholar]
- Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J. Renewable Power Options for Electrical Generation on Kaua’i: Economics and Performance Modelling. Technical Report. NREL/TP-7A40-52076. Contract No. DE-AC36-08GO28308. 2011. Available online: https://www.nrel.gov/docs/fy12osti/52076.pdf (accessed on 18 July 2023).
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renew. Energy 2008, 33, 475–1490. [Google Scholar] [CrossRef]
- Instituto Canario de Estadística (ISTAC), (Canarian Statistic Institute). 2023. Available online: http://www.gobiernodecanarias.org/istac (accessed on 3 December 2023).
- Sattraburut, T.; Prueksakorn, K.; Kitcharoen, T.; Amattayakul, T.; Pinitsuwan, P.; Pratum, C. The Connection between Phuket’s Water Supply and the Hotel Sector’s Water Use for Assessment of Tourism Carrying Capacity. Sustainability 2024, 16, 621. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Hall, C.M.; Ceron, J.P.; Dubois, G.; Scott, D. Tourism and water use: Supply, demand, and security. An international review. Tour. Manag. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Hernández, S.; Armas, N.; Guersi, J.L. Blue Economy Activity Report in the Canary Islands 2021, Smart Blue F Project. 2022. Available online: https://op.europa.eu/en/publication-detail/-/publication/0b0c5bfd-c737-11eb-a925-01aa75ed71a1 (accessed on 3 June 2024).
- Eyl-Mazzega, M.A.; Cassignol, É. The Geopolitics of Seawater Desalination. In Études de l’Ifri; Ifri: Nairobi, Kenya, 2022; ISBN 979-10-373-0661-6. Available online: https://www.ifri.org/en/publications/etudes-de-lifri/geopolitics-seawater-desalination (accessed on 3 July 2024).
- de Nicolás, A.P.; Molina-García, Á.; García-Bermejo, J.T.; Vera-García, F. Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives. Renew. Sustain. Energy Rev. 2023, 187, 113733. [Google Scholar] [CrossRef]
- Insular Water Council of Tenerife. General Study of the Hydrographic Demarcation of the Island of Tenerife. 2008. Available online: https://www.aguastenerife.org/images/pdf/PHT1erCiclo/I-DocumentoInformacion/I-2-Anejos/I-2-Anejo7-EstudioGralDemarcacion.pdf (accessed on 10 January 2024).
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower Modeling System. 2006, pp. 379–417. Available online: http://www.pspb.org/e21/media/HOMERModelingInformation.pdf (accessed on 14 December 2023).
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2009; pp. 23–89. ISBN 978-0-470-01500-1. Available online: http://www.worldcat.org/title/wind-energy-explained-theory-designand-application/oclc/431936159 (accessed on 15 December 2023).
- ENERCON. ENERCON Wind Energy Converters Product Overview. Available online: https://docs.wind-watch.org/Enercon.pdf (accessed on 7 December 2023).
- Gamesa. GAMESA G52-850 kW. Available online: https://pdfcoffee.com/fiche-technique-gamesa-g52-850kw-pdf-free.html (accessed on 8 December 2023).
- Gamesa. GAMESA G90-20 MW. Available online: https://bpb-us-w2.wpmucdn.com/sites.udel.edu/dist/5/8632/files/2019/01/2009-dic-G90-ingles-01-1nkai6l.pdf (accessed on 9 December 2023).
- Repowerig. Vestas V52-850 kW La Turbina que va a Cualquier Parte, 2029. Available online: https://repoweringsolutions.com/descargas/Catalogo_VESTAS_V52_REMANUFACTURADA.pdf (accessed on 14 January 2024).
- Vestas. V80-2.0 MW; V90-1.8/2.0 MW; V100-1.8/2.0 MW. Available online: https://pdf.archiexpo.es/pdf-en/vestas/aom-service-concept/88087-134433.html (accessed on 14 January 2024).
- Sunderland, K.M.; Narayana, M.; Putrus, G.; Conlon, M.F.; McDonald, S. The cost of energy associated with micro wind generation: International case studies of rural and urban installations. Energy 2016, 109, 818–829. [Google Scholar] [CrossRef]
RO Desalination Plant (EDAM) | Capacity of Water Production (m3/day) | Energy Consumption (kWh/m3) |
---|---|---|
Adeje-Arona | 30,000 | 4.51 |
Caleta de Adeje | 10,000 | 4.29 |
Santa Cruz de Tenerife | 21,000 | 4.6 |
Meteorological Stations | Coordinates (Latitude and Longitude) | Altitude (m) (above Sea Level) |
---|---|---|
South Airport (Reina Sofía) (C429I) | Latitude: 28°2′51″ N Longitude: 16°33′39″ W | 64 |
Santa Cruz de Tenerife (C449C) | Latitude: 28°27′48″ N Longitude: 16°15′19″ W | 35 |
Components | Initial Capital Cost (ICCPV) $ | Replacement Cost (RC) $ | O&M Cost ($) | Lifetime |
---|---|---|---|---|
PV panels | 2500 ($/kW) | 2500 ($/kW) | (0.015) × (ICCPV) | 20 years |
Wind turbines | 1200 ($/kW) | (0.85) × (ICCWind) | (0.025) × (ICCWind) | 25 years |
Characteristics | E48 | E82 | G52 | G90 | V52 | V80 |
---|---|---|---|---|---|---|
Nominal power (kW). | 800 | 2000 | 850 | 2000 | 850 | 2000 |
Hub height (m) | 55 | 78 | 55 | 78 | 55 | 78 |
Rotor diameter (m). | 48 | 82 | 52 | 90 | 52 | 80 |
Cut-in wind speed (m/s) | 3.0 | 2.0 | 4.0 | 3.0 | 4.0 | 4.0 |
Cut-out wind speed (m/s) | 25 | 25 | 25 | 21 | 25 | 25 |
Turbine Model | No. of Turbines | Initial Capital Cost ($) | O&M Cost ($/year) | Total NPC ($) | COE ($/kWh) |
---|---|---|---|---|---|
G90 | 2 | 4,800,000 | 1,730,579 | 26,922,606 | 0.064 |
E82 | 2 | 4,800,000 | 1,750,828 | 27,181,456 | 0.065 |
V80 | 2 | 4.800.000 | 1,932,697 | 29,506,358 | 0.071 |
Turbines Model | No. of Turbines | Energy Consumption (kWh/year) | Energy Purchased (kWh/year) | Energy Produced (kWh/year) | Renewable Fraction (%) | Energy Sold (kWh/year) | Energy Sold Fraction (%) |
---|---|---|---|---|---|---|---|
G90 | 2 | 32,666,340 | 17,213,290 | 16,190,625 | 48.5 | 737,575 | 4.5 |
E82 | 2 | 32,666,340 | 17,555,310 | 15,941,763 | 48.0 | 830,733 | 5.2 |
V80 | 2 | 32,666,340 | 18,932,300 | 14,270,080 | 43.0 | 536,040 | 3.8 |
Wind Farm | Pollutant | Avoided Emissions (kg/year) |
---|---|---|
2 Turbines (G90) | Carbon dioxide (CO2) | 8,732,130 |
Sulfur dioxide (SO2) | 81,390 | |
Nitrogen oxides (NOx) | 39,710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila Prats, D.; San Luis Gutiérrez, F.; Hernández López, Á.; Marichal Plasencia, G.N. Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants. J. Mar. Sci. Eng. 2024, 12, 1193. https://doi.org/10.3390/jmse12071193
Avila Prats D, San Luis Gutiérrez F, Hernández López Á, Marichal Plasencia GN. Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants. Journal of Marine Science and Engineering. 2024; 12(7):1193. https://doi.org/10.3390/jmse12071193
Chicago/Turabian StyleAvila Prats, Deivis, Felipe San Luis Gutiérrez, Ángela Hernández López, and Graciliano Nicolás Marichal Plasencia. 2024. "Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants" Journal of Marine Science and Engineering 12, no. 7: 1193. https://doi.org/10.3390/jmse12071193
APA StyleAvila Prats, D., San Luis Gutiérrez, F., Hernández López, Á., & Marichal Plasencia, G. N. (2024). Optimal Arrangements of Renewable Energy Systems for Promoting the Decarbonization of Desalination Plants. Journal of Marine Science and Engineering, 12(7), 1193. https://doi.org/10.3390/jmse12071193