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Abstract: Blind tees, as important junctions, are widely used in offshore oil and gas transportation
systems to improve mixing flow conditions and measurement accuracies in curved pipes. De-
spite the significance of blind tees, their unsteady flow characteristics and mixing mechanisms in
turbulent flow regimes are not clearly established. Therefore, in this study, Unsteady Reynolds-
Averaged Navier–Stokes (URANS) simulations, coupled with Explicit Algebraic Reynolds Stress
Model (EARSM), are employed to explore the complex turbulent flow characteristics within blind-tee
pipes. Firstly, the statistical flow features are investigated based on the time-averaged results, and
the swirl dissipation analysis reveals an intense dissipative process occurring within blind tees,
surpassing conventional elbows in swirling intensity. Then, the instantaneous flow characteristics
are investigated through time and frequency domain analysis, uncovering the oscillatory patterns
and elucidating the mechanisms behind unsteady secondary flow motions. In a 2D-length blind tee,
a nondimensional dominant frequency of oscillation (Stbt = 0.0361) is identified, highlighting the
significant correlation between dominant frequencies inside and downstream of the plugged section,
which emphasizes the critical role of the plugged structure in these unsteady motions. Finally, a
power spectra analysis is conducted to explore the influence of blind-tee structures, indicating that
the blind-tee length of lbt = 2D enhances the flow-mixing conditions by amplifying the oscillation
intensities of secondary flow motions.

Keywords: subsea pipeline systems; blind-tee pipes; turbulent flow; structural effect; mixing enhancement

1. Introduction

Blind tees, pivotal components in fluid transportation systems, hold immense impor-
tance in optimizing the mixing conditions essential for flow control and measurements
within curved structures, particularly in subsea oil and gas pipelines. The complexities
stemming from the turbulent flow characteristics of these blind-tee pipes constitute a cru-
cial aspect in elucidating fluid mixing mechanisms. In the domain of ocean engineering,
pipelines demand meticulous design considerations, and are often configured as multi-
bending structures and interconnected by various junctions such as bends, T-junctions,
and blind tees [1,2]. Notably, the flow dynamics near these junctions markedly differ
from those in straight pipes owing to directional changes, underscoring the necessity for
comprehensive investigation.

Within the bending structure of subsea oil and gas transportation pipelines, the sec-
ondary flow arises from the curvature, overlaying with the primary flow due to centrifugal
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force. This leads to swift fluid redirection towards the inner-side corner along the pipe
wall, while slower-moving fluid is directed towards the outer-side corner along the pipe’s
centerline. Dean et al. [3] investigated this phenomenon analytically in a curved channel
and proposed an important governing parameter, i.e., the Dean number De = Re

√
D/2Rc,

where D is the pipe diameter, Re is the Reynolds number, and Rc is the radius of the bend
curvature. Since then, the flow through the curved channel has gained widespread atten-
tion since it is related to nearly all the equipment used in the industrial process. Early-stage
studies have focused on the laminar flow regime. Winters [4] studied the bifurcation of the
laminar flow in the bent channel’s square section, and pointed out the critical symmetry-
breaking aspect ratio. Bara et al. [5] employed Laser–Doppler measurements to study
the vortex evolution in the square curved channel and indicated the critical De number
characterizing the bifurcation of vortices. In terms of the bends in the circular cross sec-
tion, some researchers analytically and numerically studied the evolution behavior of the
counter-rotating vortices, also known as Dean vortices, from single-pair to multi-pair in
laminar flow regimes [6–8].

In recent decades, ocean engineering has witnessed extensive research into turbulent
flow within curved pipes and the intricate design of complex pipeline configurations [9,10].
Sudo et al. [11,12] conducted detailed investigations into the statistical properties of tur-
bulent flow in curved pipes with circular and square sections, and utilized hot-wire mea-
surements to establish how the bend curvatures influence the strength of secondary flow.
Jurga et al. [13] explored the impact of Reynolds number and curvature ratio on velocity
distributions and pressure gradients in turbulent bent flows. Han et al. [14] thoroughly
investigated secondary flow characteristics in double-curved pipes, providing comprehen-
sive insights into the structural influences of continuous bends. Additionally, studies were
conducted on the turbulent flow characteristics inside special bending structures, including
T-junctions and blind tees. Kumar et al. [15] analyzed the flow separations inside a T-
shaped structure at Re = 5300 using direct numerical simulations. Zhang et al. [16] analyzed
the flow-induced noise characteristics in a closed-branch T-junction at Re = 20,000 using
dynamic delayed detached-eddy simulations. Lan et al. [17] investigated the turbulent
flow in a blind-tee pipe at different Reynolds numbers (Re = 5000, 20,000 and 40,000). The
results show that with the increase in Reynolds number, the primary vortex size increases,
the secondary vortex size decreases, and the region of low-speed flow circulation in the
blind end increases.

Furthermore, the study of unsteady flow characteristics in bent pipes has received
significant attention. Tunstall and Harvey [18] undertook pioneering work on the un-
steady turbulent features in bends, analyzed the dynamics of Dean vortices, revealed
the frequency characteristics, and explained their origins. However, technological limi-
tations have prevented in-depth investigations on the unsteady behaviors of turbulent
flow in bends for decades until recent advancements in experimental and computational
techniques. Hellström et al. [19] indicated that the fluid motion in a 90◦ bend produced
single-vortex structures in both clockwise and anti-clockwise rotations, which deviated
from the known Dean vortices. They highlighted two dominant Strouhal numbers for the
swirl switches in order to characterize the unsteady fluid motion. Sarkodie et al. [20] and
Liu et al. [21] demonstrated unsteady vortex structures using non-intrusive optical sensors
and particle image velocimetry (PIV) experiments. Employing direct numerical simulation
(DNS), Hufnagel et al. [22] identified the swirl switch mechanism as a wave-like structure
originating from curvature. Luo et al. [23] delved into the near-wall shear stress using
Large Eddy Simulation (LES) and pointed out that the swirl switch is a primary factor
contributing to bend fatigue in oil and gas transportation.

In addressing multiphase flow characteristics and fluid–structure interactions preva-
lent in offshore oil and gas transportation processes, De Rosis and Tafuni [24] analyzed
the water-entry and water-exit phenomena using the lattice Boltzmann method (LBM)
and smooth particle hydrodynamics simulations (SPH). Li et al. [25] utilized electrical
capacitance tomography (ECT) and convolutional neural network (CNN) techniques to
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experimentally identify multiphase flow patterns within pipeline systems, achieving an
impressive accuracy rate of 97.55%.

Additionally, studies have explored flow behaviors within various junctions integral
to ocean engineering, such as T-junctions [26], Y-junctions [27], and blind tees [28]. Among
them, the T- and Y-junctions are structures with one inlet and two outlets (or two inlets
and one outlet). These are commonly used for flow diversion, merging, etc. Different
from a T-junction, a blind tee is a special bending structure with one inlet, one outlet,
and a branch that is sealed off (i.e., the blind end). It is designed to enhance fluid mixing
conditions for precise flow measurements, and the backflow formed within the blind end
aids in mixing the main flow downstream of the bend. This is widely utilized in subsea
production systems [29,30]. Previous investigations have examined the flow mechanisms
within blind-tee pipes under laminar flow conditions. Han et al. [31,32] delved into the
flow-mixing mechanisms within blind-tee pipes and analyzed the structural influences of
the blind end. Moreover, Liu et al. [33] explored the impacts of blind tees and structural
parameters on flow-mixing patterns in pipelines with multiple bends.

Despite the importance of blind tees in the industrial applications of subsea oil and gas
pipelines, research on turbulent flow characteristics in pipelines with blind tees remains
limited, and previous investigations [17,34] mainly focused on the steady-state features of
turbulent flow in blind tees. However, few studies have been conducted on the unsteady
characteristics of turbulent flow in blind-tee pipes. Moreover, as a commonly used flow-
mixing device in the offshore oil and gas industry, the mechanism of how the blind tee
enhances the flow mixing in bend pipes has still not been clearly revealed, especially
the time–frequency relationship between the flow circulation inside the blind end and the
secondary flow downstream of the bend, which significantly affects the reliability and safety
of bending structures in offshore pipeline systems. Therefore, considering the turbulence
anisotropy, this study employs the Explicit Algebraic Reynolds Stress Model (EARSM) to
further explore the unsteady characteristics of turbulent flow in blind-tee pipes. To this
end, qualitative and quantitative insights are provided into the time-averaged flow features
in a blind-tee pipe at first. Then, the oscillatory flow patterns inside and downstream
of the plugged section are captured by taking instantaneous snapshots of the flow field,
and corresponding velocity frequency spectra in the blind tee are systematically analyzed.
Ultimately, the structural influences are evaluated to achieve an optimal blind-tee structure
via comparisons in both time and frequency domains, with the expectation of developing
an in-depth understanding of their mixing mechanisms and providing references for the
optimization of the design of blind-tee pipes in offshore industrial applications.

2. Numerical Methods
2.1. Governing Equations

This study employs Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations
of continuity and momentum to model the incompressible flow within the blind-tee pipes.

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

(
ν

∂ui
∂xj

− u′
iu

′
j

)
(2)

where xi and xj denote the Cartesian coordinates in three directions (i, j = 1, 2 and 3), and
the symbols ui, uj, p, ρ, and ν are the corresponding Reynolds-averaged velocities, dynamic
pressure, density, and kinematic viscosity of the fluid, respectively. u′

iu
′
j is the Reynolds

stress tensor consisting of the fluctuating part of the velocity.
In this paper, the EARSM model is adopted to solve turbulent flow issues in blind-tee

pipes. It relates the Reynolds stress with the mean strain rate and vorticity tensors [35],
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which avoids using the Boussinesq assumption [36,37]. Accordingly, the Reynold stress
tensor term is given as follows:

u′
iu

′
j = k

(
aij +

2
3

δij

)
(3)

aij = β1Sij + β3(ΩikΩkj − 1
3 ΩklΩlkδij) + β4(SikΩkj − ΩikSkj)

+β6(SikΩklΩl j + ΩikΩklSl j − 2
3 SklΩlmΩmkδij − ΩklΩlkSij)

(4)

Sij =
1
2

τ(
∂ui
∂xj

+
∂uj

∂xi
) (5)

Ωij =
1
2

τ(
∂ui
∂xj

−
∂uj

∂xi
) (6)

τ = 1/(Cµω) (7)

where k is the turbulence kinetic energy, the indices i, j, k, l and m = 1, 2 and 3 represent
different Cartesian coordinates, δij is the Kronecker delta, aij represents the anisotropy
tensor, βi represents the coefficient of the tensor basis, ω is the turbulence dissipation rate,
and Cµ is 0.09.

In this study, the commercial software ANSYS CFX is utilized to solve governing
equations by employing the finite volume method. The spatial discretization utilizes
the total-variation-diminishing (TVD) scheme to ensure second-order accuracy, and a
fully implicit second-order backward Euler scheme is employed to handle the transient
terms [38].

2.2. Computational Setups

Figure 1 illustrates the computational domain, featuring a straight inlet section with
li = 20D and a straight downstream section with ld = 50D, where the pipe diameter D is
1 m. The blind-tee length lbt is depicted as 2D in Figure 1, which is changed from 2D to 4D
to analyze its structural effect.
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In the numerical simulations, a modified power law velocity distribution is set as the
inlet boundary condition with a normal pressure gradient of zero. The power law profile
characterizing the fully developed turbulent flow is presented as follows [39]:

u =
U

β(1, 1 + n)
(1 − (

r
R
)

2
)

1
n

(8)

where U is the average inlet velocity, β is the first kind Euler integral, n is specified as
n = 0.77ln(Re) − 3.47, R denotes the pipe radius, and r signifies the radial distance from
the center.

At the outlet of the pipe, a zero-pressure boundary is set, with a normal gradient
of zero for the velocities. All wall surfaces are designated as non-slip boundaries. Since
this study focuses on the effect of blind-tee structures on the flow-mixing mechanism, the
influences of gravity and pressure are not considered in the present stage, and the buoyancy
model in the simulation is set to be non-buoyant.

2.3. Verification and Validation

The numerical simulation’s reliability was confirmed through verification and valida-
tion processes. Firstly, the grid and time convergence analyses were conducted to determine
suitable meshing and time step strategies for the simulation. Subsequently, the numerical
method was validated against the experimental data reported by Bluestein et al. [34]

Three mesh configurations were developed to discretize the computational domain
of the blind-tee pipe at lbt = 2D and Re = 10,000. Velocity profiles from these three
meshes were extracted at the straight inlet section (x = 19.5D) and downstream section
(z = 3D), as depicted in Figure 2. The velocity distributions exhibited strong consistency
at x = 19.5D across Mesh 1 (838,576 elements), Mesh 2 (1,222,878 elements), and Mesh 3
(1,612,076 elements). The average and maximum deviations in both average and maximum
velocities did not exceed 1.1% and 5.7%, respectively. Similarly, at z = 3D, the average
deviation between Mesh 1 and Mesh 2 was 5%, whereas the deviation between Mesh 2 and
Mesh 3 was narrowed down to only 2.2%.
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Figure 2. Velocity distributions at (a) x = 19.5D and (b) z = 3D with different grid resolutions at
Re = 10,000.

Moreover, the disparity peaks at over 15% between Mesh 1 and Mesh 2, while reducing
notably to 7.3% between Mesh 2 and Mesh 3. Figure 3 illustrates the contour of y+ values
derived from Mesh 2, where the maximum y+ value remains below 5 and the average y+

value stands at a mere 2.4. This indicates substantial near-wall resolution. Hence, Mesh 2 is
deemed to offer a satisfactory grid resolution and is utilized for numerical simulations in
this investigation.
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Additionally, a time convergence analysis was executed, utilizing Mesh 2 with Courant
numbers Co of 0.3, 0.6, and 0.9. This can be expressed as follows:

Co =
1
2

∆t
∑ f

∣∣∣U f · n̂ f

∣∣∣A f

V
(9)

where ∆t represents the time step, U f · n f represents the component of velocity vector
normal to the surface of the grid, A f represents the surface area, and V is the volume of
the grid. Figure 4 displays the velocity distributions at z = 2D with Co = 0.3, 0.6 and 0.9,
showing good agreement among the three time-steps. Therefore, Mesh 2 with Co = 0.9 is
considered to have a sufficient time-step resolution.
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Figure 4. Comparison of time convergence study at z = 2D.

To further validate the credibility of the numerical model in this study, numerical
results were compared with experimental data reported by Bluestein et al. [34]. Utilizing
PIV, the experiment analyzed turbulent flow within a blind-tee channel featuring a square
cross section at Re = 11,500. For the validation process, the computational setup closely
mirrored the experimental setup, maintaining identical flow conditions. Figure 5 illustrates
the axial velocity profiles derived from both numerical simulations and experimental data
at two specific locations (0.5D upstream and 1.5D downstream from the blind tee), where
r/R is the dimensionless radial position, to illustrate the relative locations of the results in
the radial direction of the cross section. It is noteworthy that in this analysis, the RNG k-ε
model is employed alongside the EARSM turbulence model for comparison.
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Figure 5. Validations of numerical results against previous experimental data [34] at (a) 0.5D upstream
and (b) 1.5D downstream of the blind tee.

Observations reveal that at 0.5D upstream of the blind tee, numerical outcomes from
both the EARSM and RNG k-ε models generally align with the experimental data but
lean towards slightly higher values. Conversely, at 1.5D downstream of the blind tee,
the EARSM model effectively predicts the inner-side flow separation, near r/R = −0.5.
In contrast, the RNG k-ε model produces significantly higher values and fails to capture
the separation. The numerical simulation slightly overestimates velocity by 10% near the
outer-side corner (i.e., r/R = 0.5), a trend also noted by Bluestein et al. [34] and attributed to
experimental errors. Overall, results from the EARSM generally align with the experimental
data, despite the slight discrepancy near the outer-side corner. Moreover, in contrast to the
RNG k-ε model, the EARSM accurately captures near-wall flow separation using identical
grid resolution. This consistency reinforces the validation of the numerical approach
applied in this study.

In order to ensure the dynamic reliability of the EARSM model in predicting the vortex
structures, the St numbers obtained in this study are utilized for comparison with the data
from the previous studies [18,40–45]. As shown in Figure 6, the St number characterizing
the vortex switching is generally distributed in the range of 0.0002–0.13 in a range of
Re = 5000–50,000, and the St numbers for swirl-switching captured in this paper are 0.0361
and 0.0733. Therefore, it can be shown that the dynamic characteristics of the vortex
structure captured in this paper are reasonable.
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3. Results and Discussion
3.1. Time-Averaged Flow Characteristics

This section centers on time-averaged outcomes to analyze the statistical flow charac-
teristics within a blind-tee pipe at Re = 10,000 and lbt = 2D. Initially, a series of time-averaged
flow patterns is presented to provide a comprehensive view of the flow dynamics. Subse-
quently, the intensity of secondary flow and its dissipation process are evaluated to propose
potential locations for a flowmeter.

Figure 7a depicts time-averaged streamlines in the blind-tee section, emphasizing
dimensionless velocity, indicated as U/U. Most of the fluid flows downstream, with a
portion directed towards the plugged end. Downstream flow accelerates along the outer-
side corner, creating a separation zone approximately 1D–2D long near the inner-side wall.
Fluid entering the plugged section encounters obstruction from the blocked end, leading
to a slower outflow through the lower side. Consequently, circulation flow is established
throughout the entire blind-tee section. Figure 7b shows two significant features of pressure
distribution when the fluid passes through the blind tee. One is the formation of a high-
pressure zone at the blind end due to the blockage effect of the blind tee. The other is that
the fluid entering the pipeline downstream, due to the flow separation effect, produces a
more significant pressure gradient, which also directly results in the phenomenon of the
blind end of the fluid flowing back downstream.
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To illustrate the backflow dynamics within the blind-tee section, three-dimensional
streamlines representing the backflow are derived from the flow field and depicted in
Figure 8. The analysis reveals that initially, the fluid in the plugged section mainly occupies
the lower side of the pipe, eventually forming a flow cycle within this area. Subsequently,
this resulting backflow reverts towards the downstream pipe, adhering to both sides of the
wall due to the low-pressure zone near the inner-side corner. Moreover, Figure 9 presents
axial velocity contours and cross-sectional flow velocity vector fields at specific positions
(i.e., x = 20.5D, 21D, and 21.5D) to further illustrate the secondary flow patterns within the
blind-tee section.

It is observed that the flow velocity entering the plugged section is nearly twice
the velocity of backflow with opposite orientation. Additionally, the peak velocity does
not appear at the entrance but in the middle of the plugged section. According to the
cross-sectional flow velocity vector fields, most of the fluid at the upper side starts to move
downwards at x = 20D and reverses the direction at x = 21.5D. Then, the backflow accelerates
at x = 21D and forms a pair of counter-rotating vortices, illustrating the exchanging process
of the fluid in the plugged section. Finally, the fluid turns downstream and blends with the
main flow at x = 20.5D. Through the exchange of tangential momentum inside the plugged
section, it is revealed that the backflow motions enhance flow mixing.
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Subsequently, an investigation into the flow downstream of the blind-tee section is
conducted and compared with traditional 90◦ elbows. To assess the strength of the swirl
and its dissipation, the swirl intensity is employed to quantify the swirling flow in this
study, which is defines as follows [46]:

Is =

∫
[U − (U · n̂)n̂]2dA

U2∫ dA
(10)

where U is the vector of flow velocity, n̂ is the unit vector normal to the cross section, and
U is the average inlet velocity.

The curvature ratio Rc/D is commonly used to assess the bending degree of elbow
pipes, where Rc is the radius of the curvature of the bend and D is the pipe diameter.
Previous studies [6,11] have examined the dissipation of swirl intensity in 90-degree elbows
with various curvature ratios, yielding significant insights. Their analyses indicate that
the dissipation rate of swirl intensity in bent flows exhibits a weak correlation with the
Reynolds number but a strong relationship with the curvature ratio. The dissipation
equation for this phenomenon can be expressed as follows:

Is = Is0 · e−βs
ld
D (11)

where IS0 is the swirl intensity at the outlet of bend, βS is a variable indicating the dissipa-
tion rate, ld is the downstream distance from the bend outlet, and D is the diameter of the
cross section.
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The swirl intensity in a blind-tee pipe with lbt = 2D at Re = 10,000 is extracted from
the flow fields to evaluate the flow-mixing condition. According to the energy cascade
mechanism, it can be seen that the enhancement of the secondary flow at the outlet of
the blind tee promotes the breakdown of turbulent vortices, leading to the dissipation of
turbulent energy. This results in a decrease in the swirl intensity. The variation in swirl
intensity downstream of the blind tee is plotted in Figure 10 and compared with the results
of 90◦ elbow flow under various curvature ratios Rc/D, as reported by Sudo et al. [11],
Kim et al. [46] and Al-Rafai et al. [47]. It should be noted that the ordinate is given as a
logarithmic scale in Figure 10 for a clear comparison. In the 90◦ elbow, the decreasing rate
βs is nearly 0.21, with a low curvature ratio (e.g., Rc/D = 2, 3, and 3.49). This increases to
0.42 when the Rc/D is 6.975. It is found that the initial swirl-intensities Is0 for the flow in
90◦ elbows are lower than 0.1, regardless of the curvature ratio. Nonetheless, the Is0 value
characterizing flow within a blind-tee pipe is considerably higher, being approximately an
order of magnitude greater than that observed in an elbow. This emphasizes the presence
of a notably intensified secondary motion within the blind-tee configuration. Furthermore,
the decrease in the swirling flow in blind-tee pipes exhibits an exponential form with a
coefficient βs of 2.96 at the first 2D downstream, which is about 14 times higher than the 90◦

elbow. The high βs implies a strong secondary motion at a short distance downstream of the
bending, which is attributed to the combined influence of curvature and the plugged end.
Then, the swirl intensity becomes flattened after 2D downstream. The findings validate
the significant presence of a secondary flow within the blind-tee pipe and quantify the
diminishment of this secondary motion. This information holds importance as it serves as
a reference for determining the optimal location of flowmeters within submarine pipeline
systems, steering clear of regions affected by intense cross-sectional secondary flow.
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3.2. Unsteady Flow Characteristics

In this section, instantaneous flow snapshots are discussed in detail to investigate the
unsteady flow characteristics in blind-tee pipes. The oscillatory patterns can not only be
observed downstream but are also inside the plugged section. First, a series of flow-field
snapshots in blind-tee pipes with lbt = 2D at Re = 10,000 is obtained via numerical simula-
tions. Then, the instantaneous flow characteristics are revealed based on the evolutions
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of velocity distributions, Dean motions, and the iso-surfaces of vortices. Finally, spectrum
analysis is conducted to discuss the temporal features of the unsteady flow.

Using the snapshots, the unsteady flow motion downstream of the blind-tee section is
recorded. Figure 11 shows the probe time sequences of velocity from tU/D = 0 to 200 near
the inner-side and outer-side corners (i.e., r/D = ±0.25) at z = 2D. A quasi-periodic pattern
of flow can be observed through the probe signals, and the length of the period is estimated
at 12tU/D. It is found that the velocity variations at the inner-side and outer-side corners
are opposite. When the flow near the inner-side corner slows down, the outer-side flow
accelerates instead.
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To further study the temporal evolution of secondary flow downstream of the plugged
section, the cross-sectional streamlines at z = 1D and 2D in one oscillatory period (i.e.,
t0U/D = 147, t1U/D = 150, t2U/D = 153, t3U/D = 156, t4U/D = 159, t5U/D = 162,
t6U/D = 165, t7U/D = 168, t8U/D = 171) are displayed in Figure 12. It is worth noting
that the streamlines are colored by the nondimensional tangential velocity

Utz /U = (u2 + v2)
1
2 /U. At z = 1D, oscillatory features can be observed based on the

evolution of Dean vortices: the main pair of Dean vortices rotates nearly 60 degrees clock-
wise in the first three time intervals (i.e., t0U/D to t3U/D), and then quickly resets to the
initial position in one time interval (i.e., t3U/D to t4U/D). Subsequently, the flow repeats
this process anticlockwise in the next half time series (i.e., t4U/D to t8U/D), revealing an
oscillatory manner. Additionally, the strength of Dean vortices also displays a periodic
manner. The tangential velocities indicate that, within one period, one of the Dean vortices
is suppressed and its opposite is enhanced. The enhancing-suppressing alternation of the
Dean vortices was also reported by Hellström et al. [19] in a curved channel. At z = 2D, the
dynamics of Dean motions show a different pattern. Compared with that at z = 1D, the
size of the vortex becomes larger. Furthermore, the magnitude of the tangential velocity is
almost reduced by half, and a triple of vortices is observed with a low tangential velocity
magnitude. The differences may be attributed to the rapid decrease in the swirl intensity
revealed in Section 3.1.
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Figure 12. Instantaneous secondary flow at z = 1D and 2D.

Then, the probe time sequences of the velocity at x = 21D are shown in Figure 13
to demonstrate the unsteady properties of flow inside the plugged end. It is found that
the amplitude of the velocity fluctuation inside the plugged section is much lower than
that of the downstream pipe. Still, the oscillatory pattern in the plugged section can be
clearly observed.
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The cross-sectional streamlines of secondary flow inside the plugged section (i.e.,
x = 20.5D) are shown in Figure 14, colored by nondimensional tangential velocity

Utx /U = (w2 + v2)
1
2 /U. It is observed that a single vortex is generated in the period

of the first to third time intervals (i.e., t0U/D to t3U/D), moves from the pipe wall to the
center, and then dissipates rapidly in the next time interval. Meanwhile, a weak vortex
appears on the opposite side, and repeats the same process. The vortices from both sides
of the pipe wall develop in an alternative manner inside the blind-tee section. After eight
time intervals, the structure of secondary flow returns to the initial state, indicating that the
secondary flow inside the plugged section also exhibits a periodic motion.
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To clearly reveal this unsteady flow pattern both inside and downstream of the plugged
section, Figure 15 shows the instantaneous vortex structures identified by Q-criterion [48],
which can be expressed as Q= (Ω2 − S2). Here, Ω and S are the rotation and strain
tensor, respectively. The nondimensional iso-surface Q∗ = QD2/U2

= 30 is employed. It
should be noted that the iso-surface of Q* is colored by the positive and negative value of
y coordinate in order to display the change in the spatial location of vortex more clearly.
Furthermore, the additional contours of Q* in the cross section at z = 1D are shown in the
red square frame, and the corresponding color map is displayed on the right. At t0U/D,
a quasi-symmetric vortex structure can be observed both inside and downstream of the
plugged section. Then, the vortex in the -y direction is suppressed, and the opposite in
the +y direction is enhanced in the following three time intervals (i.e., t0U/D to t3U/D).
Therefore, a deflection of the dominant vortex can be found in this process. Moreover,
the vortex structure near the bending part deflects first, followed by the latter part of the
whole structure. Then, the oblique vortex structure resets to the symmetry in the next time
interval (i.e., t3U/D to t4U/D). Hence, it is concluded that the dominant vortex alternates
every four time intervals. For the vortex structure inside the plugged section, the oscillation
manner is quite similar to that of the downstream flow. This phenomenon implies that the
plugged end structure may contribute to the oscillatory manner of flow in the blind-tee
pipe, and this will be further discussed in the next section.
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To further investigate the oscillatory behavior of the turbulent flow inside the blind-tee
pipe, power spectra analyses of the tangential velocities probe data at r/D = 0.25 were
conducted on the symmetric lines at a sampling frequency of St = 1. Figure 16 shows the
frequency spectra of the tangential velocity from z = 1D to 4D with lbt = 2D at Re = 10,000.
It can be seen at z = 1D that the peak value of power spectra density (PSD) corresponds
to a Strouhal number of 0.0361. Hence, Stbt = fbt · D/U = 0.0361 is considered to be
the dominant frequency of the oscillatory phenomenon. When the value at the sampling
position increases to z = 2D, the energy at the lowest frequency decreases rapidly, and the
second harmonic St = 0.0733 dominates the flow. Then, the contribution of the second
harmonic decreases in the next 2D length. At z = 3D, the flow is dominated by the third and
fourth harmonics at St = 0.113 and 0.149. Therefore, it is concluded that the dominant part
of the spectrum moves from a low frequency to a high frequency with the increase in z/D.
Moreover, both low- and high-frequency components make equal contributions to the flow
further downstream (e.g., z ≥ 3D), while the spectrum at z = 1D is concentrated in the two
lowest frequencies. The change in the dominant frequency may be due to the dissipation of
the large-scale vortices, which is also revealed in the evolution of Dean motions, shown in
Figure 12.
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As a comparison, the frequency spectra of the tangential velocities probe data at
selected position inside the section (i.e., r/D = 0.25 on the symmetric line from x = 20.5D to
21.5D) are given in Figure 17. The spectra indicate that Stbt = 0.0361 is also the dominant
Strouhal number characterizing the unsteady flow inside blind-tee section revealing a
strong correlation between the flow inside and downstream of the plugged section. In
addition, the second and third harmonics St = 0.0733 and 0.113 also contribute to the flow
inside the plugged section. Compared with the study on turbulent flow in a sharp bend
(i.e., lbt = 0) by Tunstall and Harvey [18] the Strouhal number Stbt = 0.0361 of the oscillatory
phenomena in blind-tee pipes is much higher than the value in a sharp bend, which shows
a stronger swirl switching process. Therefore, it is concluded that the plugged end structure
contributes to the oscillatory patterns by enhancing the flow-mixing conditions. This
structural effect will be further discussed in Section 3.3.
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3.3. Structural Effect

This section investigates the influence of blind-tee length (lbt) on the flow characteristics
within the blind-tee pipe. Illustrated in Figure 18 are the time-averaged streamlines of
the symmetry plane for lbt = 3D and 4D. Compared with the streamlines with lbt = 2D,
shown in Figure 7, an additional flow circulation is observed near the plugged end in
Figure 18a, induced by a bifurcation near the middle of the plugged section. This additional
flow circulation exhibits relatively minor velocity and opposes the main circulation. The
main circulation spans approximately 2D in length, while the supplementary circulation
encompasses only about 1D in length. With lbt increasing to 4D, a third flow circulation
occurs near the end corner with low velocity. Furthermore, the downstream flow of blind-
tee sections in Figure 18a,b appears to be similar despite the different blind-tee lengths. This
similarity arises because the flow near the plugged end is nearly stagnant, implying that
the extra two flow circulations with low velocity have little influence on the downstream
flow field. In other words, the effective length of the blind tee is less than 3D.

To explore how the lbt affects unsteady flow dynamics, Figure 19 depicts the frequency
spectra of tangential velocity downstream from z = 1D to 4D, considering lbt = 2D, 3D,
and 4D. It is worth noting that the downstream distances are separated by the line types
and the different blind-tee structures are separated by the colors. For lbt = 3D and 4D, the
dominant frequencies are the same (i.e., Stbt3D = Stbt4D = 0.0258), but lower than that in
lbt = 2D. Therefore, the periodic length of the oscillatory pattern in lbt = 3D and 4D is longer
than that in lbt = 2D. With the increase in z/D, the second and third harmonic dominate the
unsteady flow. Moreover, it can be observed that the frequency spectra from z = 1D to 4D
with lbt = 3D and 4D are very similar, indicating the analogous oscillatory process.
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Subsequently, the frequency spectra of tangential velocity inside the plugged section
are plotted in Figure 20. Due to the different plugged section lengths, the detected positions
are from x = 20.5D to 21.5D, from 20.5D to 22.5D and from 20.5D to 23.5D in lbt = 2D,
3D and 4D, respectively. The frequency spectra of lbt = 3D and 4D are very similar, and
the dominant frequencies are both 0.0258, which are lower than those of lbt = 2D. It is
found that the second harmonic (i.e., 2Stbt3D = 2Stbt4D = 0.0567) dominates the flow at
the entrance of plugged sections (i.e., x = 20.5D) in lbt = 3D and 4D. Then, it decreases to
0.0258 in the next 2D, indicating a lower-frequency motion as the flow approaches the
plugged end. Furthermore, near the plugged end in lbt = 4D (i.e., x = 23D to 23.5D), the
unsteady phenomenon disappears. It means that the fluid exchange near the plugged
end in lbt = 4D is suppressed. Compared to the configurations with lbt = 3D and 4D, the
blind-tee section with a length of 2D demonstrates notably stronger tangential momentum.
Moreover, the oscillatory patterns observed inside the blind-tee section of lbt = 2D appear
more pronounced than those in the other two cases.

To sum up, the increasing blind-tee section (i.e., lbt ≥ 3D) may not influence the
downstream flow behaviors, which is consistent with the time-averaged results. The
lbt = 2D is considered to provide a beneficial mixing condition, which is suggested for use
in the design of blind-tee structures.
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4. Conclusions

In this study, numerical simulations are employed to scrutinize turbulent flow charac-
teristics within blind-tee pipes, a vital component of ocean engineering systems. Initially,
a comprehensive analysis of time-averaged flow in a specific blind-tee pipe is conducted,
employing streamlines and vector fields to depict average flow behaviors. Moreover,
the decrease in swirl intensity is extracted from the flow fields and compared with the
90◦ bend flow data derived from the published literature, thus providing valuable in-
sights. Subsequently, unsteady flow characteristics are systematically investigated through
time–frequency domain analysis on a series of flow-field snapshots, revealing oscillating
flow motions inside and downstream of the plugged section. Additionally, the influence
of blind-tee length is discussed, leading to the identification of an optimized structure for
enhanced flow mixing. In conclusion, this study sheds light on critical aspects of turbulent
flow within blind-tee pipes, offering valuable insights for the design and optimization of
ocean engineering systems.

(1) The analysis of the time-averaged flow field reveals a flow cycle, occupying the
entire plugged section. Backflow originating from the plugged end generates opposing
rotating vortices, thereby enhancing fluid exchange within the blind tee. Downstream flow
exhibits an initial swirl intensity which is significantly higher than that observed in a 90◦

elbow, indicating favorable fluid exchange conditions in the blind-tee pipe. Enhancing
the secondary flows at the outlet of a blind tee promotes the breakdown of turbulent
vortices, leading to the dissipation of turbulent energy. Hence, the decreasing rate of swirl
intensity varies exponentially within the 2D length downstream of the blind-tee section,
being approximately 14 times higher than that in the 90◦elbow. However, this decreasing
rate rapidly decreases when Ld > 2D. Consequently, to avoid the violent swirl region,
it is recommended to place the flowmeter after a downstream distance of 2D from the
plugged section.

(2) The oscillatory manners of turbulent flow in the blind-tee pipe with lbt = 2D are re-
vealed to enhance the flow-mixing condition, and the periodic Dean motions are displayed
using snapshots of secondary flows. Furthermore, the nondimensional dominant frequency
is obtained as Stbt = 0.0361, both inside and downstream of the plugged section. This is ten
times higher than that of the sharp-bent flow (i.e., lbt = 0D). It indicates that the oscillatory
patterns between the flows inside and downstream of the blind-tee section are highly
related, and the plugged end structure is a critical factor in the oscillatory movements.

(3) Structural modifications result in additional low-speed flow circulations near the
plugged end when the blind-tee length surpasses 3D. However, despite further increases
in blind-tee length, flow behaviors remain relatively consistent. This suggests that the
effective length of the blind tee, significantly influencing downstream flow, is limited to
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no more than 3D. The comparison of power spectra indicates that turbulent flow within
the blind tee at 2D length achieves a higher dominant frequency, offering more favorable
flow-mixing conditions.

This study develops an in-depth understanding of the mixing mechanism of turbulent
flow inside blind tees, illustrates the unsteady flow characteristics, and explores the time–
frequency relationship between the flow circulation inside the blind end and the secondary
flow downstream of the bend. The results of this paper provide new insights and ideas
regarding the mixing effects and flow control methods of bending structures in offshore oil
and gas pipeline systems.
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37. Louda, P.; Kozel, K.; Příhoda, J.; Beneš, L.; Kopáček, T. Numerical solution of incompressible flow through branched channels.
Comput. Fluids 2011, 46, 318–324. [CrossRef]

38. ANSYS Inc. ANSYS CFX-Solver Guide, 2012. Release 14.5; ANSYS Inc.: Canonsburg, PA, USA, 2012.
39. Salama, A. Velocity Profile Representation for Fully Developed Turbulent Flows in Pipes: A Modified Power Law. Fluids 2021,

6, 369. [CrossRef]
40. Brücker, C. A time-recording DPIV-study of the swirl switching effect in a 90◦ bend flow. In Proceedings of the Eight International

Symposium on Flow Visualization, Sorrento, Italy, 1–4 September 1998; pp. 171.1–171.6.
41. Rütten, F.; Schröder, W.; Meinke, M. Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe

bend flows. Phys. Fluids 2005, 17, 035107. [CrossRef]
42. Kalpakli, A.; Örlü, R. Turbulent pipe flow downstream a 90◦ pipe bend with and without superimposed swirl. Int. J. Heat Fluid

Flow 2013, 41, 103–111. [CrossRef]
43. Kalpakli Vester, A.; Örlü, R.; Alfredsson, P.H. POD analysis of the turbulent flow downstream a mild and sharp bend. Exp. Fluids

2015, 56, 57. [CrossRef]
44. Carlsson, C.; Alenius, E.; Fuchs, L. Swirl switching in turbulent flow through 90◦ pipe bends. Phys. Fluids 2015, 27, 085112.

[CrossRef]
45. Noorani, A.; Schlatter, P. Swirl-switching phenomenon in turbulent flow through toroidal pipes. Int. J. Heat Fluid Flow 2016, 61,

108–116. [CrossRef]
46. Kim, J.; Yadav, M.; Kim, S. Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Eng. Appl.

Comput. Fluid Mech. 2014, 8, 229–239. [CrossRef]

https://doi.org/10.1017/S0022112068002107
https://doi.org/10.1017/jfm.2013.534
https://doi.org/10.1016/j.jgsce.2023.204948
https://doi.org/10.1016/j.jgsce.2023.205086
https://doi.org/10.1016/j.jgsce.2023.205115
https://doi.org/10.1111/mice.12651
https://doi.org/10.1016/j.oceaneng.2022.113152
https://doi.org/10.1016/j.rser.2022.112742
https://doi.org/10.1016/j.jiec.2022.04.034
https://doi.org/10.1016/j.flowmeasinst.2021.101961
https://doi.org/10.3390/app13137504
https://doi.org/10.1016/j.oceaneng.2020.107962
https://doi.org/10.1080/19942060.2022.2093275
https://doi.org/10.1016/j.oceaneng.2023.115909
https://doi.org/10.1115/1.4042256
https://doi.org/10.1063/5.0152154
https://doi.org/10.1016/j.compfluid.2010.12.003
https://doi.org/10.3390/fluids6100369
https://doi.org/10.1063/1.1852573
https://doi.org/10.1016/j.ijheatfluidflow.2013.01.003
https://doi.org/10.1007/s00348-015-1926-6
https://doi.org/10.1063/1.4928971
https://doi.org/10.1016/j.ijheatfluidflow.2016.05.021
https://doi.org/10.1080/19942060.2014.11015509


J. Mar. Sci. Eng. 2024, 12, 1199 20 of 20

47. Al-Rafai, W.N.; Tridimas, Y.D.; Woolley, N.H. A study of turbulent flows in pipe bends. Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng.
Sci. 1990, 204, 399–408. [CrossRef]
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