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Abstract: The Rosin–Rammler function is used in this paper to model the diameter distribution
of sand particles. It investigates the characteristics of sand distribution and identifies the primary
factors contributing to wear on flow components in a blade-type multiphase pump, considering
varying particle sizes. The result of research shows that the blade head of the impeller and the middle
section of the flow passage in the diffuser domain represent primary areas prone to sand particle
accumulation. The concentration of sand particles within the diffuser surpasses that within the
impeller, yet wear severity and extent are more pronounced in the impeller domain compared to
the diffuser domain. Meanwhile, the movement trajectory of sand particles is linked to both shear
flow and vortex flow. The wear of the front section of the impeller blade is more severe than the
second half. On the pressure surface of the blade, particle Reynolds number emerges as a primary
factor influencing wear, while on the suction surface, sand particle concentration plays a dominant
role in determining wear. The particle concentration in the diffuser domain is the primary factor
influencing wear on both the suction and pressure surfaces. The wear rate in the impeller is primarily
influenced by the sand particle Reynolds number, whereas the wear rate in the diffuser domain is
affected by a combination of sand particle diameter, sand particle concentration, and sand particle
Reynolds number. The research findings possess significant engineering value in terms of enhancing
the operational lifespan of multiphase pumps.

Keywords: multiphase pump; sand movement; flow field distribution; wear causes

1. Introduction

Multiphase pumps are utilized in the oil extraction industry for centralized conveying,
providing a cost-effective and efficient method of transportation. The crude oil obtained
from underground reservoirs contains a certain mass proportion of sand particles, which
can result in significant abrasion on the components involved in fluid machinery operation.

Scholars have conducted numerous experimental studies on the wear in fluid machin-
ery and have determined that the primary source of wear in fluid machinery is attributed
to the motion of solid phases. The primary approach to investigating the motion of solid
phases is through conducting flow visualization experiments [1,2]. The velocity of solid par-
ticles was captured through ultrasonic velocimetry [3], particle image velocimetry (PIV) [4],
phase doppler particle analyzer (PDPA) [5], and high-speed photography [6]. Simulta-
neously, the experimental investigation also emphasizes the trajectory [7,8] of particle
movement and their distribution within the flow passage [9,10]. The factors contributing to
wear on parts in the development of wear tests typically encompass particle size, particle
shape, and particle concentration [11–13]. The surface wear of the part can be quantified
using a non-contact laser contour instrument [14], which enables precise measurement of
both the shape and extent of material loss. Additionally, the paint film method [15] can be
employed to visually indicate the location of wear. The dynamic evolution of wear sites was
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investigated by Fujisawa et al. [16] through an experimental study on the erosion process
induced by the continuous impact of a jet flow using a water jet device. Additionally,
Wang et al. [17] conducted model tests on Invar 36 alloy and Si3N4 ceramic balls, thereby
supplementing the tribological data of these materials under varying temperatures and
loads. This study provides fundamental data for more-precise wear experiments. The
feasibility of incorporating diamond-like carbon (DLC) coatings in pumps was assessed by
Bueno et al. [18] through the execution of wear and erosion tests. Luo et al. [19] investigated
the impact of surface coating thickness on the performance of a solid–liquid two-phase flow
centrifugal pump and observed that an increase in coating thickness resulted in a reduction
in pump lift and efficiency, while concurrently leading to elevated pressure fluctuations and
radial forces within the pump. Through well-designed model tests, accurate and effective
data can be obtained; however, this approach necessitates a substantial investment of both
time and resources. With the advancement of computational fluid dynamics theory and
simulation technology, numerical simulation methods have become prevalent in the field
of solid–liquid flow and wear analysis.

The Euler–Euler method and Euler–Lagrange method are commonly employed in
simulation calculations to investigate the dynamics of solid–liquid two-phase flows. In the
context of the Euler–Euler method, the simulation of solid phase flow can be achieved by
employing either the non-uniform model [20] in CFX or the multiphase flow model [21] in
Fluent. In the context of the Euler–Lagrange method, three methodologies can be employed,
namely, the discrete phase model (DPM) [22], the dense discrete phase model (DDPM) [23],
and the discrete element method (DEM) [24]. The Fluent 16.0 software, however, offers
a limited range of conventional DEM calculation functions, thereby limiting its ability
to perform comprehensive particle collision calculations. To overcome this limitation,
the EDEM software can be integrated to enhance the accuracy and completeness of such
calculations [25]. First, in the investigation of the solid–liquid two-phase flow’s flow field,
it has been observed that the presence of the solid phase exerts a discernible influence on
both the lift and efficiency of fluid machinery [26,27], thereby further impacting energy
conversion within the flow passage [28]. Simultaneously, within the context of solid–liquid
two-phase flow, the impact of solid particles against surfaces results in the dissipation of
energy and induces varying degrees of abrasion. In this context, Tang et al. [29] investigated
the influence of particle size and shape on the impact force exerted on the component
surface in a single-channel pump during solid–liquid flow. Gu et al. [30] also investigated
the impact of solid particle concentration on centrifugal pump characteristics and the
drag reduction characteristics of impellers on non-smooth surfaces. They observed that
incorporating pits in the layout of non-smooth surfaces resulted in enhanced drag reduction
effects, thereby effectively improving pump performance during the conveyance of solid–
liquid mixtures. Additionally, the non-smooth blade model was developed based on the
principles of bionics. The performance of the blade model closely resembled that of the
prototype blade, while exhibiting an enhanced wear resistance on its surface [31]. The
cavitation phenomenon under the gas–solid–liquid three-phase flow has been investigated
by other scholars [32], while Zhang et al. [33] conducted an analysis on the impact of gas
phase distribution on internal wear in centrifugal pumps. Based on a study investigating the
impact of coating thickness on solid–liquid two-phase flow [19], Tao et al. [34] examined the
influence of blade thickness on solid–liquid two-phase flow and impeller wear in a ceramic
centrifugal pulp pump. They discovered that increasing the blade thickness reduced wear
at the leading edge and pressure side of the impeller blade but exacerbated wear at the
suction side. In order to validate the accuracy of simulation calculations, simplified model
tests are commonly employed in conjunction with simulation results in the literature. For
instance, Peng et al. [35] verified the wear location predicted by simulation calculations
through wear experiments while investigating solid phase distribution and velocity in
centrifugal pumps under varying particle concentrations.

The literature reviewed reveals a significant number of studies on solid two-phase flow
in conventional pumps; however, no reports have been found regarding the investigation of
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blade multiphase mixed-flow pumps. Based on the aforementioned literature review, this
study investigates the solid–liquid two-phase flow in a blade-type multiphase pump using
the discrete phase model, with the objective of analyzing the distribution characteristics of
sand particles within the pump’s flow passage, exploring the impact of vortices on sand
distribution, and qualitatively and quantitatively analyzing key factors influencing wear in
multiphase pumps.

2. Physical Model and Calculation Method
2.1. Model and Meshing
2.1.1. Physical Model

The model in Figure 1 is a blade multiphase pump independently designed by Xihua
University, and its main components include a suction chamber, an impeller, a diffuser,
and a squeeze chamber. As the pump is an axial multistage type, each stage has the same
structure and similar flow, and the main parameters of the pump are shown in Table 1.
Taking the first stage of the multistage pump for calculation, the fluid domain is shown in
Figure 2. In order to ensure the full development of the flow at the inlet and outlet of the
booster unit, the length of the inlet section is three times that of the compress unit, and the
length of the outlet section is six times that of the compress unit. The entire fluid domain
model is divided into four parts: inlet section, impeller, diffuser, and outlet section.
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Table 1. Parameters of multiphase pump.

Parameters Symbol Value Unit

Volume flow rate Q 200 m3/h
Rotate speed n 2980 r/min

Lift H 30 m
Impeller diameter DI 234 mm
Diffuser diameter DD 234 mm

Number of impellers BI 3 —
Number of diffusers BD 11 —
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2.1.2. Meshing

When the finite element method is applied, the partial differential equation is trans-
formed into an equivalent integral form. In this study, the inlet section and outlet section are
divided into structural grids using ICEM 16.0 software, while the impeller and diffuser are
divided into structural grids using TurboGrid software. The mesh types are all hexahedral-
structured meshes. In order to ensure the quality of the near-wall domain’s boundary layer
mesh, an encryption technique is employed while adopting an O-type topology around the
blades. The corresponding mesh configuration is illustrated in Figure 3. The fluid domain
models were created in six different sets, each with varying grid numbers. Following the
verification of grid independence, Figure 4 presents the pump head and the corresponding
grid number for the simulation domain. The numerical simulation results demonstrate
that the head of the multiphase pump is minimally influenced by the number of grids.
Considering both calculation accuracy and efficiency, this study employs the fourth set of
grids for simulation calculations.
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2.2. Numerical Simulation Method
2.2.1. Continuous Phase Control Equation

In this paper, Fluent software is used to simulate the calculation. The continuous
phase flow medium studied in this paper includes crude oil and water. The mixture model
regards multiphase flow as a mixture of various phases after mixing. The actual crude oil
is also an oil–water emulsion, and the interaction between phases is not clear. Using the
mixture model to simulate the oil–water flow conforms to the flow law. When solving the
oil–water mixture in the mixing model, the velocity slip and volume force are considered,
and the heterogeneous model is used to solve the problem.
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The expression of the oil–water two-phase continuity equation is as follows:

∂ρm

∂t
+∇ · (ρmum) = 0. (1)

In the formula, ρm is the mixing density and um is the average mass velocity.

ρm = αoilρoil + αwaterρwater (2)

um =
αoilρoiluoil + αwaterρwateruwater

ρm
(3)

In the formula, αoil and αwater are the volume fractions of crude oil and water, respec-
tively, ρoil and ρwater are the density of crude oil and water, respectively, and uoil and uwater
are the average mass velocity of crude oil and water, respectively.

2.2.2. Discrete Phase Governing Equations

The DPM model is classified as a Euler–Lagrange calculation method, commonly
employed in solving fluid flow problems involving particles, and it is particularly suitable
for working conditions with particle concentrations of 10% or less. The calculation of
particle trajectory in the DPM model adheres to Newton’s second law. The formula for
calculating particle trajectory and its corresponding force is presented as follows:

mp
dup

dt
= FD + FB + F, (4)

F = FVM + FP + FR + FM + FS, (5)

where the subscript p denotes the particle parameter, mp is the mass of the particle, up is the
particle velocity, FD is the drag force, FB is the buoyancy caused by gravity, F is the forces
on the particle other than the drag force and the buoyancy caused by gravity, FVM is the
virtual mass force, Fp is the pressure gradient force, FR is the Coriolis force and centrifugal
force in the rotating system, FM is the Magnus lift force, and FS is the Saffman lift force.

In the two-phase flow field, the discrete phase will produce slip velocity vslip in the
continuous phase. The calculation formula is as follows:

vslip = v f − vp. (6)

In the formula, vf is the fluid velocity and vp is the particle velocity.
During the movement of the particles, the trajectory is most affected by the drag force.

The calculation formula is as follows:

FD = mp
vslip

τr
. (7)

In the formula, the subscript f represents the parameters of the fluid, u is the speed,
and τr is the particle relaxation time.

τr =
ρpd2

p

18µ f

24
CDRep

(8)

ReP =
ρ f dp

∣∣∣vslip

∣∣∣
µ f

(9)

In the formula, ρ is the density, dp is the particle diameter, µf is fluid dynamic viscosity,
Rep is the particle Reynolds number, and CD is the drag coefficient.
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In this paper, the shape of the particle is regarded as a sphere, and the calculation
formula of the drag coefficient proposed by Morsi and Alexander is adopted. The drag
coefficient is as follows:

CD = a1 +
a2

Rep
+

a3

Re2
p

. (10)

In the formula, a1, a2, and a3 are empirical constants, using Morsi’s recommended values.
The buoyancy caused by the gravity of the particles is calculated as follows:

FB = mp

(
1 −

ρ f

ρp

)
g. (11)

In the formula, g is the acceleration of gravity.
The virtual mass force comes from the relative acceleration motion between fluid and

particles, which can be expressed as follows:

FVM = CVMm f

(du f

dt
−

dup

dt

)
. (12)

In the formula, CVM is the virtual mass coefficient, taking 0.5.
Due to the uneven distribution of pressure in the flow field, there is a pressure differ-

ence on the surface of the particles, resulting in a pressure gradient force:

FP = mp
ρ f

ρp
up∇u f . (13)

In rotating machinery, there must be Coriolis force and centrifugal force on the particles.
The calculation formula is as follows:

FR = mp
(
−2ω × up − ω × ω × rp

)
. (14)

In the formula, ω is the relative angular velocity between particles and fluid, and rp is
the set vector from the particle to the coordinate origin.

When a particle moves in a flow field with a velocity gradient, the particle rotates
around its center of mass due to the velocity gradient, and a Magnus lift is generated.
When the velocity gradient is perpendicular to the movement direction of the particles, the
particles will be affected by the Saffman lift. The calculation formulas of the two forces are
as follows:

FM =
1
2

ApCMρ f

∣∣∣vslip

∣∣∣
|ω|

[
vslip × ω

]
, (15)

FS = KS4r2
pρ f

∣∣∣∣ν f
∂Vf i

∂xi

∣∣∣∣
1
2 (

Vf i − Vpi

)
sgn
(

∂Vf i

∂xi

)
. (16)

In the formula, Ap is the projection area of particles, CM is the rotational lift coefficient,
KS is the empirical coefficient, and sgn is a symbol function.

2.2.3. Wear Model and Rosin–Rammler Method

The wear of the multiphase pump surface is predicted using the Oka wear model. The
Oka model expresses the wear rate as follows:

E = E90

(
V

Vre f

)k2
(

d
dre f

)k3

f (γ), (17)

where E90 is the impact wear rate of particles at 90◦, V is the impact velocity of particles,
Vref is the reference velocity, d and dref are the particle diameter and the particle reference
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diameter, k2 and k3 are the model velocity constant and the model diameter constant, and
f(γ) is the impact angle function.

The calculation formula of impact angle function is as follows:

f (γ) = (sin γ)n1(1 + HV(1 − sin γ))n2 , (18)

where γ is the wall impact angle, HV is the Vickers hardness of wall material, and n1 and
n2 are model constants.

The coefficients in the Oka model exhibit variations, catering to different wear pre-
diction scenarios. Specifically, for the erosion of steel particles, Table 2 presents the corre-
sponding coefficient values.

Table 2. Constants of wear formula.

C Sand-Steel C Sand-Steel

E90 6.154 × 10−4 k2 2.35
HV 1.8 (GPa) k3 0.19
n1 0.8 Vre f 326 (µm)
n2 1.3 dre f 104 (m/s)

In order to account for the influence of particles with varying diameters in the calcu-
lation, we have employed the Rosin–Rammler (RR) method to characterize the diameter
distribution of particles at the inlet of the multiphase mixed transport pump. The mathemat-
ical expression for describing particle diameter distribution using RR method is as follows:

Yd = e−(d/d)
n
, (19)

where Yd is the mass fraction, d is the particle diameter, d is the average particle diameter, n
is the diameter distribution index, and e is a constant.

The particle diameter distribution of this paper was determined using the RR method
and is presented in Table 3.

Table 3. Particle diameter distribution.

Parameters Value Unit Parameters Value Unit

Max diameter 5 mm Mean diameter 0.4 mm
Min diameter 6.5 × 10−2 mm n 2.53

2.3. Boundary Conditions

The Z-axis negative gravity acceleration is set to 9.81 m/s2 in this study. The SST k-ω
model is chosen as the turbulence model. The flow passage wall is considered as a non-slip
boundary condition. The inlet boundary condition is specified as the speed inlet, and the
outlet boundary condition is defined as the pressure outlet. The impeller speed is fixed
at 2980 r/min, and the frozen rotor model utilizing the intersection of dynamic and static
computing domains is employed.

The coupling solution is established between the discrete and continuous phases,
taking into account their interaction. A circular boundary at the inlet section is chosen
as the particle incident source, ensuring uniform injection of particles into the flow field
from each grid unit’s normal vertical direction on the incident surface. The Ipc varies
from 0.1% to 10% across ten operational conditions. The incident velocity of the particle is
adjusted to match the inlet flow velocity. The particle material is chosen as quartz sand,
characterized by a density of 2650 kg/m3. The density ratio of solid particles to continuous
phase medium is about 2.685. The inlet and outlet surfaces of the multiphase pump are
designated as “Escape”, while the wall surfaces of the flowing parts are referred to as
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“Reflect”. The calculation of solid–liquid two-phase flow commences by utilizing the stable
flow field of fluid flow as the initial state.

Considering the interaction between particles and walls, we adopted the particle-wall
collision model proposed by Pagalthivarthi. The recovery coefficients for normal and
tangential directions after impact were expressed as polynomial functions of impact angles,
with specific formulas presented as follows:

en = 0.993 − 0.0307γ + 0.000475γ2 − 0.00000261γ3, (20)

et = 0.998 − 0.029γ + 0.000643γ2 − 0.00000356γ3, (21)

where en represents the normal recovery coefficient and et denotes the tangential recov-
ery coefficient.

3. Experimental Study
3.1. Multiphase Pump Test Bench

The external characteristics of the multiphase pump were tested in the pump testing
center of Zigong Industrial Pump Factory. The test system employed a pressure transmitter
to measure the inlet and outlet pressures, a flowmeter to measure the pump’s flow rate, a
speedometer to measure its rotational speed, and a three-phase power meter to measure
shaft power. The specific instrument accuracy is detailed in Table 4. The test device used
was a four-stage multiphase pump. Since the solid phase content has minimal impact
compared to the liquid phase, pure water was chosen as the test medium. Figure 5
illustrates the setup of the external characteristics test system.

Table 4. Testing the accuracy of the instrument.

Instrument Range precision Unit

Inlet pressure gage −0.1~0.25 ±0.02% MPa
Outlet pressure gage 0~4 ±0.06% MPa

Flow meter 0~380 ±0.2% m3/h
Tachometer 20~33,000 ±0.03% rpm
Torquemeter 0~800 ±0.2% N·m
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3.2. Test Result

To ensure the accuracy of the selected research method, experimental testing and
verification of the chosen numerical calculation method is conducted prior to formal
calculations. The test measurement results for external characteristics are compared with
corresponding simulation results, as depicted in Figure 6. As shown in Figure 6, under
design conditions, the multiphase pump exhibits a lift of 158 m and an efficiency of 43%,
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meeting design requirements. Additionally, external characteristic simulation results for
the multiphase pump at flow rates equivalent to 0.7 times and 1.1 times rated flow exhibit
similarity to the test results with small overall error near the rated flow, thus indicating
the high reliability of the numerical research method selected for further subsequent
content investigation.
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3.3. Wear Model Validation

Due to the high cost associated with conducting the medium erosion test under inves-
tigation in this study, several scholars have previously conducted relevant experimental
verification on the computational accuracy of the OKA model (Remo et al. [36]). The test
system for jet wear tests is shown in Figure 7 below. In the slurry used in the test, it is
guaranteed that the particle impact speed is 25 m/s, the particle concentration is 1%, the
particle shape is uniform, and the diameter is 1 mm. In the literature, the erosion rate is
expressed by the normalized erosion rate:

Rnorm = Q/(Vs × A), (22)

where Q is the volume flow rate (m3/s), Vs is the particle impact velocity, and A is the
apparent erosion area of the sample. The square sample size in the jet test device is
25 mm × 25 mm, the height is fixed, and the impact Angle can be controlled between 15◦

and 90◦. The diameter of the nozzle is 4 mm, and the distance between the nozzle and the
sample is 25 mm (see Figure 8).
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Figures 8 and 9 present results obtained from both jet wear testing and Fluent sim-
ulation calculations, illustrating erosion patterns as well as normalized erosion rates on
specimen surfaces. As shown in Figure 8, the simulated wear shape and area highly
coincide with experimental results, indicating that numerical calculation methods can
effectively reflect actual particle impacts. Furthermore, in Figure 9, it can be observed that



J. Mar. Sci. Eng. 2024, 12, 1203 10 of 24

as impact angle increases, the normalized erosion rate initially rises until reaching its maxi-
mum value before subsequently decreasing towards stability. A comprehensive analysis
comparing quantitative outcomes derived from tests and simulations reveals prediction
errors ranging between 0.56% and 23.33%.
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4. Sand Particle Distribution inside Multiphase Pump
4.1. The Effect of Sand Concentration on Sand Distribution

The increase in inlet sand particle concentration corresponds to an increase in the
number of sand particles entering the pump passage per unit of time, which directly
influences the quantity and distribution of sand particles within the passage. To analyze the
impact of inlet sand particle concentration on sand particle distribution, we examined the
cloud map depicting sand particle mass concentration at 0.5 times the blade height under
various conditions (Figure 10). The increase in sand concentration leads to a significant
rise in the sand concentration within the flow channel of the multiphase pump. The blade
head of the impeller and the central region of the diffuser area are the primary sites for
the accumulation of sand particles. The black box in Figure 10 reveals a region of reduced
sand concentration situated within the impeller domain. The relationship curve between
different sand concentrations and sand mass in the flow passage is depicted in Figure 11. It
can be observed that the diffuser contains a higher number of sand particles compared to
the impeller across all concentrations.
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4.2. The Spatial Distribution of Sand Particles within the Impeller Domain

In order to visually represent the sand particle distribution within the passage, we
initially selected the impeller domain’s Y ≥ 0 domain to display a volume nephogram de-
picting various sand particle mass concentrations. The shaded area in Figure 12a illustrates
the chosen scope of the passage. Figure 12b presents an iso-surface nephogram displaying
different sand particle mass concentrations. For analysis purposes, we considered inlet
sand particle concentrations of 6%, 8%, and 10% as distinct cases, with the sand particle
velocity rendered on the surface of each nephogram.

In Figure 12b, when the threshold increases, the sand-particle-occupied space volume
increases with the increase in inlet sand particle concentration. As can be seen from the
orange oval in Figure 12b, when the threshold is small, a decrease in the concentration
of inlet sand particles leads to an expansion of the sand particle distribution area. The
increase in inlet sand particle concentration exacerbates the phenomenon of sand particle
aggregation in the impeller passage, thereby resulting in a gradual rise in the central mass
concentration within the sand particle distribution area. The increase in inlet sand particle
concentration within the local area leads to a radial shift in the sand particle distribution
towards the rim, as depicted by the red box in Figure 12b. The core of the sand particle
aggregation domain is located at the hub, as indicated by the purple box in Figure 12b.
Furthermore, with an increase in inlet sand particle concentration, there is a decrease in
sand particle velocity within the passage, as observed within the black box in Figure 12b.
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4.3. The Spatial Distribution of Sand Particles within the Diffuser Domain

The domain within the diffuser domain, characterized by Y ≥ 0, was selected to
illustrate the shear volume nephogram for various sand particle mass concentration values,
as depicted in Figure 13. The distribution area of sand particles in the diffuser domain is
mainly in the middle of the flow passage. In the black box in Figure 13b, the concentra-
tion of the concentrated distribution area of sand particles is between 60 kg × m−3 and
100 kg × m−3. Figure 13b illustrates that the velocity of iso-face varies with sand particle
mass concentrations. Smaller-threshold sand particles exhibit higher velocities and are
predominantly located at the diffuser inlet, while larger-threshold sand particles have
lower velocities and tend to accumulate in the middle of the passage. Notably, within the
diffuser domain, sand particles display a spiral belt-like distribution in the middle of the
passage and a flaky distribution near the rim of this domain. The velocities near the rim
are significantly higher than those observed within the passage, as indicated by the red box
in Figure 13b.
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5. The Effect of Vortex on Sand Particle Distribution
5.1. The Effect of Vortex on Axial Sand Particle Distribution in a Multiphase Pump

The flow channel vortex plays a crucial role in influencing the flow behavior of
multiphase pumps. Due to the intense momentum exchange between sand particles and
the liquid phase, the impact of vortices on sand particle distribution within solid–liquid
two-phase flows holds significant importance. The mass concentration of sand particles at
different blade heights and the vortex distribution in the flow passage of the multiphase
pump are depicted in Figure 14, considering an inlet sand particle concentration of 10%
(here, Span = 0.1, 0.5, and 0.9, respectively, represent positions near the hub, middle of the
flow passage, and near the shroud). According to the Ω method, a lower threshold value
on the plane leads to an increased characterization of shear vortex bands, whereas a higher
threshold value results in a greater characterization of rigid rotation vortex bands.

Ω =
∥B∥2

F

∥A∥2
F + ∥B∥2

F

, (23)

A =
1
2

(
∇V +∇VT

)
, (24)

B =
1
2

(
∇V −∇VT

)
, (25)

where A is the symmetric part of the velocity gradient tensor ∇V, B is the anti-symmetric
part, and ∥ · ∥F is the Frobenius norm.
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Figure 14. Sand particle mass concentration and vortex distribution in the flow passage.

It can be seen from the sand particle mass concentration distribution cloud chart
at different blade heights that the sand particle distribution in the impeller domain is
concentrated in the hub, and the sand particle is less close to the shroud. The sand
particle distribution in the diffuser domain is partly distributed in the middle of the
flow passage and the outlet of the diffuser. Significant differences in vortex distribution
between the impeller and diffuser domains are observed at various blade heights in the
vortex distribution nephogram. In the impeller domain, the shear vortex is predominantly
concentrated near the hub, while the rigid rotating vortex dominates most of the central
area within the passage. In the diffuser domain, the shear vortex primarily aligns along
the diffuser wall, whereas the rigid rotating vortex mainly occupies the central portion of
the passage.
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The influence of different vortex structures on sand particle distribution was analyzed
by comparing the sand particle distribution area with the vortex distribution area. By
comparing the details of the two cloud images, it is evident that the spatial distribution of
the shear vortex within the impeller domain exhibits a remarkable congruence with the
sand particle distribution, as depicted in the enclosed black box in Figure 14.

5.2. The Effect of Vortex on Circumferential Distribution of Sand in Impeller of Multiphase Pump

In order to investigate the impact of channel vortex on sand particle distribution, with
an inlet sand particle concentration of 10%, we initially selected five sections at radial
average distances within a single channel in the impeller domain to characterize variations
in sand particle behavior along the channel direction and track the evolution of channel
vortex movement. The positions and sizes of these five sections within the channel are
illustrated in Figure 15.
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Figure 15. Diagram of the five sections in the impeller.

The sand distribution and vortex distribution on the section were investigated, as
illustrated in Figure 16. The sand particles in Section 1 at the impeller inlet still maintain
their original distribution characteristics due to the homogeneous dispersion of sand
particles in the flow passage ahead of the impeller, as depicted in Figure 16. From the
inlet to the outlet of the flow passage, sand particles gradually migrate towards the hub,
resulting in the gradual integration of scattered sand micro-clusters. Simultaneously, the
distribution area of shear flow progressively contracts towards the hub, leading to the
formation of a substantial vortex under its influence. The distribution of sand particles
in the five sections exhibits a strong correlation with the shear flow, suggesting a direct
relationship between the movement trajectory of sand particles and the shear flow. Due
to the main work area of the pump in the impeller, the velocity of the fluid is large, so the
shear vortex in the impeller has a greater impact on the sand particles. Conversely, minimal
sand particle distribution is observed within the vortex distribution area on the sections,
indicating that vortex motion within the impeller domain leads to a more concentrated
dispersion of sand particles.

5.3. The Effect of Vortex on Circumferential Distribution of Sand in Diffsuer of Multiphase Pump

The diffuser domain in the multiphase pump is characterized by the selection of
five sections, which are distributed evenly along the axial direction and maintain a consis-
tent axial spacing from the inlet to the outlet. These sections are designated as illustrated in
Figure 17.

Figure 18 shows the sand particle and vortex distributions in the five sections of the
diffuser domain. The distribution of sand particles and vortices from the inlet to the outlet
appears to be disordered, as depicted in Figure 18. Specifically, both vortex zones exert a
discernible influence on the movement of sand particles. The distribution of sand particles
at the inlet maintains the characteristics observed in the impeller domain. However, upon
entering the diffuser domain, a significant influence from the vortex within the diffuser
(refer to Figure 14) is observed. As a result, sand particles in the middle of the flow
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channel tend to concentrate towards the center of this vortex, while those at the outlet
are predominantly distributed along the wall. The distribution of the vortex in the flow
passage is predominantly concentrated in the middle, as depicted in Figure 18. Moreover,
a decrease in vortex intensity can be observed at both the inlet and outlet. The influence
of the vortex in the diffuser domain on the movement of sand particles is evident as these
particles are observed to be entrained by the vortex. The main reason is that the fluid kinetic
energy is transformed into pressure energy in the diffuser, which inevitably produces a
large number of high-energy vortices, and the vortices with higher energy have a greater
impact on the movement and distribution of sand particles.
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6. Wear Distribution of Multiphase Pump
6.1. Wear Distribution on Blade Surface

The distribution of sand particles in the flow passage is influenced by varying con-
centrations of sand, which subsequently leads to wear on the blade surface. The wear
distribution on the impeller blade surface was analyzed under different concentrations of
sand particles, as illustrated in Figure 19. The wear of the pressure surface and suction
surface of the impeller blade exhibits significant variations under different operational
conditions, as illustrated in Figure 19. When the sand concentration is low, the wear area
of the pressure surface is smaller than that of the suction surface, with predominant wear
on the pressure surface occurring at the blade’s trailing edge, while predominant wear
on the suction surface occurs in the middle section of the blade. The increase in sand
concentration resulted in evident wear on the outer edge of the leading section of the
pressure surface, as indicated by the black box in Figure 19. Conversely, the wear on the
suction surface increases with concentration, exhibiting minimal variation in wear area size
but a significant increase in wear severity. Additionally, there is a slight wearing of the strip
at the trailing edge of the suction surface, as indicated by the red box in Figure 19.

The nephogram of wear distribution on the surface of the diffuser under varying
concentrations of sand particles is depicted in Figure 20. The wear on the pressure surface
of the diffuser is evidently more pronounced than that on the suction surface, as depicted
in Figure 20. The wear on the pressure surface primarily occurs along the diffuser’s edge.
As the sand concentration increases, the wear area gradually extends towards the blade’s
center. The wear of the diffuser suction surface primarily occurs on the inlet surface, and
the increase in sand particle concentration has a limited effect on the expansion of the worn
area. Based on Figures 19 and 20, it can be observed that the impeller domain exhibits more
severe wear area and degree compared to the diffuser domain.
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6.2. Analysis of Blade Surface Wear Factors

The diameter, concentration, and Reynolds number of the sand particles were carefully
selected to conduct a comprehensive analysis of the predominant factors influencing blade
surface wear. Figure 21 shows the wear rate and the distribution of the three variables on
the pressure surface of the impeller blade. According to the wear distribution of the impeller
pressure surface, the pressure surface is divided into two parts: V1 and V2, respectively, as
marked in Figure 21. The wear in the V1 area is more severe than that in the V2 area, as
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depicted in Figure 21. The sand particles impacting V1 exhibit smaller diameters compared
to those impacting V2, while the sand concentration in V1 is comparatively lower than that
in V2. However, the sand grains in the V1 area exhibit a higher Reynolds number, indicating
that they experience greater fluid-induced drag force and possess larger momentum upon
impact with the surface. The Reynolds number of sand emerges as the predominant factor
influencing wear on the pressure surface of impeller blades, thus summarizing the key
aspect under consideration.
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Figure 21. The wear rate, sand particle diameter, sand particle concentration, and sand particle
Reynolds number as distributed on the impeller pressure surface.

The distribution of wear rate, sand particle diameter, sand particle concentration, and
sand particle Reynolds number on the suction surface of the impeller blade is illustrated
in Figure 22. On the suction surface of the blade, both the sand particle diameter and
sand particle Reynolds number in the V1 area are smaller compared to those in the V2
area; however, the sand particle concentration on the surface is significantly higher than
that in the V2 area. This suggests that wear on the suction surface is more influenced by
sand particle concentration rather than sand particle diameter and the Reynolds number.
Additionally, as depicted in Figure 10, the presence of sand clusters near the blade suction
surface results in localized areas of point-like wear.

The analysis of wear on the diffuser surface was also conducted, as depicted in
Figure 23. The areas where wear occurs on the diffuser pressure surface do not completely
coincide with the areas characterized by larger sand particle diameters and Reynolds
numbers. However, the wear spots on the blade surface correspond to locations of high
sand particle concentration, suggesting that the wear of the diffuser pressure surface is
predominantly influenced by sand particle concentration.
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Figure 23. The wear rate, sand particle diameter, sand particle concentration, and sand particle
Reynolds number as distributed on the diffuser pressure surface.

The distribution of wear rate, sand particle diameter, sand particle concentration,
and sand particle Reynolds number on the suction surface of the diffuser is illustrated in
Figure 24. The analysis of Figure 24 reveals a low degree of overlap between the region
with the larger sand particle diameter and the area exhibiting surface wear. Moreover,
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the distribution patterns of sand particle concentration and the sand particle Reynolds
number align more closely with the wear area, particularly in terms of sand particle
concentration. The wear of the suction surface is primarily influenced by the concentration
of sand particles, with the Reynolds number of the sand particles being a secondary factor.
The local enlarged picture of the blade head reveals that the severe wear is primarily
attributed to the high Reynolds number of sand particles, resulting in pronounced surface
degradation due to their high impact velocity.
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In order to gain a deeper understanding of the relationship between blade surface
wear and sand particle diameter, sand particle concentration, and sand particle Reynolds
number, the impeller blade and diffuser blade were divided into ten isometric zones
(Q1~Q20) along the axial direction of the multiphase pump, as illustrated in Figure 25. The
average wear rate, sand particle diameter, sand particle concentration, and sand particle
Reynolds number were individually recorded for each of these twenty zones.

The average wear rate, sand particle diameter, sand particle concentration, and sand
particle Reynolds number in each subarea are depicted in Figure 26. Additionally, the
change curve of blade surface area is presented to elucidate the intrinsic relationship
between the wear rate on the blade surface and factors such as sand particle diameter,
sand particle concentration, and sand particle Reynolds number. As can be seen from
Figure 26, from the head of the impeller blade to the tail of the diffuser, the wear rate
shows a trend of rapid decrease followed by a slow decrease. The wear rate trend can be
elucidated by the combined influence of sand particle diameter, sand particle concentration,
and sand particle Reynolds number. The Reynolds number of the sand particles exhibits a
continuous decrease from Q1 to Q10, while the concentration and diameter of sand particles
remain essentially unchanged. However, it is noteworthy that the wear rate demonstrates a
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consistent decline throughout this range, suggesting a significant influence of the Reynolds
number on wear rate between Q1 and Q10. The wear rate between Q11 and Q20 exhibits
minimal variation, and its variation law is inconsistent with the variation of sand Reynolds
number, sand diameter, and sand concentration, indicating that the wear rate in this area is
affected by the joint effect of sand diameter, sand concentration, and the sand Reynolds
number. The wear rate in the impeller is primarily influenced by the sand Reynolds
number, while the diffuser domain is subject to a combined influence of sand diameter,
sand concentration, and the sand Reynolds number.
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Figure 26. Change curve of wear rate per unit time, sand particle diameter, sand particle concentration,
and sand particle Reynolds number.

7. Conclusions

(1) With the increase in sand concentration, the impeller blade’s leading edge and the
diffuser runner’s central region exhibit primary areas of sand aggregation, consistently
demonstrating a higher number of sand particles within the diffuser compared to those
within the impeller at all concentrations. The distribution of sand particles exhibits a
relatively dispersed pattern at the inlet of the impeller domain, while gradually adhering
to the hub in pieces during their movement from the inlet to the outlet. Moreover, there is a
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gradual decrease in the concentration of sand particle accumulation from the hub towards
the shroud. In the diffuser domain, the distribution of sand particles is predominantly
concentrated in the central area of the flow passage and along the shroud. Moreover, it is
evident that the velocity of sand particles in this region is significantly lower compared
to that observed in the impeller domain. Additionally, within the flow passage itself, a
noticeable decrease in sand particle velocity can be observed when compared to that at
the shroud.

(2) The distribution of shear flow in the impeller domain is highly consistent with
that of the sand particles. In the diffuser domain, the large vortex causes the formation
of sand lumps in the middle of the flow passage, that is, the middle of the vortex. The
movement trajectory of sand particles is found to be correlated with the shear flow, while
the vortex motion within the impeller domain results in a more concentrated distribution
of sand particles. In the diffuser domain, both sand distribution and vortex distribution
exhibit disorderly patterns from inlet to outlet. While the sand distribution at the inlet
maintains its characteristics from the impeller domain, in the diffuser domain, sand is
mainly distributed in the middle of the vortex within the flow channel, whereas at the
outlet, it is distributed along walls. The influence of the vortex in the diffuser domain on
the movement of sand particles is evident as these particles are observed to be entrained by
the vortex. The main reason is that the shear vortex energy in the impeller is larger and
the rotating vortex energy in the diffuser is larger, so the movement of sand particles in
different flow channels is affected by different vortices.

(3) When the sand concentration is low, the wear area of the impeller blade’s pressure
surface is smaller than that of its suction surface, with predominant wear at the tail of
the blade for the pressure surface and more concentrated in the middle for the suction
surface. As sand concentration increases, noticeable wear appears on the front edge of
the pressure surface. On the suction surface, there is minimal change in wear area with
increasing concentration but a significant increase in wear degree. The diffuser’s pressure
surface experiences noticeably greater wear compared to its suction surface, primarily
distributed at its shroud. With increasing sand concentration, this wear area gradually
expands towards the middle of the blade. Wear on the diffuser’s suction surface occurs on
its inlet side and shows minimal increase in size as sand concentration rises. The impeller
domain exhibits more severe wear both in terms of area and degree compared to that
observed in the diffuser domain.

(4) In the impeller, the wear of the first half of the blade is more severe than that of
the second half. The sand Reynolds number is identified as the primary factor influencing
wear on the pressure surface of impeller blades. On the suction surface of impeller blades,
wear is predominantly influenced by sand concentration rather than sand diameter and
the Reynolds number, with clumping near this surface resulting in localized areas of
increased wear. Within the diffuser domain, wear on the pressure surface is significantly
affected by sand concentration. On its suction surface, wear is primarily impacted by
sand concentration, followed by the Reynolds number. The substantial wear observed
at the heads of the diffuser blades can be attributed to the high sand Reynolds numbers
causing significant impact velocities and, subsequently, severe abrasion. Wear rates exhibit
a rapid decrease from the impeller blade head to the diffuser tail, followed by a slower
decline. While in the impeller domain, the wear rate mainly depends on the sand Reynolds
number, in contrast, within the diffuser domain, it results from the combined effects of
sand diameter, sand concentration, and the sand Reynolds number.
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