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Abstract: Underwater imaging presents unique challenges, notably color distortions and reduced
contrast due to light attenuation and scattering. Most underwater image enhancement methods first
use linear transformations for color compensation and then enhance the image. We observed that
linear transformation for color compensation is not suitable for certain images. For such images,
non-linear mapping is a better choice. This paper introduces a unique underwater image restoration
approach leveraging a streamlined convolutional neural network (CNN) for dynamic weight learning
for linear and non-linear mapping. In the first phase, a classifier is applied that classifies the input
images as Type I or Type II. In the second phase, we use the Deep Line Model (DLM) for Type-I images
and the Deep Curve Model (DCM) for Type-II images. For mapping an input image to an output
image, the DLM creatively combines color compensation and contrast adjustment in a single step
and uses deep lines for transformation, whereas the DCM employs higher-order curves. Both models
utilize lightweight neural networks that learn per-pixel dynamic weights based on the input image’s
characteristics. Comprehensive evaluations on benchmark datasets using metrics like peak signal-to-
noise ratio (PSNR) and root mean square error (RMSE) affirm our method’s effectiveness in accurately
restoring underwater images, outperforming existing techniques.

Keywords: underwater images; underwater image restoration; underwater image enhancement;
color restoration; lightweight network; deep learning

1. Introduction

Underwater imaging plays an important role in ocean observation and marine engi-
neering applications. However, underwater images suffer from several artifacts. While
capturing underwater images, a considerable portion of the light is absorbed during its
propagation in the water, resulting in color distortion [1]. Moreover, backward–forward
light scattering severely affects the contrast and details of images, which further deterio-
rates the performance of underwater industrial applications [2]. Therefore, underwater
image enhancement—addressing color restoration, enhancing contrast, and improving
details—is an essential task in marine engineering and observation applications.

In the literature, many methods have been proposed for improving underwater im-
age quality. These methods can be broadly categorized into prior-based, imaging-based,
and machine-deep learning-based techniques [2–5]. Generally, prior-based methods heavily
depend on hand-crafted priors and excel in dehazing outdoor images. However, their
performance is less than satisfactory for underwater images, and they struggle to correctly
manage color shifts. Although imaging-based approaches significantly improve the color
and contrast of underwater images, they often overlook the specificities of underwater
imaging models. This oversight can result in over-enhanced or over-saturated final images.
Machine/deep learning methods provide better results; however, they usually suffer from
generalization problems. We observed that most of the methods from all three categories
behave differently for different input images. It means that their performance depends
on the characteristics of input images. They may work well on some images, while they
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may not provide good results for other images. Therefore, it is important to study the
characteristics of the input images.

In this study, we propose a method for underwater image restoration that employs
linear or non-linear mapping depending on the type of the input image. First, an input
image is classified as Type I or Type II. Then, Type-I images are enhanced using the Deep
Line Model (DLM), while the Deep Curve Model (DCM) is employed for Type-II images.
The DLM effectively integrates color compensation and contrast adjustment in a unified
process, utilizing deep lines for transformation, whereas the DCM is focused on apply-
ing higher-order curves for image enhancement. Both models utilize lightweight neural
networks that learn per-pixel dynamic weights based on the input image’s characteristics.
The main contributions of the paper are summarized below:

• We observed that color components of the degraded underwater images have linear
and non-linear relationships among them. So, images are classified as Type I or
Type II. Different treatment is suggested for different types of images, and it yields
better results.

• The Deep Line Model (DLM) is proposed for input images having linear relationships
among their color components. As the color components have a linear relationship,
pixels can be improved using a linear (line) model, whereas the DLM learns the
parameters of the line for each pixel.

• The Deep Curve Model (DCM) is proposed for images having non-linear relationships
among their color components. As the color components have a non-linear relation-
ship, pixels may not be improved using a line model. In this case, a curve is more
appropriate and effective in improving the color components. Thus, the DCM learns
the parameters of the curve for each pixel.

The efficacy of the proposed solution is measured by conducting experiments on
benchmark datasets and using quantitative metrics: the peak signal-to-noise ratio (PSNR)
and root mean square error (RMSE). The comparative analysis affirms our method’s effec-
tiveness in accurately restoring underwater images, outperforming existing techniques.

2. Related Work
2.1. Underwater Physical Imaging Model

The underwater image formation model (IFM) also known as the atmospheric scatter-
ing model (ASM) is depicted in Figure 1. It can be seen that three types of lights are received
by the image-capturing device: (1) the reflected light that comes to the camera directly
after striking the object, (2) the forward-scattered light that deviates from the original
direction after striking the object, (3) the back-scattering light that comes to the camera
after encountering particles. The attenuation of light depends both on the distance of the
device to the object and the light’s wavelengths and is affected by seasonal, geographic,
and climate variations. These factors, in turn, severely affect the quality of the captured
images, and the image restoration become a challenging task. There are various image
formation methods that describe the formation of images in scattering media, but we adopt
the model proposed in Schechner and Kopeika [6] in this work. According to this model,
the intensity of the image in each color channel c ∈ {R, G, B} at each pixel is composed of
two components: the attenuated signal, which represents the amount of light absorbed
by the underwater medium, and the veiling light, which represents the light scattered by
the medium.

Ic(x) = Jc(x)tc(x) + (1 − tc(x)) · Ac , (1)

where bold denotes vectors, x is the pixel coordinate, Ic(x) is the acquired image value
in color channel c, tc(x) is the transmission of that color channel, and Jc(x) is the object
radiance. The global veiling-light component Ac is the scene value in areas with no objects
(tc = 0, ∀c ∈ {R, G, B}). In homogeneous media, the transmission map (TM) can be
described by tc(x) = e−βcz(x), where β is the medium attenuation coefficient and z(x) is
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the depth. The primary objective of underwater image restoration methods is to restore the
original image J(x) with corrected colors from the observed and degraded image Ic(x).

Figure 1. Formation of underwater images. The direct transmission of light contains valuable
information about the scene, while the backscattered light degrades the image by reflecting off the
suspended particles in the water column. The distance between the camera and the object, denoted
by z, affects the clarity of the image. Red light is absorbed more quickly than other wavelengths,
making it less effective for underwater imaging. Additionally, forward scattered light can blur the
scene, further reducing image quality.

2.2. Underwater Restoration Techniques

Underwater image restoration techniques can broadly be categorized into prior-based,
imaging-based, and machine-deep learning-based techniques. Prior-based methods utilize
the underwater image formation model (IFM) and draw priors from the degraded images.
Initially, a transmission map (TM) is derived from priors such as the dark-channel prior
(DCP) [3], red-channel prior (RCP) [7], medium-channel prior (MDP) [8], and haze-line
prior (NLD) [9]. Subsequently, the image is restored using the IFM, which is equipped
with the TM and atmospheric light. In [10], a red-channel prior (RCP)-guided variational
framework is introduced to enhance the TM, and the image is restored utilizing the IFM.
In contrast to the prior-based methods, imaging-based methods do not utilize the IFM.
Instead, they rely on foundational image enhancement techniques such as contrast enhance-
ment, histogram equalization, image fusion, and depth estimation. Peng et al. [2] proposed
a depth estimation technique for underwater scenes that relies on image blurriness and
light absorption. This depth information is fed into the IFM to restore and enhance the
underwater visuals. In another study by Ancuti et al. [11], a combined approach of color
compensation and white balancing is applied to the original degraded image to restore
its clarity. Zhang et al. [12] introduced a strategy guided by the minimum color loss prin-
ciple and maximum attenuation map to adjust for color shifts. In another recent work
by Zhang et al. [13], a Retinex-inspired color correction mechanism is employed to elimi-
nate color cast. The research further incorporates both local and global contrast-enhanced
versions of the image to refine the color output.

On the other hand, deep learning methods are mainly divided into ASM-based and
non-ASM-based techniques. ASM-based methods use the atmospheric scattering model
(ASM) to clear up hazy images. For instance, DehazeNet [14] by Cai et al. applies a deep
architectural approach to estimate transmission maps, generating clear images. Similarly,
MSCNN [15] by Ren et al. uses a multi-scale network to learn the mapping between hazy
images and their corresponding transmission maps. AOD-Net [16] by Li et al. directly
creates clear images with a lightweight CNN, and DCPDN [17] by Zhang et al. leverages
an innovative network architecture, focusing on multi-level pyramid pooling to optimize
the dehazing performance. In contrast, non-ASM-based methods rely on various network
designs to transform hazy images directly into clear ones through various structures like
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the encoder–decoder, GAN-based, attention-based, knowledge transfer, and transformer-
based networks. Encoder–decoder structures like the gated fusion network (GFN) by
Ren et al. [18] and Gated Context Aggregation Network (GCANet) by Chen et al. [19] uti-
lize multiple inputs and dilated convolutions to effectively reduce halo effects and enhance
feature extraction. GAN-based networks such as Cycle-Dehaze by Engin et al. [20] and
BPPNet by Singh et al. [21] offer unpaired training processes and are capable of learning
multiple complexities, thereby yielding high-quality dehazing results even with minimal
training datasets. Attention-based networks like GridDehazeNet by Liu et al. [22] and FFA-
Net by Qin et al. [23] implement adaptive and attention-based techniques, providing more
flexibility and efficiently dealing with non-homogeneous haze. Knowledge transfer meth-
ods like KTDN by Wu et al. [5] leverage teacher–student networks, enhancing performance
in non-homogeneous haze conditions by transferring the robust knowledge acquired by the
teacher network. In [24], to tackle the problems of low contrast, color distortion and poor
visual appearance, a sequence of operations such as white balancing, gamma correction,
sharpening, and manipulating weight maps are performed on the input image. In [25],
a CycleGAN-based network is proposed that uses the U-Net structure in the generator part,
as the long skip connection of U-Net will obtain more detailed information. The pixel-level
attention block is appended in the network for detail structure modeling. Transformer-
based networks like DehazeFormer by Song et al. [26] make significant modifications in
traditional structures and employ innovative techniques like SoftReLU and RescaleNorm,
presenting better performance in dehazing tasks with efficient computational cost and
parameter utilization. In a more recent deep learning-based method [27], a style transfer
network is used to synthesize underwater images from clear images. Then, an underwater
image enhancement network with a U-shaped convolutional variational autoencoder is
constructed for underwater image restoration. In another work [28], a physical imaging-
based model is proposed that includes a multi-scale progressive enhancement module to
enrich the image details and a chromatic aberration correction mechanism for color balance.
In [29], an underwater image enhancement scheme is proposed that incorporates domain
adaptation. Firstly, an underwater dataset fitting model (UDFM) is developed for merging
degraded datasets. Then, an underwater image enhancement model (UIEM) is suggested
for image enhancement. In a more recent work [30], we propose a multi-task fusion where
fusion weights are obtained from the similarity measures. Fusion based on such weights
provides better image enhancement and restoration capabilities.

3. Motivation

We conducted an experiment using 11,950 images with ground truths (GTs) from two
well-known datasets: EUVP [31] and UIEBD [32], as well as various methods from the
literature: ACT [33], AOD [16], DNet [14], FGAN [31], MMLE [12], NLD [9], RLP [34],
SCNet [35], UDCP [36], and UNTV [10]. First, we computed the root mean square error
(RMSE) and peak signal-to-noise ratio (PSNR) using the input images and their GTs. Then,
these methods were applied to the 11,950 images, and the metrics RMSE and PSNR were
computed using the restored images and their GTs. We then compared the metric values
before and after applying the methods to the images. After counting the number of images
with improved and declined metrics, the results were unexpected. Figure 2 shows the
number of images that have improved and declined metrics. It can be observed that a larger
number of images, after applying the restoration methods, have not improved the metrics
RMSE and PSNR. This indicates that the performance of the methods depends on the
characteristics of the input images. They may work well on some images, while they may
not provide expected results for others. Therefore, it is important to study the characteristics
of the input images. For this purpose, we investigate the relationships between the color
components of the input images.
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Figure 2. Methods including ACT [33], AOD [16], DNet [14], FGAN [31], MMLE [12], NLD [9],
RLP [34], SCNet [35], UDCP [36], and UNTV [10] are applied on 11,950 images. The numbers and
their percentages are shown for the number of images where the metrics RMSE and PSNR are
improved and declined, respectively.

Let Ic(x) represent a degraded underwater color image, where x = (x, y) denotes
the coordinates of the image pixels and c ∈ {r, g, b} signifies the red, green, and blue
color channels, respectively. The color components of the image can thus be denoted as
{Ir(x), Ig(x), Ib(x)}. In underwater imaging, differential color attenuation across wave-
lengths frequently leads to compromised visual fidelity, predominantly impacting the red
channel while leaving the green comparatively unaltered [11]. Conventional restoration
techniques typically adopt a sequential approach: initial color correction to balance channel
disparities, followed by linear enhancement methods such as contrast stretching to mitigate
the attenuation effects.

In the literature, many methods use the mean values from each channel for color
compensation [11,37–39]. This approach is grounded in the Gray World assumption, which
suggests that all channels should exhibit equal mean intensities in an undistorted image [40],
leading to a straightforward approach for color compensation:

Ir(x) = Ir(x) + ( Īg(x)− Īr(x)) · (1 − Ir(x) · Ig(x)),
Ig(x) = Ig(x),
Ib(x) = Ib(x) + ( Īg(x)− Īb(x)) · (1 − Ib(x) · Ig(x)).

(2)

where Īr(x), Īg(x), and Īb(x) denote the mean values of the degraded color components of
the underwater image Ic(x).

Although additive adjustments can compensate for color distortions in red and blue
channels, our study reveals that this compensation may worsen the color composition in
many cases, leading to inferior quality in restored images. As demonstrated in Figure 3,
two distinct outcomes are observed: Type-I images benefit from color correction, with spec-
tral intensities approaching the ground truth, enhancing visual quality. Conversely, Type-II
images experience worsened color discrepancies, resulting in suboptimal restoration. This
necessitates a dual restoration approach. Our method uses a classifier to categorize images,
which is followed by the application of the DLM for Type-I images and the DCM for
Type-II images. This strategy ensures precise, adaptive restoration aligned with the specific
requirements of each image category.
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Figure 3. The effect of color compensation operation on two different types of images. For Type I,
color compensation aligns colors closer to the ground truth (GT), enhancing visual fidelity. In contrast,
for Type II, the compensation results in color distortion when compared to GT.

4. Proposed Method

The proposed methodology restores images through a two-phase process. Initially,
an image classifier categorizes each image as either Type I or Type II. Subsequently, Type-I
images are processed using the Deep Line Model (DLM), while Type-II images undergo
enhancement through the Deep Curve Model (DCM). The complete framework depicted
in Figure 4 showcases the complete process, from initial classification to the final output,
highlighting the effectiveness and adaptability of both the DLM and DCM in underwater
image restoration.

Figure 4. Overview of the proposed framework illustrating adaptive mapping capabilities of the
models: (a) input images with intensity profiles, (b) architecture of the Deep Line Model (DLM),
(c) examples of lines varying with parameters α, β, (d) output images processed by the DLM,
(e) architecture of the Deep Curve Model (DCM), (f) examples of curves demonstrating higher-order
adjustments, (g) output images processed by the DCM.

4.1. Image Classifier

Based on the observations in images’ profile intensity and metrics, images have been
categorized into two distinct types. Type-I images are those that retain or improve in
quality following linear transformation for color compensation, while Type-II images
are characterized by a decline in quality after the same transformation. Following this
classification, we applied linear transformations and computed metrics such as RMSE and
PSNR and labeled the images accordingly. For the classification task, a small neural network
is designed that takes the features obtained through DenseNet121 [41] and analyzes the
intrinsic properties of an input image and guides it toward the most appropriate restoration
pathway—the DLM for Type-I images and the DCM for Type-II images—thereby enhancing
feature extraction and image restoration. The subsequent sections delve into the detailed
frameworks of each model.
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4.2. Deep Line Model

Mostly, underwater image enhancement methods are executed in two linear operations.
Initially, a color-corrected image Íc(x) is obtained by compensating the channels through
additive adjustment factors [11,42]. The generalized form of this operation is as follows:

Íc(x) = Ic(x) + ηc(x), (3)

where ηc represents the additive adjustment factors for each channel c ∈ {r, g, b}. In the
second step, the restored image Îc(x) is obtained by improving contrast. It is achieved by ap-
plying another linear operation that stretches the pixel values of the color-corrected image.

Îc(x) = αc · Íc(x) + βc, (4)

where αc and βc, are constants utilized to represent weights for each channel that are mostly
applied globally.

Instead of performing two separate linear operations and using global weights, we sug-
gest a Deep Line Model that combines two steps and uses per-pixel weights. The proposed
model is expressed as

Îc(x) = αc(x) · Ic(x) + βc(x) · ηc(x), (5)

where αc(x) and βc(x) are weight matrices which are learned through the deep network
and ηc represents the color compensation factors for each channel c ∈ {r, g, b}. The color
compensation factors ηc are computed by using the mean guided compensations [11]
through the following expressions.

ηr = ( Īg(x)− Īr(x))(1 − Ir(x)Ig(x)),
ηg = 0,
ηb = ( Īg(x)− Īb(x))(1 − Ib(x)Ig(x)).

(6)

where Īr(x), Īg(x), and Īb(x) denote the mean values of degraded color components of
underwater image Ic(x).

Now, the computational challenge exists in the derivation of dynamic weight matri-
ces. To overcome this, we employ a lightweight deep neural network, as illustrated in
Figure 4b. The network’s architecture encompasses seven convolutional layers; the first
six are equipped with 16 filters each, kernel 3 × 3 and utilizing ReLU activation functions,
while the seventh layer adopts a Tanh activation to produce the required weight matrices.
This setup is specifically designed to facilitate localized adjustments, empowering the deep
line model delineated in Equation (5) to competently address the complex characteristics of
underwater images and effectuate precise, adaptive enhancements. Figure 4c exemplifies
this capability, depicting the generic behavior of deep lines with varying random parame-
ters α, β, spanning a range from −1 to 1. Our model is not only effective but also efficient,
comprising a mere 18,390 trainable parameters and requiring only 54.07 MB of memory,
rendering it an optimal solution for resource-constrained systems.

4.3. Deep Curve Model

The images that are not restored through linear operations require non-linear transfor-
mations. Inspired by the work [43] for low light image enhancement, we propose a Deep
Curve Model for underwater image restoration. A second-order polynomial is a simple
non-linear mapping between an input image Ic(x) and the output image Îc(x), which is
also differential.

Îc(x) = γc,1(x) · (Ic(x))2 + γc,2(x) · Ic(x) + γc,3(x), (7)
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where γc,1(x), γc,2(x), and γc,3(x) are pixel-wise coefficients for each channel c ∈ {r, g, b}.
By setting γc,1(x) = γc,2(x), and γc,3(x) = zeros(x), the non-linear mapping can be simpli-
fied and re-written as

Îc(x) = Ic(x) + γc(x) · Ic(x) · (1 − Ic(x)) (8)

where γc(x) represents the weight matrices for the non-linear mapping (curves) for each
channel c ∈ {r, g, b}. It means that the curves are applied separately to each of the three
RGB channels, allowing for better restoration by preserving the inherent color and by
reducing the risk of over-saturation. Furthermore, the image is restored by applying
mapping inside the network, so it should be differentiable for forward and backward
propagation. While the second-order curves can provide satisfactory restoration results,
they can further be improved by applying higher-order curves. One simple way to achieve
higher-order mapping is to apply a second-order mapping iterative fashion. The iterative
version of the deep curve model can be expressed as

Î(n)c (x) = Î(n−1)
c (x) + γ

(n−1)
c (x) · Î(n−1)

c (x) · (1 − Î(n−1)
c (x)), (9)

where n indicates the iteration number and γ
(n−1)
c (x) represents the weight matrices for the

(n− 1)th iteration. For n = 1, Î(1)c (x) is computed through (7). Furthermore, for n iterations,
n × 3 weight matrices are required. In this work, we have set the eight, i.e., n ∈ {1, 2, . . . , 8},
so (8 × 3 = 24) dynamic weight matrices need to be learned. Now, the problem is how to
compute dynamic weight matrices.

To learn the weight matrices (curve parameter maps), we adopted a technique similar
to that used in the deep line model discussed in the previous section. A lightweight deep
neural network, as shown in Figure 4e, is employed to compute these dynamic weight
matrices. The network takes the input image Ic(x) and learns a set of pixel-wise curve
parameter maps corresponding to higher-order curves. The behavior of such curves is
illustrated in Figure 4f, for instance, λ3, with λ1 and λ2 set to −1 and the number of
iterations n equal to 3, showcasing the advanced adjustment capabilities with these curves.
The network’s architecture comprises seven convolutional layers with the first six layers
each containing 32 kernels of size 3 × 3 with a stride of 1, which are followed by a ReLU
activation function to introduce non-linearity into the model. The final layer consists
of 24 convolutional kernels of the same size and stride but employs a Tanh activation
function, ensuring that the output values are constrained within the range of −1 to 1.
This layer produces a total of 24 curve parameter maps (dynamic weight matrices) across
eight iterations with each iteration providing three curve parameter maps for each channel
c ∈ {r, g, b}.

5. Results and Discussion
5.1. Datasets

In this study, we utilized two primary datasets: EUVP [31] and UIEBD [32]. Both
datasets comprise subsets containing paired and unpaired images. We aggregated paired
images from subsets of EUVP, including underwater_dark, underwater_scenes, and under-
water_imagenet, resulting in a combined total of 11,950 images. These images were used for
both training and testing within our proposed method. Similarly, from the UIEBD dataset,
we selected 890 images from the raw-890 subset for the same purpose. For performance
evaluation, we used the test_samples subsets from both EUVP and UIEBD, which consist
of 515 and 240 images, respectively.

5.2. Evaluation Metrics

In assessing the quality of restored images, we adopted widely recognized metrics
such as RMSE and PSNR [44]. RMSE was calculated as follows:
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RMSE =

√√√√ 1
MN

M

∑
x=1

N

∑
y=1

(I′c(x, y)− Îc(x, y))2 (10)

where M and N represent the dimensions of the images, I′c(x, y) is the color-corrected input
image, and I′c(x, y) is the output image. A lower value of RMSE indicates better results.
In addition to RMSE, the peak signal-to-noise ratio (PSNR) was used as an evaluation
metric during the validation phase. PSNR is a standard measure for assessing the quality
of reconstructed images in comparison with the original ones. PSNR was calculated using
the formula:

PSNR = 20 · log10

(
MAXI√

MSE

)
(11)

where MAXI is the maximum possible pixel value of the image, and MSE represents the
mean squared error, which is calculated as the squared difference between I′c(x, y) and
Îc(x, y) averaged over all of the pixels. A higher value of PSNR represented better quality.

5.3. Implementation

In our implementation, we constructed the framework using PyTorch and executed
on an NVIDIA GeForce RTX3090 GPU. The proposed method integrates three core models:
(1) Image Classifier, (2) DLM, and (3) DCM. Image Classifier differentiates between Type-I
and Type-II images. For the training of Image Classifier, first, we applied color compensa-
tion through (2) on 11,434 images and labeled them with 1 if the image is improved with
respect to the input image; otherwise, its label was set to 0. From a total of 11,434 images,
9000 images were used for training and 2434 images were utilized for testing. The training
process also utilized a learning rate of 1 × 10−4 and a batch size of 2 and 100 epochs.
The training accuracy obtained was 99.01%, whereas accuracy on test data was noted as
84.18%. The DLM targets the enhancement of Type-I images with configuration settings
such as batch sizes of 64 and 80 epochs for EUVP and batch sizes of 2 and 200 epochs for
UIEBD; the DCM focuses on the restoration of Type-II images. This model adopts optimizer
configurations similar to the DLM but with a specific batch size of 2 and 100 epochs for
EUVP and solely 200 epochs for UIEBD. Throughout their training phases, both the DLM
and DCM models employ the RMSE (L2) as a loss function. Using the assembled dataset,
a classifier was trained to categorize the images into two types: Type I and Type II. This
classification was carried out on 11,435 images from EUVP and 890 images from UIEBD.
As a result, 758 images from EUVP and 240 images from UIEBD were identified as Type
II, while the remaining images were designated as Type I. The DLM was then trained on
10,677 Type-I images from EUVP and 500 images from UIEBD. In contrast, the DCM was
trained using 758 Type-II images from EUVP and 140 Type-II images from UIEBD. All
models utilized the Adam optimizer to ensure efficient convergence. For both training and
evaluation, we processed images with dimensions 256 × 256. Importantly, our settings
incorporated gradient clipping, normalized to 0.1, to prevent gradient explosions, along
with a weight decay of 0.0001 to provide regularization.

5.4. Comparative Analysis

In order to rigorously assess the efficacy of our proposed approach, we contrasted
it against leading-edge methods in the domain. This encompasses non-learning tech-
niques such as NLD [9], RLP [34], MMLE [12], and UNTV [10], as well as learning-driven
paradigms including ACT [33], FGAN [31], DNet [14], AOD [16], and SCNet [35]. First,
input images are restored through the above-mentioned methods and the proposed method,
and then restoration accuracy is compared by utilizing the widely accepted quantitative
metrics, root mean square error (RMSE) and peak signal-to-noise ratio (PSNR). A lower
value for RMSE and a higher value for PSNR indicate better results. Table 1 presents the
quantitative results for test samples across both datasets. The performance of the proposed
networks for the EUVP dataset is denoted as “Ours”. Focusing on the EUVP dataset,
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a quick examination of Table 1 reveals that the DLM exhibits superior performance in
Type-I images, registering an RMSE of 0.08 and a PSNR of 22.30 dB, which outperforms
state-of-the-art (SOTA) methods. Similarly, for Type-II images, the DCM surpasses compet-
ing methods by achieving 0.06 RMSE and 25.00 dB PSNR. Notably, when contrasted with
SCNet and ACT—the models boasting the second-best performance for Type-I and Type-II
images, respectively—the DLM excels with a differential of 0.02 in RMSE and 2.3 dB in
PSNR, whereas the DCM showcases a marked improvement with 0.87 RMSE and 4.4 dB
PSNR. Transitioning to the UIEBD dataset, SCNet leads in performance for Type-I images,
registering a 0.07 RMSE and 23.60 dB PSNR. This is contrasted with the DLM, which holds
the position for the second-best performance, achieving 0.11 RMSE and 20.10 dB PSNR.
Conversely, for Type-II images, the DCM stands out by attaining 0.08 RMSE and 22.20 dB
PSNR. When compared with SCNet—the runner-up in performance—our DCM establishes
a superior benchmark with a difference of 0.02 in RMSE and an elevation of 1.5 dB in PSNR.

Table 1. Comparison of average RMSE and PSNR for non-learning and learning-based meth-
ods on EUVP and UIEBD test images. The best results are in bold, and the second-best results
are underlined.

Non-Learning-Based Methods Learning-Based Methods

Measure Dataset Type Input NLD RLP MMLE UNTV ACT DNet AOD FGAN SCNet Ours

RMSE EUVP Type-I 0.11 0.15 0.15 0.18 0.14 0.84 0.12 0.78 0.73 0.10 0.08

Type-II 0.08 0.12 0.15 0.17 0.11 0.93 0.10 0.87 0.84 0.11 0.06

UIEBD Type-I 0.15 0.18 0.14 0.21 0.16 0.81 0.17 0.75 0.70 0.07 0.11

Type-II 0.14 0.12 0.11 0.24 0.17 0.92 0.14 0.86 0.53 0.10 0.08

PSNR EUVP Type-I 20.00 17.00 17.30 15.30 17.40 17.50 19.10 15.10 13.70 20.00 22.30

Type-II 22.00 18.40 16.90 15.60 19.20 20.60 20.10 13.30 15.50 19.70 25.00

UIEBD Type-I 17.60 15.30 17.50 14.30 16.20 15.50 15.90 15.10 12.70 23.60 20.10

Type-II 18.60 18.70 19.20 12.60 15.60 19.70 17.80 13.10 9.99 20.70 22.20

To assess the robustness of the proposed method for qualitative evaluation, we selected
six images from each dataset of Type-I and Type-II categories and the visual outcomes
from established approaches and the proposed method shown in Figure 5. It can be
observed from the figure that methods such as MMLE tend to over-darken certain areas
in their dehazing results. Additionally, techniques like NLD, RLP, and UNTV exhibit
notable color distortions and texture degradation. Meanwhile, ACT, DNet, and AOD-
Net struggle with the remaining haze effects. FGAN’s outcomes lean excessively toward
reddish tones, and while SCNet shows an improvement over previous methods, especially
for Type-I images, it still presents slight color distortions and tends to produce overly bright
images. Remarkably, ACT performs commendably on Type-II images when compared
to other competitors. In contrast, our proposed method excels by restoring finer details
and achieves more visually appealing restorations, outperforming both traditional and
learning-based counterparts.

Similarly, to further verify the effectiveness of our approach, we extended our com-
parison to the six randomly selected images from the UIEBD dataset, representing both
Type-I and Type-II categories. The restored images for the comparative methods along
with the proposed method are presented in Figure 6. It can be observed from the figure
that prevalent methods such as UDCP, ACT, D-Net, and AOD-Net struggle with lasting
haze. MMLE and UNTV, in particular, introduce significant color distortions, to preserve
texture details and edge sharpness, whereas F-GAN tends to bias the image restoration
toward a reddish tint. RLP and SCNet offer superior visual clarity compared to their
counterparts, yet their dehazed images exhibit excessive brightness when compared to
our model. In contrast, our method not only restores natural colors and sharp edges but
also excels in processing Type-II images, consistently surpassing both conventional and
learning-based algorithms.
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Figure 5. Visual enhancements of the EUVP dataset utilizing non-learning and learning techniques,
inclusive of our proposed method. Refer to Tables 2 and 3 for associated RMSE and PSNR values.

Table 2. Comparison of average PSNR for non-learning and learning-based methods on EUVP and
UIEBD test images. The best results are in bold, and the second-best results are underlined.

Non-Learning-Based Methods Learning-Based Methods

Dataset Image Input NLD RLP MMLE UNTV ACT D-Net AOD F-GAN SCNet Ours

EUVP test_p84_ 19.30 15.70 15.10 17.33 17.52 17.00 18.90 15.16 15.50 15.62 26.70
Type-I test_p404_ 17.20 15.00 16.00 18.79 15.96 14.99 17.10 15.24 14.60 13.96 28.30

test_p510_ 22.70 21.10 22.20 17.48 20.77 20.11 20.40 13.73 13.60 17.55 24.50
EUVP test_p171_ 23.70 20.70 19.60 15.61 20.38 22.04 19.90 12.13 15.20 20.22 27.70
Type-II test_p255_ 26.50 18.90 8.45 10.45 18.61 24.88 26.40 15.73 13.50 24.27 29.90

test_p327_ 23.70 20.20 16.20 15.68 20.24 21.18 20.50 13.44 15.00 18.99 26.10

UIEBD 375_img_ 20.80 19.50 16.80 16.54 20.10 19.40 19.30 15.01 15.40 15.57 22.90
Type-I 495_img_ 18.10 15.40 14.50 15.11 17.51 14.62 17.20 13.94 14.00 13.80 27.00

619_img_ 22.70 21.10 22.20 17.49 20.78 20.12 20.41 13.74 13.61 17.56 24.51
UIEBD 746_img_ 23.70 20.70 19.60 15.62 20.39 22.05 19.91 12.14 15.21 20.23 27.71
Type-II 845_img_ 26.50 18.90 8.46 10.46 18.62 24.89 26.41 15.74 13.51 24.28 29.91

967_img_ 23.70 20.20 16.21 15.69 20.25 21.19 20.51 13.45 15.01 19.00 26.11

Table 3. Comparison of average RMSE for non-learning and learning-based methods on EUVP and
UIEBD test images. The best results are in bold, and the second-best results are underlined.

Non-Learning-Based Methods Learning-Based Methods

Dataset Image Input NLD RLP MMLE UNTV ACT DNet AOD FGAN SCNet Ours

EUVP test_p84_ 0.11 0.16 0.20 0.14 0.13 0.14 0.11 0.18 0.17 0.17 0.05
Type-I test_p404_ 0.14 0.18 0.20 0.11 0.16 0.18 0.14 0.17 0.19 0.20 0.04

test_p510_ 0.07 0.09 0.10 0.13 0.09 0.10 0.10 0.21 0.21 0.13 0.06
EUVP test_p171_ 0.07 0.09 0.10 0.17 0.10 0.08 0.10 0.25 0.17 0.10 0.04
Type-II test_p255_ 0.05 0.11 0.40 0.30 0.12 0.06 0.05 0.16 0.21 0.06 0.03

test_p327_ 0.07 0.10 0.20 0.16 0.10 0.09 0.09 0.21 0.18 0.11 0.05

UIEBD 375_img_ 0.09 0.11 0.14 0.15 0.10 0.11 0.11 0.18 0.17 0.17 0.07
Type-I 495_img_ 0.14 0.20 0.20 0.18 0.14 0.19 0.14 0.20 0.20 0.20 0.04

619_img_ 0.07 0.09 0.10 0.13 0.09 0.10 0.10 0.21 0.21 0.13 0.06
UIEBD 746_img_ 0.07 0.09 0.10 0.17 0.10 0.08 0.10 0.25 0.17 0.10 0.04
Type-II 845_img_ 0.05 0.11 0.40 0.30 0.12 0.06 0.05 0.16 0.21 0.06 0.03

967_img_ 0.07 0.10 0.20 0.16 0.10 0.09 0.09 0.21 0.18 0.11 0.05
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Figure 6. Visual enhancements on the UIEBD dataset utilizing non-learning and learning techniques,
inclusive of our proposed method. Refer to Tables 2 and 3 for associated RMSE and PSNR values.

Furthermore, Tables 2 and 3 enumerate the quantitative results for images depicted in
Figures 5 and 6. For both datasets, the performance of the proposed method is indicated as
“Ours”. In examining the EUVP dataset for Type-I images, the DLM consistently showcases
superior performance across all images, registering a minimum RMSE of 0.04 and a PSNR
of 28.30dB. Similarly, for Type-II images, the DCM emerges as the top performer across
all images, notching a minimum RMSE of 0.03 and a PSNR of 29.90 dB. Transitioning to
the UIEBD dataset, for Type-I images, the DLM stands out in performance for two out of
three images, achieving a minimum RMSE of 0.05 and a PSNR of 26.90 dB. For Type-II
images, the DCM exhibits top-tier performance in 2 out of 3 images, recording a minimum
RMSE of 0.04 and a PSNR of 29 dB. In a comprehensive analysis, both the DLM and
DCM prove their efficacy across both datasets, outperforming in 10 out of 12 images.
In comparison to other methods, with RLP being the second-best performer, it excelled in 4
out of 12 images.

5.5. Ablation Study

The proposed method was tested using 515 images from the EUVP dataset and
240 images from the UIEBD dataset. The proposed classifier designated 486 to Type I and
29 images to Type II out of 515 images from the EUVP dataset, setting them up as the
testing sets for the DLM and DCM, respectively. Similarly, from the UIEBD dataset, test
images classified 213 images as Type I and 27 images as Type II. All datasets were provided
to each of the proposed DLM and DCM for the restoration. RMSE and PSNR metrics were
computed for each image in the datasets, and the average values of the PSNR and RMSE
are shown in Table 4. The DLM is designed for refining Type-I images and the DCM is
developed for the restoration of Type-II images. From the table, it can be observed that
when models are applied on Type-I and Type-II images, respectively, improved PSNR
and RMSE measures are obtained. Whereas, declined or marginally improved metrics are
obtained when models are applied on Type-II and Type-I images, respectively. Hence, the
DLM and DCM are effective for the restoration of Type-I and Type-II images, respectively.

In addition, for qualitative analysis of the DLM and DCM, we selected two images
from each type, and their restored versions are shown in Figure 7. From the analysis of
the figure, it is evident that the DLM performs better for Type-I images in both datasets,
yielding restored images that are closer to the ground truth (GT). However, when the DCM
is applied to Type-I images, although certain areas appear clearer, there is a tendency for
colors to become denser. For instance, the blue color intensifies, resulting in a more bluish
appearance of the image. Conversely, Type-II images restored using the DCM for both
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datasets exhibit a cleaner look and are more closely aligned with the GT, whereas the DLM
shows suboptimal performance, either causing color distortion or producing blurry images.

Table 4. Quantitative results of ablation study comparing the DLM and DCM. Average RMSE/PSNR
for Type-I and Type-II images. (The best values are highlighted).

Datasets Group Input DLM DCM

EUVP Type-I 0.11/20.00 0.93/22.35 0.89/20.63
Type-II 0.08/22.00 0.97/24.18 0.97/25.03

UIEBD Type-I 0.15/17.60 0.93/20.08 0.85/16.37
Type-II 0.14/18.60 0.94/17.81 0.95/22.20

Figure 7. Ablation study evaluating the DLM and DCM for underwater image restoration. For Type-I
images, the DLM achieves RMSE/PSNR values of 0.05/26.73, while the DCM yields 0.05/26.14 for
Type-II images, and 0.06/24.80 in the UIEBD dataset, compared to the DLM’s 0.16/16.10. Red boxes
indicate qualitative differences between the models.

In our detailed examination of the Deep Curve Model (DCM) performance, we ob-
served a consistent enhancement in the restoration quality with increasing iterations.
Utilizing two representative images from the UIEBD dataset, as illustrated in Figure 8,
we record the progression of quality improvements. For instance, as shown in Figure 8b,
the restoration quality at the fourth iteration (I4) manifests a considerable enhancement
from the input, which is evidenced by the RMSE/PSNR values of 0.09/20.95. This trend
of enhancement persists through iterations I4 and I6, as highlighted by the correspond-
ing RMSE/PSNR figures, which signify the improved clarity and overall quality of the
dehazed images. The peak of visual clarity is achieved at iteration I8, registering the lowest
RMSE of 0.06 and the highest PSNR of 24.66 for the top image, with the bottom image
exhibiting similarly positive metrics. Notably, limiting the model to merely one or two
iterations does not invariably lead to inferior dehazing outcomes; in some cases, the image
quality may remain stable or even slightly enhance, suggesting that the optimal number of
iterations for image enhancement is variable. The correlation between the iteration count
and the quality of dehazing is evident with higher iterations yielding superior visual and
quantitative results.
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Figure 8. Ablation study of the effect of different iterations. The RMSE/PSNR for the input and the
corresponding iterations are written beneath each subfigure.

5.6. Complexity of Models

In order to estimate the time taken by different models, we run all three model clas-
sifiers, DML, and DCM turn by turn on the system X64 bit-based PC having an 11th
generation Intel Core i9-11900K processor with 32 GB RAM for 2700 images and calcu-
lated the processing time. Table 5 shows the numerical values for time in seconds for all
three models. As expected, the classifier is based on DenseNet121, which has much more
trainable parameters. For each Type-1 image, approximately 0.0155 s were consumed,
whereas for the processing of a Type-II image, 0.0161 s time was taken. So, it can also be
observed that the classifier is taking a larger portion of the time. The DML and DCM are
light-weight models, so they consume a tiny portion of the total time per image.

Table 5. Time taken by different models used in the proposed solution (in seconds).

Number of Images Classifier DLM DCM

2700 37.82 4.11 5.84

1 0.0140 0.0015 0.0021

5.7. Limitations and Future Work

Although the proposed framework typically yields improved restoration outcomes, its
efficacy can be compromised by the misclassification of images. Such wrong classifications
are more likely when images possess mixed characteristics or when the changes in their
characteristics are slight. These occurrences underline the need to refine the classifier’s
accuracy to ensure dependable performance in real-world applications. An improved
classifier can be designed by cultivating better image labeling procedures and exploiting
deep image features. Moreover, in this study, we divided the images into two types, which
may also not be optimal. It is anticipated that dividing images into various categories and
developing models according to the characteristics of the images will further improve the
results. In addition, a thorough study about the other performance metrics for input and
restored images is required for further investigation. Such a study not only will help in
better understanding the problem of underwater image restoration problem but also will
be helpful in designing better solutions.

6. Conclusions

In this paper, we presented an underwater image restoration solution that initially,
categorizes input images into Type I or Type II. Afterward, based on the classification,
the DLM is applied to restore Type-I images, while the DCM is used for the restoration
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of Type-II images. Both models utilize lightweight neural networks for learning per-
pixel weight matrices based on the input image’s characteristics. The efficacy of the
proposed solution is measured by conducting experiments on benchmark datasets and
using quantitative metrics PSNR and RMSE. Experimental results and comparative analysis
demonstrate the efficacy of the proposed method.
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ASM atmospheric scattering model
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