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Abstract: Vision-based underwater exploration is crucial for marine research. However, the degrada-
tion of underwater images due to light attenuation and scattering poses a significant challenge. This
results in the poor visual quality of underwater images and impedes the development of vision-based
underwater exploration systems. Recent popular learning-based Underwater Image Enhancement
(UIE) methods address this challenge by training enhancement networks with annotated image
pairs, where the label image is manually selected from the reference images of existing UIE methods
since the groundtruth of underwater images do not exist. Nevertheless, these methods encounter
uncertainty issues stemming from ambiguous multiple-candidate references. Moreover, they often
suffer from local perception and color perception limitations, which hinder the effective mitigation of
wide-range underwater degradation. This paper proposes a novel NUAM-Net (Novel Underwater
Image Enhancement Attention Mechanism Network) that addresses these limitations. NUAM-Net
leverages a probabilistic training framework, measuring enhancement uncertainty to learn the UIE
mapping from a set of ambiguous reference images. By extracting features from both the RGB and
LAB color spaces, our method fully exploits the fine-grained color degradation clues of underwater
images. Additionally, we enhance underwater feature extraction by incorporating a novel Adaptive
Underwater Image Enhancement Module (AUEM) that incorporates both local and long-range recep-
tive fields. Experimental results on the well-known UIEBD benchmark demonstrate that our method
significantly outperforms popular UIE methods in terms of PSNR while maintaining a favorable
Mean Opinion Score. The ablation study also validates the effectiveness of our proposed method.

Keywords: underwater image enhancement; deep learning; probabilistic network; LAB color space;
conditional variational autoencoder; interactive channel crossing attention

1. Introduction

Underwater visual quality degrades due to wavelength-dependent light scattering and
absorption under the water, resulting in low-visibility, low-contrast, and color-cast issues
in underwater images [1]. This limits the accuracy of vision-based underwater systems
and tasks, e.g., underwater tracking [2,3], robot navigation [4,5], and ecological monitor-
ing [6,7]. Researching advanced Underwater Image Enhancement (UIE) techniques [8–11],
which improve the visual quality of degraded underwater images and benefit vision-based
underwater systems, is of great significance for the development of marine engineering.

Recently, deep learning-based image enhancement methods have made significant ad-
vancements by training models with well-collected image pairs to learn the mapping from
the low quality images to the reference images. However, it is impractical for underwater
image enhancement tasks to obtain groundtruth clear images since the irreversibility of
underwater imaging progresses with highly complex degradation. To address this chal-
lenge, popular methods [10,12–14] propose generating reference images to approximate
groundtruth images to train UIE models. For instance, Ref. [10] utilizes 12 state-of-the-art

J. Mar. Sci. Eng. 2024, 12, 1216. https://doi.org/10.3390/jmse12071216 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12071216
https://doi.org/10.3390/jmse12071216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0000-5509-7856
https://orcid.org/0000-0002-1825-328X
https://orcid.org/0000-0003-1111-9210
https://doi.org/10.3390/jmse12071216
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12071216?type=check_update&version=2


J. Mar. Sci. Eng. 2024, 12, 1216 2 of 18

UIE algorithms to generate a set of enhanced images, manually selecting the best image as
the reference image. Leveraging these pairs of underwater images and their well-enhanced
reference images, deep learning-based UIE approaches have achieved impressive per-
formance in improving the visual quality of underwater images [11]. Nevertheless, the
reference image can not perfectly approximate the groundtruth and is susceptible to various
influences, including subjective human preferences during the selection process and varia-
tions in algorithm parameters. These lead to insufficient UIE learning for the uncertainty
issue of the ambiguous label, i.e., multiple potential solutions exist for the same degraded
underwater image. As shown in Figure 1, using a single reference image as the label to
train a UIE model is sometimes insufficient since lacking the true clear image and multiple
candidate references can lead to ambiguity in selecting the best one.

Figure 1. Illustration of uncertainty issue in UIE learning. We show examples of UIEBD datasets, i.e.,
the original image, (a) selected reference, (b) contrast adjustment result, (c) saturation adjustment
result, and (d) gamma correction result. Multiple potential solutions can be ambiguous in reference
selection since different people might choose different labels as the reference.

To address the uncertainty issue, we follow PUIE-Net [8] to tackle the uncertainty prob-
lem as the probabilistic sampling approximation problem. Let x and y denote the degraded
underwater image observation and the clear enhanced image, respectively. Considering
that z represents the uncertainty arising from different people choosing reference images
generated by different algorithms as training labels for deep learning networks, UIE aims
to model the clear image distribution from x with uncertain reference z, i.e., p(y | z, x). For
a given x, we can assume that z follows a distribution p(z | x) because the uncertainty of z
is generated by the process of x. Once the sampling size S is large enough, z approximately
follows a normal distribution and the UIE model can be approximated as [8]

p(y | x) ≈ 1
S

S

∑
s=1

p
(

y | z(s), x
)

, z(s) ∼ p(z | x) (1)

Motivated by this theoretical method, which is different from most existing methods,
PUIE-Net proposed a probabilistic training framework that randomly samples one of the
multiple candidate references instead of the selected “best” reference for training the UIE
model, avoiding the uncertainty issue.

Although PUIE-Net achieves encouraging enhancement results, it does not perform
well in challenging scenarios. We argue that there are two perception limitations to PUIE-
Net: (1) local perception limitation—PUIE-Net adopts the U-shaped SE-ResNet50 archi-
tecture with a limited local receptive field as the feature extractor, which makes it hard to
model the long-range dependencies as well as global perception for dealing with large-scale
underwater degradation; (2) color perception limitation—most existing methods, as well
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as PUIE-Net, exclusively extract features from the RGB color space, which is not always
enough to capture fine-grained underwater color degradation clues.

In this paper, we propose a novel NUAM-Net to address these limitations. Firstly,
we proposed a novel Adaptive Underwater Image Enhancement Module (AUEM) that
leverages three parallel mechanisms—Large-Kernel Attention (LKA), Simple Gate (SG),
and Channel Attention (CA)—to model the long-range spatial and channel interaction with
both local and long-range receptive fields to avoid the local perception limitation. Secondly,
we enrich the color perception by extracting features from both RGB space and a wider and
more accurate color-represented LAB space, to highlight fine-grained underwater color
degradation clues and address the color perception limitation. Built on the probabilistic
training framework, our NUAM-Net achieves significant PSNR improvements on the
popular UIEBD benchmark compared to state-of-the-art UIE methods.

In conclusion, our contributions are summarised as follows:

− Based on a probabilistic training framework, we propose a novel NUAM-Net that
extracts features from both RGB and LAB color spaces and that models long-range
spatial-channel interaction with both local and long-range receptive fields, avoid-
ing the uncertainty issue in UIE learning as well as the local and color perception
limitations introduced by PUIE-Net;

− We conduct comprehensive experiments on the well-known UIEBD benchmark, and
the highly competitive PSNR and SSIM results against state-of-the-art UIE methods
demonstrate the effectiveness of our method. The ablation study also illustrates the
gains of the proposed components.

2. Related Work

In this section, we briefly introduce the previous works regarding model-free UIE
methods, prior-based UIE methods, learning-based methods, and the attention mechanism.

2.1. Model-Free UIE Methods

Model-free techniques typically refine underwater images by directly adjusting pixel
luminance without relying on specific physical models, such as using Contrast-Limited Adap-
tive Histogram Equalization (CLAHE) [15], White Balancing (WB) [16], and Retinex [17].
Ref. [18] introduced a fusion-based Underwater Image Enhancement (UIE) method where
the inputs and weights are determined solely from the degraded images. Ref. [19] im-
proved upon this method by incorporating white balancing techniques and an innovative
multiscale fusion strategy to achieve better enhancement results. Fu and colleagues [20]
proposed a Retinex-based UIE method designed for enhancing individual underwater
images. Gao and associates [21] developed an underwater image enhancement technique
inspired by the functionality of fish retinas, aiming to address issues such as color bias,
unevenness, and content blur in images. While these model-free techniques are efficient and
straightforward to implement, their disregard for the complex mechanisms of underwater
imaging can sometimes lead to unstable outcomes and fail to achieve the desired image
enhancement effects.

2.2. Prior-Based UIE Methods

Prior-based methods focus on estimating the parameters of underwater imaging
models through prior hypotheses, and then use these physical models to enhance the
quality of underwater images. Chiang and colleagues [22] proposed a method that utilizes
dehazing technology to enhance underwater images. Galdran et al. [23] adapted the
Dark Channel Prior (DCP) [24] by using information from the red channel to infer the
depth map of underwater images. Li et al. [25] introduced a dehazing method tailored
to the characteristics of underwater environments and proposed a contrast enhancement
technique based on the principles of the minimum information loss and the prior knowledge
of a histogram distribution. Berman et al. [26] considered the spectral profiles of different
water types and additionally estimated two global parameters: the attenuation ratios
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between the blue–red and blue–green channels. Akkaynak et al. [27] developed the Sea-
thru method, which is based on an improved physical imaging model and uses RGBD
images as input to estimate scattering from the darkest pixel and its known depth map,
and then estimates the attenuation coefficient of varying illumination across the scene.
While these methods are effective in specific contexts, they may not be sufficiently robust
in handling more complex scenarios due to the challenge faced by parameterized physical
models in perfectly capturing the complexity and diversity of underwater environments.

2.3. Deep Learning Methods

Learning-based UIE methods stand out from model-free and prior-based approaches
by leveraging the powerful feature extraction capabilities of deep neural networks and non-
linear mapping functions, driven by data, to enhance underwater images. Li et al. [28] were
the first to unsupervisedly use generative adversarial networks to create synthetic under-
water images, which were then employed to train an enhancement network. Li et al. [29]
proposed a method that requires only weak supervision, reducing the need for paired data.
Guo et al. [30] employed a multi-scale dense generative adversarial network for underwater
image enhancement. Li et al. [31] developed a lightweight UIE model that incorporates
underwater scene priors. Li et al. [10] curated a comprehensive real-world UIE dataset,
UIEB, with reference images manually selected from several existing UIE methods, and
proposed a gated fusion network for image enhancement based on this dataset. Jamadandi
et al. [32] suggested enhancing underwater images using networks combined with wavelet
transform corrections. Addressing the diverse degradation characteristics of underwater
images, Uplavikar et al. [33] trained a deep neural network to extract domain-invariant
features from given images, with the domain defined by the Jerlov water type. Li et al. [11]
introduced Ucolor, a UIE network based on medium transmission-guided multi-color space
embedding. Kar et al. [34] proposed a zero-shot restoration method for underwater and
dehazed images, leveraging theoretically derived degradation properties. However, many
current learning-based methods [35–42] rely on end-to-end training with annotated image
pairs, leading to uncertainties due to the ambiguity of multiple potential reference images.
To address this issue, PUIE-Net [8] approached the uncertainty problem as a probabilis-
tic sampling approximation and introduced a probabilistic training framework for UIE.
Our research builds upon this probabilistic training framework and introduces NUAM-
Net, which models local and long-range dependencies with enhanced color perception to
capture detailed underwater color degradation cues, overcoming the limitations of local
perception and color understanding in PUIE-Net.

2.4. Attention Mechanism

In deep learning, attention mechanisms have become a key technique [43,44] and
are acclaimed for their ability to enhance a model’s focus on key elements within input
data [45–47]. Channel Attention (CA) meticulously examines the dynamics of cross-channel
feature activation [48], highlighting the relational importance of different features, while
spatial attention evaluates the significance of the layout of information space [49], opti-
mizing the model’s perceptual field. Large-Kernel Attention (LKA) [50], by combining
Depthwise Convolution, Depthwise Dilation Convolution, and Pointwise Convolution,
effectively captures long-distance relationships within features, improving adaptability.
In this paper, we propose a novel adaptive underwater enhancement module that takes
advantage of the local and long-range receptive fields of CA and LKA to model the long-
range spatial and channel interaction; it also leverages an extra Simple Gate (SG) to fully
explore the complementary information between the CA and LKA. This module shows
significant gains in our ablation study.

3. Method

In this section, we elaborate our method.
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3.1. Probabilistic Training Framework and Multi-Label Training

To avoid the uncertainty issue, we have adopted the probabilistic training frame-
work [8] to perform a multi-label training strategy for UIE learning. In multi-label training,
the dataset we use contains four different labels, as shown in Figure 1. During the training
phase, each time an image is input, we randomly select one of the four labels as the input
label for training. The selection method is as follows:

l = labeli, i ∈ {0, 1, 2, 3} (2)

In the formula, l is the label that serves as input during the network training pro-
cess. labeli is one of the four labels that we randomly select, where 0 represents the label
in the UIEB dataset, 1 represents the label obtained through contrast adjustment, 2 is
the label obtained through saturation adjustment, and 3 is the label obtained through
gamma correction.

3.2. Network Architecture

Figure 2 illustrates the architecture of the NUAM-Net network. The network ar-
chitecture consists of two branches, each including a feature extractor based on U-Net.
Specifically, the upper branch aims to extract segmentation features from a single original
underwater image, while the lower branch aims to construct UIE segmentation features
using the input underwater image and its multiple labels. In the upper branch, we con-
catenate the original image and its conversion to the LAB color space along the channel
dimension as input. In NUAM-Net, to enhance the parameters and extraction capabilities
of the feature extractor, we replace the convolutional extractor with SE-ResNet50 (as shown
in Table 1). Due to the lack of certain prior knowledge during the feature extraction process,
we introduce the LAB color space of images to integrate prior information of the image.
The LAB color space can better separate the color information and brightness information
of the image, which is beneficial for the reconstruction of underwater images.

f = Fextractor(input ⊕ inputLAB) (3)

f is the feature extracted by the feature extractor, Fextractor is the operation in the Feature
Extractor, input and inputLAB are the RGB picture and LAB picture, and ⊕ operation
is a concatenation operation performed on the channel dimensions of multiple features,
merging them into a single feature.

Figure 2. The network architecture of NUAM-Net. It consists of the feature extractor, PAdaIN, AUEM,
and the output blocks. The extractor’s architecture is similar to the U-Net.
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Table 1. Structure of SE-ResNet50, consisting of three main blocks.

Output Size Layers Used in SE-ResNet50 Number

112 × 112 conv, 7 × 7, 64, stride 2 1

56 × 56

maxpool, 3 × 3, stride 2 1

conv, 1 × 1, 64
conv, 3 × 3, 64
conv, 1 × 1, 256

fc, [16, 256]

3

28 × 28

conv, 1 × 1, 128
conv, 3 × 3, 128
conv, 1 × 1, 512

fc, [32, 512]

4

14 × 14

conv, 1 × 1, 256
conv, 3 × 3, 256

conv, 1 × 1, 1024
fc, [64, 1024]

6

7 × 7

conv, 1 × 1, 512
conv, 3 × 3, 512

conv, 1 × 1, 2048
fc, [128, 2048]

3

1 × 1 global average pool, 100-d fc, softmax 1

The core part of this network lies in the feature enhancement transfer module after
feature extraction. To obtain stronger features, we designed a probability enhancement
module called AUEM, which takes the features extracted by the feature extractor as input.
The output features are the result of concatenating the enhanced features with the original
features along the channel dimension.

fenhance = FAUEM(ReLU(Conv( fin))) (4)

fin is the input feature, fenhance is the feature enhanced by AUEM module, FAUEM is the en-
hancement operation, ReLU is the activation function, and Conv is the convolution operation.

Next, we need to construct image enhancement style features based on the features
extracted from a large sample. In an image, the style can be described by the mean and
variance of the extracted features across each channel. This is mainly because they reflect
the statistical characteristics of the color distribution and brightness distribution of the
image, which, to a large extent, determine the appearance and feel of the image, such as
whether it is bright, colorful, high contrast, etc. These statistical features provide important
clues for image processing and analysis. During the training phase, we calculate the
variance and standard deviation for the target image and the original image across each
channel dimension.

µl(c) =
1

H × W ∑
x∈(0,W),y∈(0,H),c∈(0,C)

fl(x, y, c) (5)

σ2
l (c) =

1
H × W ∑

x∈(0,W),y∈(0,H),c∈(0,C)
( fl(x, y, c)− µc )

2 (6)

µin(c) =
1

H × W ∑
x∈(0,W),y∈(0,H),c∈(0,C)

fin(x, y, c) (7)

σ2
in(c) =

1
H × W ∑

x∈(0,W),y∈(0,H),c∈(0,C)
( fin(x, y, c)− µc )

2 (8)
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where σl(c) and µl(c) are the variance and mean of the label features across each channel,
σin(c) and µin(c) are the variance and mean of the image to be processed across each channel,
H is the height of the image, W is the width (in pixels), C denotes the number of channels,
and fl and fin are the feature vectors after extraction and enhancement, respectively.

After obtaining these features of mean and variance, we randomly sample from these
features to construct the normal distribution functions for these means and variances. We
perform the random sampling operation through convolutions, and then construct the
functions based on the sampling results.

Ml = Normal(µConv(µl(ci))
, σConv(µl(ci))

) (9)

Vl = Normal(µConv(σl(ci))
, σConv(σl(ci))

) (10)

Min = Normal(µConv(µin(ci))
, σConv(µin(ci))

) (11)

Vin = Normal(µConv(σin(ci))
, σConv(σin(ci))

) (12)

where Vl and Ml represent the normal distribution functions for the variance and mean of
the label features, respectively, and Vin and Min represent the normal distribution functions
for the variance and mean of the input features, respectively.

The distributions of the mean and variance of the target image are used as the style
parameters for image style transfer in the PAdaIN module (detailed in Section 3.3), and we
specifically characterize this term in the loss function by using the KL divergence to describe
the difference between the two distributions (elaborated in Section 3.5 in the description of
KL divergence in the loss function). The purpose is to complete the transformation of the
image style during the feature extraction process.

3.3. PAdaIN

In this paper, we treat the underwater enhancement problem as the domain style-
transfer problem, and we therefore adopt Adaptive Instance Normalization with posterior
distribution (PAdaIN) [8]:

PAdaIN(x) = b(
x − µ(x)

σ(x)
) + a (13)

Here, x represents the features of the content image, µ and σ denote the mean and
standard deviation operations, respectively. b and a are two random samples drawn from
the posterior distribution of the mean and standard deviation. Specifically, the posterior
distribution can be learned through CVAEs [51]. A conditional variational autoencoder
(CVAE), which combines raw data and their corresponding categories as inputs to the
encoder, can be used to generate the data for specified categories.

a ∼ Nm

(
µ(x), σ2(x)

)
(14)

b ∼ Ns

(
m(x), v2(x)

)
(15)

Nm and Ns represent the Gaussian distributions of mean and standard. The variables a and
b are drawn randomly from the distributions of mean and standard deviation, respectively.
µ(x) and σ(x) represent the mean and standard deviation of the mean of the input image.
m(x) and v(x) represent the mean and standard deviation of the standard deviation of the
input image.

3.4. Adaptive Underwater Image Enhancement Module

AUEM consists of two parts; the architecture is shown in Figure 3. Firstly, the features
of LAB color space images are concatenated with those of the original images. Subsequently,
they undergo a convolution to adjust the feature dimensions, followed by the AIEM
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(Adaptive Illumination Enhancement Module) [52], which consists of two components:
Hierarchical Information Extraction (HIE) and IMAconv.

Figure 3. The overview of the AUEM. It consisted of a conv block and AIEM block. In the AIEM
block, we try to combine and enhance the probabilistic feature. AIEM includes PConv, DWConv,
LKA, SG, and IMAConv, which are five types of convolution blocks.

HIE employs three parallel operations: LKA, SG, and CA for feature extraction. Large-
Kernel Attention, which is shown in Figure 4a, decomposes the feature extraction into three
types of convolution: Depthwise Convolution (DW-conv), Depthwise Dilated Convolution
(DW-D-Conv), and Point Convolution. DW-Conv is a 55 convolution, and DW-D-Conv
is a 55 convolution with a dilation rate of 3. Point convolution is a 1 × 1 convolution.
DW-Conv processes local structural information, DW-D-Conv is used to capture long-range
dependencies, and Point Convolution is used for inter-channel interaction. The Simple
Gate (SG), which is shown in Figure 4b, divides the features along the channel dimension
into two parts, decomposing f ∈ RC×H×W into f1 ∈ R C

2 ×H×W and f2 ∈ R C
2 ×H×W . Then,

these two features undergo a wise multiplication (the values at corresponding positions
in two features are multiplied) operation. The channel attention-processed feature, which
is shown in Figure 4c, f ∈ RC×H×W passes through a channel attention module to obtain
f1 ∈ R1×H×W . Then, it passes through a 1 × 1 convolution, followed by a ReLU activation
function, and, subsequently, through another 1 × 1 convolution with a Sigmoid activation
function to produce feature f2 ∈ R1×H×W . Finally, a wise multiplication operation is
performed between f2 and the original feature f to obtain the final feature.

Figure 4. Structures of LKA, SG, and CA used in our AUEM module. (a) Large-Kernel Attention
(LKA), (b) Simple Gate (SG), and (c) Channel Attention (CA).

The research motivation of IMAConv is to integrate information from different feature
spaces and channels. As shown in Figure 5, features are divided into S branches (dividing
the original feature into S parts along the channel dimension), each consisting of three
concatenated convolutions. Conv − 3 is the dynamic convolution block, xi is the divided
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feature, and x̄i is the original feature without xi. Cn(.) is the mapping function to combine
each feature. The formulas of Cn are as follows:

Cn

(
xi

f

)
=

 A1xi
f

(
1 − xi

f

)
+ xi

f , n = 1

An−1Cn−1

(
xi

f

)(
1 − Cn−1

(
xi

f

))
+ Cn−1

(
xi

f

)
, n > 1

(16)

Conv − 3 employs the concept of dynamic convolution to assign weights to these
three convolutional kernels. Dynamic convolution is the dynamic aggregation of multiple
parallel convolution cores based on attention. Attention dynamically adjusts the weight of
each convolution kernel based on the input, resulting in an adaptive dynamic convolution.
After passing through AIEM, the enhanced features are concatenated with the features
before inputting to the AIEM module. The output can be represented as

Out = FAIEM(Convolution(input))⊕ input (17)

input is the feature extracted by the extractor, Convolution is the convolution operation
to adjust the feature dimension, (i.e., the convolution operation to fuse the old feature
to obtain the new dimension features), FAIEM is the AIEM module operation, and ⊕ is
the concatenation.

Figure 5. Structures of IMAConv used in our AUEM module.

3.5. Loss Function

In the supervising stage, we utilize the Mean Squared Error (MSE) as the loss function
to quantify the discrepancies between the original and the output images, defined as

Lmse =
1

C × H × W ∑
xϵ[0,H] yϵ[0,W] cϵ[0,C]

[
xlabel(x, y, c)− xpro(x, y, c)

]2 (18)

where xlabel represents the random label picture and xpro is the network’s output.
Additionally, to enhance the human perceptual quality of the processed images, we

integrate a perceptual loss function, utilizing a pre-trained Vgg16 network as the perceptual
evaluator [23]:

Lper =
1
N

N

∑
i=1

(
Fvgg16(xlabel)− Fvgg16

(
xpro i

))2 (19)
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with N being the batch size and Fvgg16 being the Vgg16 network equipped with pre-trained weights.
In addition to minimizing the enhancement loss, Kullback–Leibler (KL) divergences

are utilized to assimilate the posterior distributions and the prior distributions. This process
involves measuring the discrepancy between the posterior and prior distributions, ensuring
that the enhanced image aligns well with both the desired enhancement characteristics and
the prior knowledge captured by the distributions. By minimizing the KL divergences, the
network learns to generate enhanced images that not only match the desired visual attributes
but also adhere to the underlying statistical properties encoded in the prior distributions.

La = DKL(Na(x)∥Na(y, x)) (20)

Ld = DKL(Nd(x)∥Nd(y, x)) (21)

DKL refers to the KL divergence between two distributions. || is used to denote the
Kullback–Leibler divergence (KL divergence) between two probability distributions.

Finally, to align the processed images closely with their labels, we combined three
parts as our model loss function.

L = Lmse + β(Lper + La + Ld) (22)

This formulation aims not only to minimize the direct errors between images but also
to improve their realism, their visual appeal to the human eye, and the distribution of the
features, while preserving image detail and quality. β represents the weight; in our model,
we choose β = 0.1.

4. Training Configuration

We utilized an extended multi-label dataset UIEBD (Underwater Image Enhancement
Benchmark Dataset, which is a multi-label underwater image enhancement dataset) [8].
Some training datasets pictures are shown in Figure 6. A challenge encountered prior to
training the probability network was that existing UIE datasets typically provide a single
reference map for each degraded underwater image. To facilitate the application of the
probability network, we augmented existing UIE datasets by generating multiple reference
images. The new dataset we adopted is based on UIEBD [10], a real-world UIE dataset
comprising 890 underwater images along with corresponding reference maps.

In the original UIEB (Underwater Image Enhancement Benchmark, a dataset that was
proposed in 2020) [10], the authors employed 12 state-of-the-art enhancement algorithms to
generate potential groundtruth. Volunteers were then asked to subjectively select the best
image among pairwise comparisons of the original underwater image and the 12 enhanced
images, with the chosen image serving as the final reference. Ambiguity was addressed in
UIEBD through contrast and saturation adjustments as well as gamma correction, given that
distortions in underwater images primarily manifest in aspects such as contrast, saturation,
brightness, and color.

It is important to note that our aim was to generate ambiguous labels rather than to
significantly alter the original labels. Contrast and saturation adjustments were performed
using a simple linear transformation formula, where y = α(x − m) + x, with x and y
representing the input and output, respectively, and m denoting the mean value for each
channel. α stands for the adjustment coefficient, which remains consistent for all pixels in
contrast adjustment and is determined by each pixel itself in saturation adjustment.

To produce a more reliable reference image, we initially created two adjusted versions
for each method (i.e., over-adjustment and under-adjustment), then selected the better one
as the potential label. Consequently, we obtained four reference images (including the
original label) for each original underwater image, reflecting the uncertainty inherent in
the groundtruth recording process.
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Figure 6. Examples of the extended UIEBD dataset, including 4 labels. Label-1 denotes the manually
selected label in the original UIEBD dataset, label-2 is the contrast adjustment result, label-3 is the
saturation adjustment result, and label-4 is the gamma correction result.

5. Experiments

In this section, we conducted comprehensive experimental evaluation of the proposed
method. At first, we describe the implementation details and the validation dataset.
Secondly, we introduce the evaluation criteria and compare our method with eight state-of-
the-art UIE methods on the UIEBD dataset in terms of both qualitative and quantitative
evaluations. Finally, we evaluate the effectiveness of the key components in our proposed
method through the ablation study.

5.1. Implementation Details

Our method was implemented in Pytorch and the NUAM-Net model was trained
on an NVIDIA RTX 4090 GPU (Santa Clara, CA, USA) with ADAM optimizer, where the
learning rate was 1×10−4, the number of training epochs was 500, the batch size was 1,
and the image was resized to a resolution of 256 × 256. During the training, we performed
random rotations and horizontal–vertical flips for data augmentation.

5.2. Datasets

We validate our method on the popular UIEBD benchmark, and we followed a pre-
vious work [8] in utilizing the first 700 original samples for training and the remaining
190 images for testing.

5.3. Performance Criteria

To evaluate the enhancement performance of our method, we employ SSIM (Struc-
tural Similarity) [53], PSNR (Peak Signal-to-Noise Ratio) [54], and MOS (Mean Opinion
Score) [55] metrics. SSIM and PSNR are full-reference metrics computed based on the
manually selected well-enhanced reference image (label image) in UIEBD to ensure a
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fair comparison with existing methods. Additionally, we conduct subjective testing to
understand user preferences for the results generated by each UIE method. We use MOS
to quantify subjective evaluations. We invited 10 participants (5 males and 5 females)
to participate in the subjective testing. Original and enhanced underwater images were
simultaneously displayed on the screen. Subjective ratings for each image were assessed on
a three-level scale according to the following criteria: 3 (excellent), 2 (fair), 1 (poor). Eval-
uation metrics include color distortion, contrast enhancement, naturalness preservation,
brightness improvement, and artifact suppression.

5.4. Comparison Methods

We compared NUAM-Net with eight UIE methods, including two model-free methods
(GC, Retinex), one popular prior-based method (DCP), three state-of-the-art deep learning
methods (Deep-SESR, Water-Net, Ucolor), and two advanced probabilistic network-based
methods (PUIE-MC, PUIE-MP). We report the results of all compared methods using the
original implementations provided by their authors in the same experiments to ensure
fairness of comparison.

5.5. Results

Table 2 summarizes the quantitative comparison results on the UIEBD dataset. It can
be seen that our NUAM-Net achieves highly competitive performance and outperforms
other methods in PSNR by a significant margin. Specifically, prior-based methods obtain
relatively poor results because they heavily rely on prior knowledge-driven approximate
imaging models, limiting their generalization ability to more complex scenarios. We found
that the performance of deep learning methods is significantly better than handcrafted
methods and our NUAM-Net achieves the best results, showing the effectiveness of the
proposed method. We further present qualitative comparison results in Figure 7. It can be
observed that, although most methods can enhance contrast to some extent, serious visual
defects still exist due to undesirable color adjustments or artifacts. For example, GC and
Retinex exhibit unnatural color saturation and blurred image details. Prior-based methods
can improve contrast, but color is severely degraded in these cases. Water-Net and Ucolor
often produce low-quality results. Due to the enriched color perception and long-range
interaction, our method performs well in all these cases and produces consistently cleaner
visual quality and more natural fine textures than the state-of-the-art PUIE-Net.

Table 2. Quantitative results on the UIEBD test dataset. We report the metrics of PSNR, SSIM,
and MOS values for evaluation. Higher values indicate better performance. The best results are
highlighted in red.

Method PSNR SSIM MOS

GC 17.79 0.79 2.1
Retinex 15.47 0.75 1.8

DCP 15.05 0.72 1.6
Deep SESR 17.10 0.63 1.8
Water-Net 21.19 0.84 2.3

Ucolor 21.55 0.85 2.5
PUIE-MC 21.68 0.86 2.4
PUIE-MP 21.66 0.86 2.4

NUAM-Net * 22.38 0.87 2.9
* is our network.
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Figure 7. Qualitative results of the UIEBD test dataset. (a) DCP, (b) GC, (c) Retinex, (d) SESR,
(e) Water-Net, (f) Ucolor, (g) PUIE-MC, (h) PUIE-MP, (i) Ours.

5.6. Ablation

We conducted ablation experiments on our network, evaluating the performance
of some variants of the proposed method with the backbone, backbone+LAB, and back-
bone+LAB+ AUEM. As shown in Table 3, enriching the color perception by extracting
features from the RGB space and wider color-represented LAB space leads to reasonable
improvements in the PSNR metric. With the well-designed AUEM, modeling the long-
range spatial and channel interactions from both local and long-range receptive fields, the
backbone+LAB+AUEM variant further promotes the PSNR score by 0.57. The qualitative
results in Figure 8 also show the gains of our proposed method.

We compare the features extracted by the our network and the backbone network. In
Figure 9, the higher the number of green flashing dots in the renderings, the higher the
number of features that have been extracted. It is obvious that our network can extract
more features.

Table 3. Ablation experiments on the UIEBD test dataset.

Network PSNR SSIM

Backbone 21.68 0.86
Backbone+LAB 21.81 0.86

Backbone+LAB+AUEM 22.38 0.87

We prove that our network structure has some advantages. We compare two modules:
(1) AUEM without LKA, SG, and CA and (2) AUEM. The results are shown in Table 4.
Furthermore, we set an extra experiment to prove that our network’s structure has advan-
tages (to some extent). We replace the AUEM module by the same capacity convolution
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blocks, and we compare NUAM-Net and conv blocks Net. The results are shown in Table 5.
We believe that the advantage of our network structure lies in its ability to fuse multi-
scale spatial and channel features, as well as the additional color domain that can provide
more information.

Figure 8. Enhancement examples of our ablation studies. We show the enhanced images of backbone,
backbone+LAB, and backbone+LAB+AUEM on a subset of the UIEBD test data. It is evident from
the image that our network demonstrates significant improvement in enhancement effectiveness.

Table 4. Ablation experiments on AUEM module.

Network PSNR SSIM

Backbone+LAB+AUEM
(w/o LKA+SG+CA) 22.12 0.86

Backbone+LAB+AUEM 22.38 0.87

Table 5. Replacement experiment on AUEM module.

Network PSNR SSIM

Backbone+LAB+Conv 22.07 0.86
Backbone+LAB+AUEM 22.38 0.87
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Figure 9. Pictures show two extracted results of backbone and our network. (a) represents the feature
extracted by our network and (b) represents the feature extracted by backbone network.

6. Discussion

Based on our experimental results, the performance of our network is remarkably
outstanding. We attribute this success primarily to the incorporation of AUEM and the
physical priors embedded in LAB color space images. Through ablation experiments,
it becomes evident that the most influential factor is AUEM. This module significantly
expands the network’s receptive field and enhances channel-wise and spatial interactions
to a considerable extent. As a result, it plays a vital role in achieving such impressive per-
formance. This finding holds significant implications for addressing the enhancement tasks
of underwater images in current probabilistic networks, serving as valuable inspiration for
future research in this domain.

7. Conclusions

In this paper, aiming to address the local perception and color perception limitations
of current UIE methods, we proposed NUAM-Net for underwater image enhancement.
Specifically, our NUAM-Net models the long-range spatial and channel interactions with a
novel AUEM module, enabling both local and long-range receptive fields for large-scale
degradation perception. Moreover, NUAM-Net extracts features from RGB and an extra
LAB color space to fully utilize the fine-grained color degradation clues of underwater
images. Based on the probabilistic training framework, our NUAM-Net achieves highly
competitive results on the popular UIEBD benchmark compared to the state-of-the-art
model-free, prior-based, and learning-based UIE methods. In the future, we plan to extend
our method to vision-based underwater systems, such as underwater visual SLAM and
visual 3D reconstruction.
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