Underwater Image Enhancement Based on Light Field-Guided Rendering Network
Abstract
:1. Introduction
2. Related Work
2.1. Methods Based on Non-Physical Models
2.2. Methods Based on Physical Models
2.3. Deep Learning-Based Methods
3. Proposed Framework
3.1. Light Field Detection Module
3.2. Sketch Module
3.3. Colorization and Rendering Networks
3.4. Loss Function
4. Experimental Results
4.1. Network Training and Parameter Setting
4.2. Performance Evaluation
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Yang, M.; Hu, J.; Li, C.; Rohde, G.; Du, Y.; Hu, K. An in-depth survey of underwater image enhancement and restoration. IEEE Access 2019, 7, 123638–123657. [Google Scholar] [CrossRef]
- Sahu, P.; Gupta, N.; Sharma, N. A survey on underwater image enhancement techniques. Int. J. Comput. Appl. 2014, 87, 13. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Diving into haze-lines: Color restoration of underwater images. In Proceedings of the British Machine Vision Conference, London, UK, 4–7 September 2017; Volume 1. [Google Scholar]
- Schettini, R.; Corchs, S. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 2010, 746052. [Google Scholar] [CrossRef]
- Fu, X.; Fan, Z.; Ling, M.; Huang, Y.; Ding, X. Two-step approach for single underwater image enhancement. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 6–9 November 2017; pp. 789–794. [Google Scholar]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing under-water images and videos by fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 81–88. [Google Scholar]
- Ghani, A.S.A.; Isa, N.A.M. Underwater image quality enhancement through composition of dual-intensity images and rayleigh-stretching. SpringerPlus 2014, 3, 757. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Chen, S.; Tang, Y.; Pang, Y.; Wang, J. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 1993–1997. [Google Scholar]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 2017, 3, 387–394. [Google Scholar] [CrossRef]
- Cui, R.; Chen, L.; Yang, C.; Chen, M. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 2017, 64, 6785–6795. [Google Scholar] [CrossRef]
- Iqbal, K.; Odetayo, M.; James, A. Enhancing the low-quality images using unsupervised colour correction method. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1703–1709. [Google Scholar]
- Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.-P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 4572–4576. [Google Scholar]
- Zhang, S.; Wang, T.; Dong, J.; Yu, H. Underwater image enhancement via extended multi-scale Retinex. Neurocomputing 2017, 245, 1–9. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Huang, C.H.; Kang, L.-W. Multi-scale deep residual learning-based single image haze removal via image decomposition. IEEE Trans. Image Process. 2019, 29, 3153–3167. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Chiang, J.; Chen, Y. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2012, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Akkaynak, D.; Treibitz, T. Sea-thru: A method for removing water from underwater images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 1682–1691. [Google Scholar]
- Carlevaris-Bianco, N.; Mohan, A.; Eustice, R. Initial results in underwater single image dehazing. In Proceedings of the Oceans 2010 Mts/IEEE Seattle, Seattle, WA, USA, 20–23 September 2010; pp. 1–8. [Google Scholar]
- Galdran, A.; Pardo, D.; Picn, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, T.; Qu, S. Deriving inherent optical properties from background color and underwater image enhancement. Ocean Eng. 2015, 94, 163–172. [Google Scholar] [CrossRef]
- Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Xie, Y.; Yu, Z.; Yu, X.; Zheng, B. Lighting the darkness in the sea: A deep learning model for underwater image enhancement. Front. Mar. Sci. 2022, 9, 921492. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Jiang, Q.; Ren, W.; Lam, K.-M.; Zhang, W. Underwater camera: Improving visual perception via adaptive dark pixel prior and color correction. Int. J. Comput. Vis. 2023, 1–19. [Google Scholar] [CrossRef]
- Ye, T.; Chen, S.; Liu, Y.; Ye, Y.; Chen, E.; Li, Y. Underwater light field retention: Neural rendering for underwater imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 488–497. [Google Scholar]
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef]
- Islam, M.J.; Luo, P.; Sattar, J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv 2020, arXiv:2002.01155. [Google Scholar]
- Naik, A.; Swarnakar, A.; Mittal, K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 19–21 May 2021. [Google Scholar]
- Wang, D.; Sun, Z. Frequency domain based learning with transformer for underwater image restoration. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Shanghai, China, 10–13 November 2022; pp. 218–232. [Google Scholar]
- Cong, R.; Yang, W.; Zhang, W.; Li, C.; Guo, C.-L.; Huang, Q.; Kwong, S. PUGAN: Physical model-guided underwater im-age enhancement using GAN with dual-discriminators. IEEE Trans. Image Process. 2023, 32, 4472–4485. [Google Scholar] [CrossRef] [PubMed]
- Land, E.H. The retinex theory of color vision. Sci. Am. 1977, 237, 108–129. [Google Scholar]
- Akkaynak, D.; Treibitz, T. A revised underwater image formation model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6723–6732. [Google Scholar]
- Rahman, Z.; Jobson, D.J.; Woodell, G.A. Multi-scale retinex for color image enhancement. In Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 16–19 September 1996; Volume 3, pp. 1003–1006. [Google Scholar]
- Wang, N.; Zhou, Y.; Han, F.; Zhu, H.; Yao, J. Uwgan: Underwater gan for real-world underwater color restoration and dehazing. arXiv 2021, arXiv:1912.10269. [Google Scholar]
- Lee, J.; Kim, E.; Lee, Y.; Kim, D.; Chang, J.; Choo, J. Reference-based sketch image colorization using augmented-self reference and dense semantic correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13 June 2020; pp. 5801–5810. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Kinga, D.; Adam, J.B. A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
Method | UFO-120 | EUVP | UIEB | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | UIQM | PSNR | SSIM | UIQM | PSNR | SSIM | UIQM | |
UGAN | 23.45 | 0.80 | 3.04 | 23.67 | 0.67 | 2.70 | 20.68 | 0.84 | 3.17 |
WaterNet | 22.46 | 0.79 | 2.83 | 20.14 | 0.68 | 2.55 | 19.11 | 0.80 | 3.04 |
FUnIE | 25.15 | 0.82 | 3.09 | 21.92 | 0.89 | 2.78 | 19.13 | 0.73 | 3.34 |
Deep SESR | 27.15 | 0.84 | 3.13 | 25.25 | 0.75 | 2.98 | 19.26 | 0.73 | 2.97 |
Shallow-UWnet | 25.20 | 0.73 | 2.85 | 27.39 | 0.83 | 2.98 | 18.99 | 0.67 | 2.77 |
URTB | 26.49 | 0.78 | 3.06 | 29.38 | 0.85 | 3.03 | 21.71 | 0.83 | 3.05 |
PUGAN | 23.70 | 0.82 | 2.85 | 24.05 | 0.74 | 2.94 | 21.67 | 0.78 | 3.28 |
Proposed | 28.97 | 0.91 | 3.09 | 30.27 | 0.93 | 2.95 | 23.16 | 0.85 | 3.04 |
Method | FLOPs | Parameters |
---|---|---|
UGAN | 38.97 G | 57.17 M |
WaterNet | 193.70 G | 24.81 M |
FUnIE | 10.23 G | 7.01 M |
Deep SESR | 146.10 G | 2.46 M |
Shallow-UWnet | 21.63 G | 0.22 M |
URTB | 55.46 G | 0.86 M |
PUGAN | 72.05 G | 95.66 M |
Proposed | 53.74 G | 35.84 M |
EUVP | |||
---|---|---|---|
PSNR | SSIM | UIQM | |
Complete proposed method | 30.27 | 0.93 | 2.95 |
(w/o) LFM | 20.14 | 0.74 | 2.33 |
(w/o) Sketch Module | 27.97 | 0.84 | 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-H.; Lai, Y.-W.; Lin, Y.-Y.; Chen, M.-J.; Wang, C.-C. Underwater Image Enhancement Based on Light Field-Guided Rendering Network. J. Mar. Sci. Eng. 2024, 12, 1217. https://doi.org/10.3390/jmse12071217
Yeh C-H, Lai Y-W, Lin Y-Y, Chen M-J, Wang C-C. Underwater Image Enhancement Based on Light Field-Guided Rendering Network. Journal of Marine Science and Engineering. 2024; 12(7):1217. https://doi.org/10.3390/jmse12071217
Chicago/Turabian StyleYeh, Chia-Hung, Yu-Wei Lai, Yu-Yang Lin, Mei-Juan Chen, and Chua-Chin Wang. 2024. "Underwater Image Enhancement Based on Light Field-Guided Rendering Network" Journal of Marine Science and Engineering 12, no. 7: 1217. https://doi.org/10.3390/jmse12071217
APA StyleYeh, C. -H., Lai, Y. -W., Lin, Y. -Y., Chen, M. -J., & Wang, C. -C. (2024). Underwater Image Enhancement Based on Light Field-Guided Rendering Network. Journal of Marine Science and Engineering, 12(7), 1217. https://doi.org/10.3390/jmse12071217