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Abstract: Underwater images often encounter challenges such as attenuation, color distortion, and
noise caused by artificial lighting sources. These imperfections not only degrade image quality
but also impose constraints on related application tasks. Improving underwater image quality is
crucial for underwater activities. However, obtaining clear underwater images has been a challenge,
because scattering and blur hinder the rendering of true underwater colors, affecting the accuracy
of underwater exploration. Therefore, this paper proposes a new deep network model for single
underwater image enhancement. More specifically, our framework includes a light field module
(LFM) and sketch module, aiming at the generation of a light field map of the target image for
improving the color representation and preserving the details of the original image by providing
contour information. The restored underwater image is gradually enhanced, guided by the light field
map. The experimental results show the better image restoration effectiveness, both quantitatively
and qualitatively, of the proposed method with a lower (or comparable) computing cost, compared
with the state-of-the-art approaches.

Keywords: underwater image enhancement; restoration; convolutional neural network; colorization;
light field; rendering network

1. Introduction

In recent years, the exploration of the underwater environment has garnered signifi-
cant attention, driven by the escalating scarcity of natural resources, in tandem with the
expansion of the global economy. In the field of ocean engineering, a variety of applications
increasingly depend on underwater images acquired via autonomous underwater vehicles
(AUVs). These vehicles are employed for the purposes of exploring, comprehending, and
engaging with marine environments [1]. However, underwater images frequently degrade
due to attenuation, color distortion, reduced contrast, and noise from artificial lighting
sources, caused by differences in depth, lighting conditions, water type, and the presence
of suspended particles or floating debris in the water. It is required to deeply investigate
the image restoration of underwater images [2,3].

In addition, due to the physical properties of light in water, red wavelengths disap-
pear first, and orange and yellow wavelengths disappear in sequence as the water depth
increases. However, green and blue light have relatively short wavelengths, and therefore
can travel the longest distances in water [4]. Therefore, underwater images mainly have
green or blue hues, causing the color deviation of the images [5], which leads to great
limitations on underwater vision-based tasks such as classification, tracking, and detection.

Image restoration inherently poses challenges due to its ill-posed nature. Several
image restoration techniques in the literature rely on prior knowledge or assumptions,
along with learning strategies. They include non-physical models’ methods [6–8], physical
models’ methods [4,9,10], and deep learning-based methods [1,11,12]. The non-physical
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model method mainly uses basic image-processing technology to modify pixel values in
terms of contrast, brightness, saturation perspectives, etc., to improve the visual quality of
underwater images. However, its effectiveness is limited by the lack of consideration of
underwater physical degradation processes. Methods based on physical models mainly
focus on accurately estimating medium transmission parameters, such as the medium
transmittance and background light field or other key underwater imaging parameters, and
can obtain clear images by inverting the physical model of underwater imaging. However,
methods based on physical models are not easily adaptable and may not be suitable for
complex and diverse realistic underwater scenes. This is because model assumptions about
the underwater environment are not always reasonable, and it is challenging to evaluate
multiple parameters simultaneously.

Relying on the rapid development of deep learning techniques with great success in
numerous perceptual tasks, some deep learning-based single underwater image restoration
frameworks have been presented. However, most existing deep learning-based methods
often ignore the domain knowledge of underwater imaging and only perform end-to-end
deep network training on synthetic databases. GAN (Generative Adversarial Network)
architecture and its extension CycleGAN (Cycle-Consistent Adversarial Network) have
been applied to underwater image restoration. However, it may generate unrealistic images
with less content information than the original images. Artificially generated underwater
images, whether on CNN-based or GAN-based model learning, may not be suitable for
real underwater images, which will lead to inadequate underwater image reconstruction.

In summary, existing approaches for single underwater image restoration usually
suffer from three shortcomings: insufficient color representation, incomplete reconstruction
of image details, and increased computational complexity. To address these challenges,
this paper introduces a lightweight end-to-end deep model that accounts for the impact
of light fields in single underwater image restoration. To our knowledge, this is the first
endeavor to introduce a background light field into the task of the color enhancement
of underwater images. In addition, this simple and effective shading network has the
advantages of fast processing and few parameters, without the need to manually adjust
image pixel values or design a priori assumption. We use a carefully designed objective
function to preserve image contour details and ensure that the output image quality will
not be distorted. The experimental results show that our architecture achieves a high
performance of image restoration in both qualitative and quantitative evaluations, when
compared to the state-of-the-art underwater image enhancement algorithms.

The rest of the paper is organized as follows. Section 2 presents some related works
of underwater image restoration. In Section 3, the proposed light field-domain learning
framework for underwater image restoration is addressed. Section 4 presents the proposed
model learning strategy for training our deep underwater image restoration network.
Finally, some concluding remarks are made in Section 5.

2. Related Work

Image enhancement is a well-studied problem in the fields of computer vision and
signal processing. Exploring the underwater world has become an active issue in recent
years [5,13]. Underwater image enhancement has attracted much attention, as an essential
measure to enhance the visual clarity of underwater images. Several techniques have been
proposed, which can be divided into three categories: non-physical model-based methods,
physical model-based methods, and deep learning-based methods.

2.1. Methods Based on Non-Physical Models

Methods based on non-physical models seek to enhance visual quality by adjusting
image pixel values. Iqbal et al. employed different pixel range stretching techniques in RGB
and HSV color spaces to enhance the contrast and saturation of underwater images [14].
Fu et al. proposed a two-step method for underwater image enhancement, including
a color correction algorithm and a contrast enhancement algorithm [6]. Another study
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attempted to enhance underwater images based on Retinex models. Fu et al. [15] proposed
a Retinex-based underwater image enhancement method, including color correction, layer
decomposition, and enhancement. Zhang et al. [16] extended the Retinex-based method to
a multi-scale underwater image enhancement framework in this task.

2.2. Methods Based on Physical Models

Traditional physics-based methods use atmospheric dehazing models to estimate
transmitted and ambient light in the scene to restore pixel intensities [17]. Methods based
on physical models approach the improvement of underwater images by treating it as an
inverse problem. This involves estimating the latent parameters of the image formation
model from a provided image. Most of these techniques depend on the following procedure:
(1) construction of a degraded physical model; (2) estimation of unknown model parameter
estimates; and (3) solving model equations with estimated parameters. One research
direction involves adapting the dark channel prior (DCP) algorithm [18] for enhancing
underwater images. In reference [19], DCP is merged with a compensation algorithm
dependent on wavelength to recover underwater images. In a recent work, Akkaynak
et al. [20] proposed an improved imaging model that accounts for the unique distortions
associated with underwater light propagation [20]. This facilitates a more accurate color
reconstruction and generally provides a better approximation of ill-posed underwater
image enhancement problems. However, these methods still require the same scene depth
and optical water volume measurements as before, which are characteristics of underwater
optical imaging. Calvaris-Bianca et al. introduced a prior method that utilizes variations
in attenuation across three channels of the RGB color space to estimate the transmission
map of underwater scenes [21]. The concept underlying this prior method is that red light
tends to degrade more rapidly compared to green and blue light in underwater settings.
Galderan et al. introduced a method focusing on the red channel, to recover the lost contrast
in underwater images by reinstating colors associated with shorter wavelengths [22]. Zhao
et al. found that the background color of underwater images is related to the intrinsic optical
properties of the water medium, and they improved the quality of degraded underwater
images by deducing the inherent optical characteristics of water from the background
color [23]. However, the inaccurate estimation of the physical model poses challenges in
achieving the desired underwater image enhancement.

2.3. Deep Learning-Based Methods

In recent years, deep learning has made significant progress in solving low-level vision
issues. These techniques can undergo training by employing synthetic pairs consisting
of degraded images and their high-quality counterparts. However, underwater imaging
models heavily rely on scenes and lighting conditions, including factors like temperature
and turbidity. Present techniques rooted in deep learning can be categorized into two
primary approaches: (1) developing end-to-end modules; and (2) utilizing deep network
models to directly predict physical parameters and recover images using degradation
models. Li et al. proposed WaterGAN, a deep learning-based underwater image enhance-
ment model that simulates underwater images from aerial imagery and depth pairs in
an unsupervised pipeline [12]. The authors employed synthetic training data and im-
plemented a two-stage network for restoring underwater images, with a special focus
on eliminating color bias. Li et al. proposed an underwater image enhancement model
UWCNN, which is trained through ten types of underwater images, and underwater image
synthesis is conducted using the refined underwater imaging model and corresponding
underwater scene parameter pictures [24]. Zhu et al. proposed a weakly supervised un-
derwater color transmission model based on cycle-consistent adversarial networks [25].
However, adopting these GAN-based methods results in unstable training and is prone to
mode collapse. In recent years, CNN-based enhancement models have been proposed to
address the challenges of low-light conditions underwater. Xie et al. introduced a model
that separates a low-light underwater image into an illumination map and a reflectance
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map using a decomposition network, before feeding them into the restoration network.
This network uses a normal-light underwater image without scattering as a reference to
produce the restored images [26]. Meanwhile, Zhou et al. developed an underwater image
restoration technique that integrates the Comprehensive Imaging Formation Model (CIFM)
with both prior knowledge and unsupervised methods. This approach includes estimat-
ing the depth map using the Channel Intensity Prior (CIP) and employing Penetration
Adaptation Dark Pixels (ADP) to reduce backscatter [27]. Both approaches are focused
on mitigating the challenges posed by insufficient lighting in underwater environments.
Ye et al. proposed an underwater neural rendering method [28] that automatically learns
inherent degradation models from real underwater images, which helps create comprehen-
sive underwater datasets with various water quality conditions. Fabbri et al. proposed a
GAN model-based technique to improve the quality of visual underwater scenes, and to
improve the vision-driven performance of autonomous underwater robots [29]. Li et al.
established the famous underwater image dataset UIEB (Underwater Image Enhancement
Benchmark) and proposed WaterNet, an underwater image enhancement network trained
on this dataset [30]. Islam et al. presented a conditional generative adversarial network-
based model for real-time underwater image enhancement [1]. Deep SESR (simultaneous
enhancement and super-resolution) is a residual network-based generative model that
learns to restore perceived image quality with a higher spatial resolution [31]. Naik et al.
proposed a shallow neural network model called Shallow-UWnet that can maintain perfor-
mance with fewer parameters [32]. Wang et al. proposed a transformer-based block called
URTB [33], along with convolutional layers for underwater image processing. Furthermore,
frequency-domain loss (FDL) is added to the overall loss learning to study the effect of
frequency. Cong et al. inherited the advantages of two types of models: GAN-based
methods and physical model-based methods. A physically model-guided GAN model
called PUGAN [34] is proposed for underwater image processing. Inspired by [28], our
proposed framework is an end-to-end deep network combined with the Retinex model to
consider the impact of light fields. We also integrate a contour sketch module designed to
enhance the performance of the network in areas where the quality degrades severely, thus
improving the visual quality. Our network retains the advantages of convolutional network
training, which can greatly shorten the convergence time, avoid the above problems, and
achieve a better performance.

3. Proposed Framework

The Retinex theory is about the removal of unpleasant illumination effects from a
given image. The Retinex algorithm separates illumination from reflectance in a given
captured image, which can deal with the effects of lighting degradation in underwater
imaging. According to the Retinex theory [35], the decomposition of the underwater image
can be expressed as

I = L·R, (1)

where I represents the input underwater image, L is the component of the illumination light,
and R is the reflection component of the target object carrying the image detail information.
Our method aims to improve the representation of underwater images by transforming
the color of the underwater background light field, while preserving contour details. We
present an overview architecture for underwater image enhancement in Figure 1. This
architecture consists of four key modules: the sketch module, the light field detection
module, the colorization network, and the rendering network. The input underwater
image is processed through these modules to increase color representation and improve
feature representation. The underwater image first passes through the sketch module
and the light field detection module to generate three paths: the detail path, the original
underwater image path, and the light field path. The light field path is then fed into
the colorization network to obtain a restored color background light field. Also, image
information is enhanced by tightly connecting the sketch path with the input image path
and light field path. The combined images are then fed into the rendering network to
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obtain true-color underwater images. We will further explain the proposed method in the
following subsections, including Section 3.1 (the light field detection module), Section 3.2
(the sketch module), Section 3.3 (the rendering network), and Section 3.4 (the loss function).
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3.1. Light Field Detection Module

In [36], the underwater imaging model can be expressed as

I = J·e−βz + B·
(

1 − e−βz
)

, (2)

where I and J are the underwater image and clean image, respectively; z is the scene depth,
β is the scattering coefficient, and B is the background light. In this underwater imaging
model, the estimation of the physical model includes two key parameters: β and B. Due to
the influence of light scattering, the optical properties of ground scenes and underwater
scenes are very different, and parameters change randomly, which makes them difficult
to accurately formulate by traditional physical models. To solve the above problems, we
propose a light field detection module to extract the background light field in complex
underwater scenes as much as possible. We define the underwater image in the dataset
as I. In Equation (1), the image can be decomposed into two components, L and R, which
respectively represent the illumination light component in the underwater scene and the
reflection detail component of the object. We apply a multi-scale log-domain Gaussian
low-pass filter to I to obtain an underwater background light field map:

L = Normalization

(
log ·1

3∑
σ

Gaussσ(I)

)
,σ ∈ {20, 60, 90}. (3)

where Gaussσ() represents the Gaussian blur function with the σ parameter. Referring
to the MSR [37] proposed by Rahman, we set σ to 20, 60, and 90 based on experimental
experience. In view of the deficiencies in the single-scale model, the MSR linearly combines
enhanced images at different scales, and then performs multi-scale operations to estimate
the results. We refer to the above idea and set σ to three values to perform different degrees
of Gaussian blur operations on the input underwater image, to obtain a better background
light field map. This method can have better results for different types of underwater
images and improve the generalization of the network. As shown in Figure 2, we can
obtain the background light field map of the real underwater image. It is obvious that
our background light field map effectively filters out irrelevant object information and
accurately represents underwater images.

The background light field map primarily encompasses the inherent stylistic features
found in diverse underwater scenes, but it does not contain the detailed structural infor-
mation in the original underwater image. Theoretically, the background light field map
can be regarded as two important parameters B and β in the underwater model, which
offer very important information about underwater feature migration; however, the pre-
vious work ignored the importance of the β parameter in underwater imaging [38]. Our
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model can effectively capture a real underwater background light field and has excellent
restoration performance.
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3.2. Sketch Module

In our proposed method, underwater images are processed in a light field detection
module, allowing us to extract valuable information about the background light field.
However, in order to preserve the contour details of an image, accurate contours must
be obtained from a clean reference image. To meet this requirement, we refer to [39]
and propose a sketch module to extract image contours and incorporate them into the
rendering network, enabling the network to learn and exploit valuable properties of detailed
contours. Dense semantic mapping maps pixels in the sketch to the reference image based
on the semantics of the pixels. This ensures that elements with similar semantics (such as
underwater object outlines) in the sketch and reference image are matched accordingly.
This is achieved through a deep neural network that learns to identify and align similar
features between sketch and reference images. Sketch information, also called the detail
map, is used to guide the restoration network to restore better structural representations
of underwater images. A significant advantage of our approach is that it can effectively
mitigate the distortion caused by the image-rendering process. By integrating the estimated
detail map into the background rendering network, we enhance the network’s ability to
accurately reproduce fine details in the restored images. Therefore, our proposed method
can better preserve the contour details of the underwater image and reduce the distortion
that may occur during the rendering process.

3.3. Colorization and Rendering Networks

In the colorization network, our image colorization framework adopts the U-Net
architecture. This approach can accurately preserve image details and spatial hierarchies,
through the integration of skip connections concatenating multi-scale feature maps. Addi-
tionally, this design facilitates the efficient generation of context and texture information
across network layers, making U-Net particularly suitable for tasks such as image coloriza-
tion. Specifically, for the input grayscale image, we downsize it by a factor of 2 in each
sub-layer, perform LReLU activation and batch normalization, and then upsample the
latent features of the output target image. Our colorization network aims to recover the
light field of underwater images, to guide the network to restore better color representa-
tions. We anticipate that the restored light field will guide the rendering network to offer
an improved color representation of the degraded images.

In the rendering network, in order to overcome the insufficiency of the underwater
pairing dataset, we have also designed a U-Net-based network as our rendering network.
In Figure 3, the properties of U-Net can be exploited to effectively train the network with
only a small amount of data. To enhance the network’s performance further, we have
integrated various attention modules. Considering the complex and diverse characteristics
of underwater scenes, we first set the size of the convolutional layer to 1 × 1 and 3 × 3,
using different receptive fields to obtain multi-scale features for fusion, while considering
different spatial structures and color stabilization effects. We have also added a channel
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attention module and a spatial attention module, as shown in Figure 4. The channel
attention module focuses on the network’s representation of significant feature channels.
The spatial attention mechanism enables the network to focus on the complex light field
distribution areas in the image and has a high attention ability. Residual connection is used
to effectively prevent the vanishing gradient problem and improve the overall performance
of the model.
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3.4. Loss Function

In order to ensure that the restored image is close enough to the real underwater image,
we introduce L1 loss as our basic reconstruction loss:

Lrec = ∥ Iu − Xg ∥1, (4)

where Iu is the restored underwater image, and Xg is the ground truth image. In order
to comply with underwater characteristics, UDC (Underwater Dark Channel) applies the
dark channel priority principle [18], so we also integrate underwater dark channel loss, to
ensure consistency between the rendered image and the original image in the dark channel.
The underwater dark channel loss equation is defined as follows:

Ludc = ∥ UDC(Iu)− UDC
(
Xg
)
∥1. (5)

In order to effectively preserve the light field characteristics of real underwater images,
we introduce a light field consistency loss based on the light field map to improve the
quality of the light field. We utilize Equation (3), mentioned above, to generate the light
field map. The following is the loss of the light field consistency:

Llfc = ∥ LF (Iu)−LF
(
Lg
)
∥1, (6)

where LF denotes a light field capture operation and Lg is the ground truth light field. To
preserve the perceptual and semantic understanding of the image, we also introduce the
perceptual loss function that measures the difference between high-level features of two
images, usually extracted from a pre-trained CNN [40]. The perceptual loss is calculated as
the distance between the feature representation of the restored image Iu and the ground
truth clear image Xg, and the perceptual loss equation is as follows:

Lper = ∥ φj(Iu)− φj
(
Xg
)
∥1, (7)
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where φj is the jth layer of the specified loss network. The final loss L of our proposed
network is computed as a pixel-level supervision using the sum of four losses, which is
represented as follows:

L = λrecLrec + λudc Ludc + λlfcLlfc + λperLper , (8)

where λrec , λudc , λlfc , and λper denote the tradeoff weights.

4. Experimental Results

To evaluate the performance of the proposed method, three well-known underwater
augmentation datasets, UFO-120 [31], EUVP [1], and UIEB [30], are used in the experi-
ments. It is virtually impossible to simultaneously capture realistic underwater scenes
and corresponding ground truth images of different water types. In these three datasets,
they use different methods, including human participants, to generate the ground truth
for underwater scenes. UFO-120 [31] is a relatively new underwater image dataset that
can be used for model-training tasks. Ground truth is generated through the style transfer
method, with 1500 images used for training and 120 images used for testing. EUVP [1] used
seven different photographic devices to collect underwater imagery and captured some
from YouTube videos. Ground truth is generated by a trained CycleGAN, with 2185 images
for training and 130 images for validation. UIEB [30] is a real-world underwater scene
dataset that consists of 890 pairs of underwater images taken under different lighting condi-
tions, with different color gamuts and contrasts. In addition, four well-known quantitative
metrics—UIQM (Underwater Image Quality Measurement) [41], PSNR (Peak Signal-to-
Noise Ratio), and SSIM (Structural Similarity Index) —are used to evaluate the image color
restoration performance. The UIQM covers various factors that affect underwater image
quality by utilizing Underwater Image Color Measurement (UICM) [41], Underwater Im-
age Sharpness Measurement (UISM) [41], and Underwater Image Contrast Measurement
(UIConM) [41].

Seven state-of-the-art methods regarding underwater enhancement based on deep
learning are used for comparison, which are UGAN [29], WaterNet [30], FUnIE [1], Deep
SESR [31], Shallow-UWnet [32], URTB [33], and PUGAN [34]. In addition to quantitative
comparisons, we also conduct qualitative evaluations with seven existing methods, to
further show the superiority of our method.

4.1. Network Training and Parameter Setting

The proposed method was implemented using PyTorch version 2.0 of the Python pro-
gramming language on a PC equipped with an Intel® Core™ i7-8700k processor @3.70 GHz,
32 GB memory, and an NVIDIA RTX3090 GPU. The Adam optimizer [42] is used for model
optimization, and the initial learning rate is set to 0.0002. After 100 epochs, we start to
linearly decay the learning rate to avoid possible oscillations in the later training stage. The
size of the training input patch is set to 256×256, and the network is trained for 400 epochs.

4.2. Performance Evaluation

Table 1 shows the results of the quantitative evaluation on the UFO-120, EUVP,
and UIEB datasets in terms of the average PSNR, SSIM, and UIQM metrics, including
UGAN [29], WaterNet [30], FUnIE [1], Deep SESR [31], Shallow-UWnet [32], URTB [33],
and PUGAN [34], and the proposed method. According to Table 1, our proposed method
is compared with seven state-of-the-art deep learning-based underwater enhancement
methods. Except for UIQM, our proposed method has the best results compared to the
other methods in terms of PSNR, and SSIM. A higher PSNR value indicates that the re-
stored result is closer to the content of the clean image, while a higher SSIM value indicates
that the restored result has a more similar structure and texture to the clean image. For
the UIQM metric, higher values indicate better human visual perception. In addition,
Figure 5 shows the qualitative evaluation results of all methods on the UFO-120 dataset.
As shown in Figure 5, our proposed method exhibits a superior image quality compared
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to state-of-the-art methods, especially in terms of image detail and color representation.
Furthermore, it is worth noting that, according to the results in Table 2, our proposed
architecture achieves better performance with comparable parameters and computation.

Table 1. Quantitative performance evaluations on UFO-120, EUVP, and UIEB datasets.

Method
UFO-120 EUVP UIEB

PSNR SSIM UIQM PSNR SSIM UIQM PSNR SSIM UIQM

UGAN 23.45 0.80 3.04 23.67 0.67 2.70 20.68 0.84 3.17

WaterNet 22.46 0.79 2.83 20.14 0.68 2.55 19.11 0.80 3.04

FUnIE 25.15 0.82 3.09 21.92 0.89 2.78 19.13 0.73 3.34

Deep SESR 27.15 0.84 3.13 25.25 0.75 2.98 19.26 0.73 2.97

Shallow-UWnet 25.20 0.73 2.85 27.39 0.83 2.98 18.99 0.67 2.77

URTB 26.49 0.78 3.06 29.38 0.85 3.03 21.71 0.83 3.05

PUGAN 23.70 0.82 2.85 24.05 0.74 2.94 21.67 0.78 3.28

Proposed 28.97 0.91 3.09 30.27 0.93 2.95 23.16 0.85 3.04
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Table 2. Complexity evaluations for difference methods.

Method FLOPs Parameters

UGAN 38.97 G 57.17 M

WaterNet 193.70 G 24.81 M

FUnIE 10.23 G 7.01 M

Deep SESR 146.10 G 2.46 M

Shallow-UWnet 21.63 G 0.22 M

URTB 55.46 G 0.86 M

PUGAN 72.05 G 95.66 M

Proposed 53.74 G 35.84 M

4.3. Ablation Study

To verify the effectiveness of each component in our proposed network, the following
ablation study is performed by removing the LFM or sketch modules. The results of the
ablation study are shown in Table 3. Summarizing the results of our ablation study, it
can be found that removing any component from the proposed method leads to image
quality degradation in terms of image blurring, structure loss, and color deviation. In
Table 3, the complete method shows the best restoration performance both quantitatively
and qualitatively.

Table 3. Quantitative results of ablation studies.

EUVP

PSNR SSIM UIQM

Complete proposed method 30.27 0.93 2.95

(w/o) LFM 20.14 0.74 2.33

(w/o) Sketch Module 27.97 0.84 2.60

5. Conclusions

This paper proposes a simple yet effective underwater image enhancement method
that includes the following sequences of steps: image contours extraction (sketch module),
light field extraction (light field module), light field restoration (colorization network),
and underwater restoration (rendering network). The main contribution of the proposed
model is that it learns the light field representations of different underwater scenes and
efficiently restores their color representation through a colorization network. Furthermore,
a contour texture map is used as an attention weight to integrate detailed knowledge into
the rendering network to ensure the fidelity of the rendered image. Through comprehensive
quantitative and qualitative evaluations, our proposed model outperforms state-of-the-art
deep learning-based methods, while requiring fewer parameters and computations.
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