Short-Term Photovoltaic Power Prediction Based on a Digital Twin Model
Abstract
:1. Introduction
2. Research Idea
3. PV Digital Twin Model
3.1. Mechanism Model
3.2. Data-Driven Model
3.3. Data Update Based on Sliding Time Window Update Method
3.4. Digital Twin Model
4. Bi-Directional Long-Short Term Memory
5. Experimental Procedure
6. Experimental Results
6.1. Evaluation Metrics
6.2. Experimental Data
6.3. Data Augmentation Effects of the PV DT Model
6.4. PV Power Prediction Results
7. Conclusions
- (1)
- The PV DT model implements data augmentation, which has the advantages of strong followability, small error deviation, and strong interpretability compared to mechanism and data-driven models, and the fidelity of the data-driven model is further improved after the data update.
- (2)
- The PV DT model combined with BiLSTM achieves an accurate prediction of the PV power. Compared with several main PV prediction models, our method had the lowest values for the evaluation indexes of RMSE, MAE, and MAPE under sunny, rainy, and cloudy weather conditions, and the prediction results fit well with the actual values, with a small absolute error value, which was especially obvious under cloudy weather.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manolache, A.I.; Andrei, G.; Rusu, L. An Evaluation of the Efficiency of the Floating Solar Panels in the Western Black Sea and the Razim-Sinoe Lagunar System. J. Mar. Sci. Eng. 2023, 11, 203. [Google Scholar] [CrossRef]
- Du, Z.; Chen, Q.; Guan, C.; Chen, H. Improvement and Optimization Configuration of Inland Ship Power and Propulsion System. J. Mar. Sci. Eng. 2023, 11, 135. [Google Scholar] [CrossRef]
- Lee, K.-J.; Shin, D.; Yoo, D.W.; Choi, H.K.; Kim, H.J. Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode—Experimental investigation. Energy 2013, 49, 475–483. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Sun, Y.; Tang, H.; Cao, M.; Xia, R.; Han, F. Optimizing Energy Management and Case Study of Multi-Energy Coupled Supply for Green Ships. J. Mar. Sci. Eng. 2023, 11, 1286. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Durmuşoğlu, Y. Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis: A case study. Sol. Energy 2020, 207, 1259–1268. [Google Scholar] [CrossRef]
- Nyanya, M.N.; Vu, H.B.; Schönborn, A.; Ölçer, A.I. Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier. Sustain. Energy Technol. Assess. 2021, 47, 101397. [Google Scholar] [CrossRef]
- Martínez-López, A.; Ballester-Falcón, P.; Mazorra-Aguiar, L.; Marrero, A. Solar photovoltaic systems for the Short Sea Shipping’s compliance with decarbonization regulations in the European Union. Sustain. Energy Technol. Assess. 2023, 60, 103506. [Google Scholar] [CrossRef]
- Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142. [Google Scholar] [CrossRef]
- Rodríguez, F.; Fleetwood, A.; Galarza, A.; Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renew. Energy 2018, 126, 855–864. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Yan, J.; Qiu, C.; Wang, Y.; Wu, N.; Qu, W.; Zhuang, Y.; Yan, G.; Wang, P.; Zhang, R.; Yan, Y.; et al. Design of Control System for Multistage Distillation Seawater Desalination Device Driven by Photovoltaic-Thermal. J. Mar. Sci. Eng. 2023, 11, 222. [Google Scholar] [CrossRef]
- Raya-Armenta, J.M.; Ortega, P.R.; Bazmohammadi, N.; Spataru, S.V.; Vasquez, J.C.; Guerrero, J.M. An Accurate Physical Model for PV Modules with Improved Approximations of Series-Shunt Resistances. IEEE J. Photovolt. 2021, 11, 699–707. [Google Scholar] [CrossRef]
- Hejri, M.; Mokhtari, H.; Azizian, M.R.; Ghandhari, M.; Söder, L. On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules. IEEE J. Photovolt. 2014, 4, 915–923. [Google Scholar] [CrossRef]
- Ma, X.; Huang, W.H.; Schnabel, E.; Köhl, M.; Brynjarsdóttir, J.; Braid, J.L.; French, R.H. Data-Driven I-V Feature Extraction for Photovoltaic Modules. IEEE J. Photovolt. 2019, 9, 1405–1412. [Google Scholar] [CrossRef]
- Patra, J.C. Chebyshev Neural Network-Based Model for Dual-Junction Solar Cells. IEEE Trans. Energy Convers. 2011, 26, 132–139. [Google Scholar] [CrossRef]
- Ray, B.; Shah, R.; Islam, M.R.; Islam, S. A New Data Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants. IEEE Access 2020, 8, 136223–136233. [Google Scholar] [CrossRef]
- Rubasinghe, O.; Zhang, X.; Chau, T.K.; Chow, Y.H.; Fernando, T. A Novel Sequence to Sequence Data Modelling Based CNN-LSTM Algorithm for Three Years Ahead Monthly Peak Load Forecasting. IEEE Trans. Power Syst. 2024, 39, 1932–1947. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks. Energies 2016, 9, 11. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Mao, M.X.; Zhou, L.; Wan, Y.H.; Xi, X.Z. A Shadow Fault Diagnosis Method Based on the Quantitative Analysis of Photovoltaic Output Prediction Error. IEEE J. Photovolt. 2020, 10, 1158–1165. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.H.; Li, R. Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271–5280. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Almohaimeed, Z.M.; Muhammad, M.A.; Khairuddin, A.S.M.; Akram, R.; Hussain, M.M. An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants. Energies 2022, 15, 2243. [Google Scholar] [CrossRef]
- Cantillo-Luna, S.; Moreno-Chuquen, R.; Celeita, D.; Anders, G. Deep and Machine Learning Models to Forecast Photovoltaic Power Generation. Energies 2023, 16, 4097. [Google Scholar] [CrossRef]
- Hejri, M.; Mokhtari, H. On the Comprehensive Parametrization of the Photovoltaic (PV) Cells and Modules. IEEE J. Photovolt. 2017, 7, 250–258. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Xiao, W. Evaluation of Shunt Model for Simulating Photovoltaic Modules. IEEE J. Photovolt. 2018, 8, 1818–1823. [Google Scholar] [CrossRef]
- Babu, B.C.; Gurjar, S. A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module. IEEE J. Photovolt. 2014, 4, 1156–1161. [Google Scholar] [CrossRef]
- Batzelis, E.I. Simple PV Performance Equations Theoretically Well Founded on the Single-Diode Model. IEEE J. Photovolt. 2017, 7, 1400–1409. [Google Scholar] [CrossRef]
- Wang, C.C.; Sun, X.; Qian, H. Study on MPPT of self-seeking optimal perturbation method. Appl. Electron. Tech. 2016, 42, 142–145. [Google Scholar]
- Pan, X.Q.; Zhou, W.S.; Lu, Y.; Sun, N. Prediction of Network Traffic of Smart Cities Based on DE-BP Neural Network. IEEE Access 2019, 7, 55807–55816. [Google Scholar] [CrossRef]
- Lu, K.Y.; Zhang, W.J.; Sun, B. Multidimensional Data-Driven Life Prediction Method for White LEDs Based on BP-NN and Improved-Adaboost Algorithm. IEEE Access 2017, 5, 21660–21668. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, S.; Bian, G.; Cui, Y.; Peng, C.; Xia, H. A Method for Sound Speed Profile Prediction Based on CNN-BiLSTM-Attention Network. J. Mar. Sci. Eng. 2024, 12, 414. [Google Scholar] [CrossRef]
- Xu, J.; Ding, W.; Gong, Q.S.; Hu, X.Y.; Yu, H.Q. A Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators. IEEE Access 2019, 7, 43414–43427. [Google Scholar] [CrossRef]
- Tang, Z.F.; Ma, J.W.; Liu, W.X.; Zhang, P.F.; Lv, F.Z. Sliding Window Dynamic Time-Series Warping-Based Ultrasonic Guided Wave Temperature Compensation and Defect Monitoring Method for Turnout Rail Foot. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhu, J.Z.; Shu, J.; Huang, L.; Ma, Z.T. Comprehensive Evaluation of Electric Power Prediction Models Based on D-S Evidence Theory Combined with Multiple Accuracy Indicators. J. Mod. Power Syst. Clean Energy 2022, 10, 597–605. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.M.; Li, Z.W.; Ding, L.Y. Improved Fuzzy Bayesian Network-Based Risk Analysis with Interval-Valued Fuzzy Sets and D–S Evidence Theory. IEEE Trans. Fuzzy Syst. 2020, 28, 2063–2077. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Chen, A.G.; Lu, G.X.; Liu, W. Data fusion algorithm based on fuzzy sets and D-S theory of evidence. Tsinghua Sci. Technol. 2020, 25, 12–19. [Google Scholar] [CrossRef]
- Ma, J.T.; Liu, H.; Peng, C.; Qiu, T.S. Unauthorized Broadcasting Identification: A Deep LSTM Recurrent Learning Approach. IEEE Trans. Instrum. Meas. 2020, 69, 5981–5983. [Google Scholar] [CrossRef]
- Luo, C.Y.; Li, X.T.; Ye, Y.M. PFST-LSTM: A Spatio Temporal LSTM Model with Pseudo flow Prediction for Precipitation Nowcasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 843–857. [Google Scholar] [CrossRef]
- Ma, C.X.; Dai, G.W.; Zhou, J.B. Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5615–5624. [Google Scholar] [CrossRef]
- Wu, H.J.; Yang, M.R.; Yang, S.Q.; Lu, H.; Wang, C.Q.; Rao, Y.J. A Novel DAS Signal Recognition Method Based on Spatiotemporal Information Extraction with 1DCNNs-BiLSTM Network. IEEE Access 2020, 8, 119448–119457. [Google Scholar] [CrossRef]
- Boubaker, S.; Benghanem, M.; Mellit, A.; Lefza, A.; Kahouli, O.; Kolsi, L. Deep Neural Networks for Predicting Solar Radiation at Hail Region, Saudi Arabia. IEEE Access 2021, 9, 36719–36729. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H.H.; Alsubari, S.N. Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems. Sustainability 2023, 15, 6973. [Google Scholar] [CrossRef]
Time | Temperature (°C) | Humidity (%) | Irradiance (W/m2) | PV Power (W) |
---|---|---|---|---|
1 October 2022 7:00 | 16 | 73 | 103 | 1494.98 |
1 October 2022 8:00 | 16 | 75 | 108 | 1586.75 |
1 October 2022 9:00 | 17 | 73 | 106 | 1544.16 |
1 October 2022 10:00 | 17 | 85 | 110 | 1609.77 |
1 October 2022 11:00 | 19 | 87 | 115 | 1665.91 |
1 October 2022 12:00 | 21 | 70 | 120 | 1735.27 |
1 October 2022 13:00 | 21 | 69 | 122 | 1767.55 |
1 October 2022 14:00 | 22 | 87 | 118 | 1696.66 |
1 October 2022 15:00 | 20 | 80 | 105 | 1509.54 |
1 October 2022 16:00 | 19 | 75 | 103 | 1493.43 |
1 October 2022 17:00 | 18 | 70 | 90 | 1300.26 |
BPA (Inverse Ratio of Error) | BPA (Inverse Ratio of RMSE) | |
---|---|---|
Mechanism model | 0.187 | 0.23 |
Data-driven model | 0.813 | 0.77 |
BPA (Inverse Ratio of Error) | BPA (Inverse Ratio of RMSE) | |
---|---|---|
Mechanism model | 0.231 | 0.20 |
Data-driven model | 0.769 | 0.80 |
Weight (before the Data Update) | Weight (after the Data Update) | |
---|---|---|
Mechanism model | 6.4% | 7.0% |
Data-driven model | 93.6% | 93.0% |
LSTM | CNN | GRU | CNN-Attention | BiLSTM | |
---|---|---|---|---|---|
Sunny | 52.8 | 81.3 | 13.3 | 24.1 | 18.9 |
Rainy | 74.1 | 109.2 | 30.2 | 22.6 | 31.7 |
Cloudy | 185.7 | 116.7 | 81.9 | 109.8 | 107.8 |
LSTM | CNN | GRU | CNN-Attention | BiLSTM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
Sunny | 50.7 | 18.2 | 80.6 | 41.7 | 10.6 | 10.8 | 11.9 | 9.4 | 10.8 | 4.8 |
Rainy | 71.8 | 52.0 | 85.5 | 56.9 | 25.4 | 23.7 | 19.8 | 19.6 | 22.4 | 14.4 |
Cloudy | 167.4 | 103.7 | 86.8 | 89.7 | 77.2 | 76.6 | 87.4 | 84.7 | 74.8 | 50.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Li, B.; Shi, P.; Yang, T.; Han, B. Short-Term Photovoltaic Power Prediction Based on a Digital Twin Model. J. Mar. Sci. Eng. 2024, 12, 1219. https://doi.org/10.3390/jmse12071219
Xiang C, Li B, Shi P, Yang T, Han B. Short-Term Photovoltaic Power Prediction Based on a Digital Twin Model. Journal of Marine Science and Engineering. 2024; 12(7):1219. https://doi.org/10.3390/jmse12071219
Chicago/Turabian StyleXiang, Chuan, Bohan Li, Pengfei Shi, Tiankai Yang, and Bing Han. 2024. "Short-Term Photovoltaic Power Prediction Based on a Digital Twin Model" Journal of Marine Science and Engineering 12, no. 7: 1219. https://doi.org/10.3390/jmse12071219
APA StyleXiang, C., Li, B., Shi, P., Yang, T., & Han, B. (2024). Short-Term Photovoltaic Power Prediction Based on a Digital Twin Model. Journal of Marine Science and Engineering, 12(7), 1219. https://doi.org/10.3390/jmse12071219