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Abstract: Due to the influence of meteorological conditions, shipboard photovoltaic (PV) systems
have problems such as large fluctuation and inaccurate prediction of the output power. In this paper,
a short-term PV power prediction method based on a novel digital twin (DT) model and BiLSTM
is proposed. Firstly, a PV mechanism model and a data-driven model were established, in which
the data-driven model was updated iteratively in real time using the sliding time window update
method; then, these two models were converged to construct a PV DT model according to the DS
evidence theory. Secondly, a BiLSTM model was built to make short-term predictions of the PV
power using the augmented dataset of the DT model as an input. Finally, the method was tested
and verified by experiments and further compared with main PV prediction methods. The research
results indicate the following: firstly, the absolute error of the DT model was smaller than that of
the mechanism model and the data-driven model, being as low as 5.62 W after the data update of
the data-driven model; thus, the DT model realized data augmentation and high fidelity. Secondly,
compared to several main PV prediction models, the PV DT model combined with BiLSTM had
the lowest RMSE, MAE, and MAPE; the best followability; and the smallest absolute error under
different weather conditions, which was especially obvious under cloudy weather conditions. In
summary, the method can accurately predict the shipboard PV power, which has great theoretical
significance and application value for improving the economy and reliability of solar ship operation.

Keywords: PV power prediction; digital twin model; mechanism model; data-driven model; BiLSTM

1. Introduction

The United Nations Conference on Trade and Development reported that greenhouse
gas (GHG) emissions from shipping have increased by 20% in the last decade, emitting as
much as 1.1 billion tons in 2023 and accounting for nearly 3% of global GHG emissions.
The International Maritime Organization (IMO) has mandated that GHG emissions from
shipping be reduced by at least 50% by 2050. Therefore, renewable energy sources such
as solar and wind have been increasingly used in ship power systems [1]. In particular,
solar energy has been more widely applied on ships due to its cost-effectiveness and
government supportive policies [2]. For example, PV systems are installed on conventional
diesel ships to form an integrated energy supply system to reduce the use of fossil fuels,
as well as to be used as auxiliary energy sources to provide power for lighting and other
auxiliary equipment [3–5]. Studies show that the installation of PV systems on river
cruise ships and dry bulk carriers not only reduces fuel consumption but also extends
the service life of ship equipment [6]. The installation of PV systems on ships can reduce
the dependence on traditional energy sources, lower carbon emissions, and satisfy the
EU carbon emission reduction regulations, which is of great significance in promoting
the green transformation of shipping [7]. However, shipboard photovoltaic (PV) systems
are affected by meteorological conditions and the ship’s sailing attitude, resulting in large
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fluctuations in PV output power, which will impact the stable operation of ship power
systems in island mode. Therefore, accurate and fast prediction of the PV output power to
provide a reference for real-time scheduling of energy storage systems (ESSs) is crucial to
ensure the stable operation of solar ships [8,9].

The main PV models currently available are mechanism and data-driven models. In
terms of mechanism models, they have evolved from single-diode models to dual-diode
models. Marcelo, G.V. [10] built a single-diode PV model which takes into account the
effect of series and parallel resistances and ensures that the maximum output power of the
model matches the maximum power of actual PV cells. Yan, J. [11] utilized a single-diode
model to simulate PV power generation and proposed a maximum power point tracking
technique based on an improved perturb and observe method, which significantly im-
proved the efficiency of the PV energy utilization. Raya-Armenta [12] introduced two new
physical equations to represent series and parallel resistances, which significantly improved
the model accuracy. Mohammad, H. [13] proposed a parameter extraction method for a
five-parameter dual-diode model of PV cells based on information provided by PV manu-
facturers. Although the above mechanism models provide a theoretical understanding of
PV cells, they only focus on the internal characteristics of PV cells in the modeling process
and cannot adapt to system component changes, PV panel aging, and dynamic changes in
meteorological conditions; thus, their accuracy is usually low in practical applications. In
terms of data-driven models, they do not need to be aware of the internal characteristics of
PV cells and, in most cases, have a higher modeling accuracy than mechanism models [14].
Patra, J.C. [15] studied a novel Chebyshev neural network to simulate a dual-junction PV
cell, which outperformed the commercial software ATLAS in predicting the characteristics
of DJ solar cells. Based on a convolutional neural network (CNN) and long short-term
memory (LSTM), a PV power prediction model was used for power system generation
planning and reserve estimation [16]. Rubasinghe, O. [17] developed a novel sequence-to-
sequence hybrid CNN-LSTM PV model, which had high accuracy and could be used as
a PV output power prediction model. The accuracy of the above data-driven models is
usually high, but they rely heavily on historical data and may not be adequate in situations
with limited available data, sudden changes in meteorological conditions, or violent ship
swings. In addition, data-driven models are not as interpretable as mechanism models
with clear physical descriptions and specific mathematical expressions.

Recently, machine learning methods have been used for PV power predictions. Zhu,
H. [18] proposed a PV power prediction method combining wavelet decomposition and an
artificial neural network (ANN) which takes into account the effects of solar irradiance and
the historical output power of PV cells. However, the ANN only established direct mapping
between the input data and the output predicted power without considering the temporal
correlation of the data series. Zhou, S.Y. [19] predicted PV power based on a recurrent
neural network (RNN), which improved time series prediction by keeping the memory
of the previous information and incorporating it into the current computation, resulting
in a significant increase in model prediction accuracy compared to ANNs [20]. However,
RNNs still suffer from gradient vanishing during long sequences training. Akhter, M.N.
and Cantillo-Luna, S. [21,22] proposed a novel PV power prediction method, LSTM-RNN,
which takes into account meteorological parameters such as wind speed, temperature,
and humidity and achieves good prediction results. Although LSTM captures forward
feature information in the time series of the PV output power, it ignores reverse feature
information, which leads to incomplete information capture and affects the prediction
accuracy. Bi-directional long short-term memory (BiLSTM), upgraded from LSTM, can
comprehensively capture information from the forward and reverse directions, which is
expected to improve the prediction accuracy of the PV power.

Considering the above, the purpose of this paper is to present a novel PV digital twin
(DT) model combined with BiLSTM to improve the prediction accuracy of PV power. It is
organized as follows: Section 2 introduces the research idea. Section 3 presents the PV DT
model. Section 4 expounds on the theoretical principle of BiLSTM. The experimental proce-



J. Mar. Sci. Eng. 2024, 12, 1219 3 of 19

dure is described in detail in Section 5. Section 6 experimentally validates the effectiveness
of the proposed method. Conclusions are enclosed in Section 7.

2. Research Idea

The research idea of this paper is illustrated in Figure 1. The essential and innovative
work is to establish a PV DT model consisting of a mechanism model and a data-driven
model, which provides an augmented dataset for a PV power prediction algorithm. Based
on experimentally collected meteorological data related to PV power generation, such as
temperature, irradiance, humidity, etc., the mechanism model and the data-driven model
are first constructed. The PV DT model is then obtained by converging both of them using
the Dempster–Shafer (DS) evidence theory, whereby the data-driven model is continuously
updated using the sliding time window update method. The augmented dataset is then
fed into a BiLSTM neural network for making a short-term prediction of the PV power.
Finally, the PV DT model and BiLSTM prediction algorithm are comparatively analyzed
and validated.
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Figure 1. Block diagram of the research idea.

3. PV Digital Twin Model
3.1. Mechanism Model

The output power of an individual PV cell is low, so multiple cells are typically
connected in series and parallel to form a PV array for higher output power. The equivalent
circuit model of a PV cell is illustrated in Figure 2, where Iph is the photocurrent of the PV
cell, Rsh is the equivalent parallel resistance, Rs is the equivalent series resistance, Id is the
current through the diode, V is the PV output voltage, and I is the PV output current. Based
on Kirchhoff’s current law, the output current I of a PV cell can be derived as follows [23]:

I = Iph − I0

[
exp

(
V + IRsh
nkTNs/q

− 1
)]

− V + IRsh
Rs

(1)

where I0 is the reverse saturation current of the diode; n is the ideality factor of the diode,
1 ≤ n ≤ 2; q is the electric charge, q = 1.602 × 10−19 C; k is the Boltzmann constant,
k = 1.381 × 10−23 J/K; Ns is the number of PV cells connected in series; and T is the
temperature of the PV cell.
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Iph and Io are variables affected by meteorological conditions such as irradiance and
temperature. Their calculation formulas are as follows [10,13,24–26]:

Iph = Isco

[
1 + ht

(
T − Tre f

)]
S/Sre f (2)

Io = b1T3 exp(−a1/T) (3)

where Isco represents the short-circuit current under standard irradiance and temperature
conditions; ht is the temperature coefficient, ht = 6.4 × 10−4 1/◦C; T denotes the temper-
ature of the PV cell; Tre f represents the reference temperature; a1 and b1 are constants,
a1 = 1.336 × 104 ◦C and b1 = 235 A/◦C3; and S and Sre f represent the actual irradiance
and the reference irradiance, respectively.

Although this model has been widely used for the theoretical analysis of PV output
power, the parameters Iph, Io, Rs, Rsh, and n are dependent on temperature and irradiance
and are not provided by PV cell suppliers. Therefore, calculation of these parameters is very
difficult, which limits the engineering application of the model. In response, a simplified
model was proposed by Babu, B. [27], and Formula (1) can be simplified as follows:

I = Isc

{
1 − C1

[
exp

(
V

C2Voc

)
− 1

]}
(4)

The solutions C1 and C2 are obtained as follows:

C1 =

(
1 − Im

Isc

)
exp

(
− Vm

C2Voc

)
(5)

C2 =

(
Vm

Voc
− 1

)[
ln
(

1 − Im

Isc

)]−1
(6)

From the simplified model, the PV output current can be calculated because the values
of Isc, Voc, Im, and Vm are usually available from PV cell suppliers. However, these four
parameters are still affected by changes in meteorological conditions and need to be revised.
The revision for them with irradiance and temperature is given below. It is used as the PV
mechanism model in this study.

∆T = T − Tre f (7)

∆S =
S

Sre f
− 1 (8)

I′sc =
IscS
Sre f

(1 + a∆T) (9)

V′
oc = Voc(1 − c∆T)(1 + b∆S) (10)

I′m =
ImS
Sre f

(1 + a∆T) (11)
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V′
m = Vm(1 − c∆T)(1 + b∆S) (12)

where I′sc, V′
oc, I′m, and V′

m are the revisions of Isc, Voc, Im, and Vm, respectively; T is the
temperature of the PV cell; S is the irradiance; Tre f = 25 ◦C; Sre f = 1000MW/m2; and a, b,
and c are constants, a = 0.0025 1/ ◦C, b = 0.5, and c = 0.00288 1/ ◦C.

3.2. Data-Driven Model

Data feature extraction is crucial for PV power prediction. A PV power series has
a strong time regularity, while meteorological parameter sequences present a strong ran-
domness, which makes it very difficult to extract the features of PV data series. CNNs,
known for their powerful feature extraction capability, have been widely popularized and
applied in many fields such as image recognition, pattern classification, object detection,
face recognition, and time series data analysis [28,29]. In this paper, a CNN is used to
construct the PV data-driven model. A CNN is a type of feedforward neural network that
comprises an input layer, convolutional layers, pooling layers, fully connected layers, and
an output layer, as shown in Figure 3 [30].
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Compared to conventional matrix operations, a significant advantage of CNNs is that
they can process data with convolutional operations, which greatly enhances the computa-
tional speed. A CNN uses convolutional and pooling layers in parallel to efficiently extract
local features from the input data while reducing the dimensionality of these features. This
feature extraction mechanism allows the CNN to focus on relevant information and discard
some unimportant details, thus improving feature extraction efficiency and performance.

Moreover, a CNN benefits from weight sharing, a key characteristic that reduces the
number of parameters and complexity within the model. Weight sharing ensures that
the same set of weights is used across different regions of the input data, enabling the
network to learn and recognize patterns in a more generalized manner. This not only helps
in reducing model complexity but also enhances the network’s ability to generalize and
make accurate predictions on unknown data.

3.3. Data Update Based on Sliding Time Window Update Method

Traditional PV data-driven models do not update the model data, which cannot
effectively extract the features in the latest data and reflect the actual operation of the
system, resulting in low fidelity of the model. The PV data-driven model established in this
paper uses a sliding time window update method to add the latest PV power generation
data to the model, thus improving the fidelity of the model as well as the adaptability of
data changes.

In order to ensure the efficiency of model training, the sliding time window update
method needs to keep the size of the training data fixed when adding new data samples,
i.e., replacing the old data samples with the same number of the latest data samples. To
reduce the influence of data further away from the current moment on the description of
the model feature, the data samples closest to the current moment are usually selected for
model training to retain the latest data information on the timeline. This approach ensures
that the data-driven model captures the latest information and adapts to data changes over
time, thus improving the accuracy of the data-driven model [31,32].
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The process of updating the PV data-driven model M1 to M2 using a sliding time
window is illustrated in Figure 4. Let us assume that the size of the training data samples is
L, and the length of the sliding time window is n. When the number of newly added data
samples reaches n, the replacement strategy is executed to form the new training data, and
then, the PV data-driven model is retrained to update the model.
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3.4. Digital Twin Model

The PV mechanism model developed in Section 3.1 has the advantages of stable
model error and strong interpretability, but in most cases, its error is large. The PV data-
driven model built in Sections 3.2 and 3.3 has a strong feature extraction capability for
PV sequences with high modeling accuracy, but its interpretability is poor and the model
error increases rapidly when the weather changes. Neither satisfies the requirements of
a high-fidelity, high-precision PV model. In this section, the advantages of these two
models are combined to construct a PV DT model. The Dempster–Shafer evidence theory
is utilized to determine the weights of the mechanism model and the data-driven model
and converge them. Meanwhile, the data-driven model is iteratively updated in real time
using the sliding time window update method. The principle of the DS evidence theory is
described next.

The Dempster–Shafer (DS) evidence theory is a data convergence method used to
deal with uncertainty. It is based on a non-empty set of all possible outcomes for a given
decision problem, known as the recognition framework [33].

The recognition framework is defined as a Θ finite set of M mutually exclusive and
exhaustive proposition sets, denoted as follows [34,35]:

Θ = {H1, H2, . . . , HM} (13)

On the basis of the recognition framework, the Power Set 2Θ is defined as follows:

2Θ = {∅, H1, H2, . . . HM, {H1, H2}, {H1, H3}, . . . {H1, HM}, . . . , {H1, H2, . . . , HM}} (14)

where the symbol “∅” denotes the empty set, which belongs to any subset of the recognition
framework.

The basic probability assignment (BPA) function represents the initial level of belief of
an evidence body towards a proposition. It is defined as a mapping from the power set of
the system’s recognition framework to the interval [0, 1]. The following conditions need to
be satisfied: {

m(∅) = 0
∑

H⊆Θ
m(H) = 1 (15)

where m(H) indicates the basic support of the evidence H for the proposition.
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The belief function Bel() and the plausibility function Pl() are the proposition descrip-
tion functions on the recognition framework and the BPA function, respectively. They are
denoted as follows: 

Bel(H) = ∑
A⊆H

m(A)

Pl(H) = ∑
A∩H ̸=∅

m(A)
(16)

{
Bel{H} ≤ Pl{H}
Pl{H} = 1 − Bel

{
H
} (17)

where Bel(H) and Pl(H) represent the lower and upper bounds of probability, respectively.
Therefore, H propositional uncertainty can be described by [Bel(H), Pl(H)].

The convergence condition for data using the DS evidence theory is that the evidence
bodies from two different data sources are in the same recognition framework, so the
convergence rule is defined as follows:

m(H) =


1

1−K ∑
Hi∩Hj=H

m1(Hi) · m2
(

Hj
)

H ̸= ∅

0 H = ∅
(18)

K = ∑
Hi∩Hj=∅

m1(Hi) · m2(Hj) (19)

4. Bi-Directional Long-Short Term Memory

Recently, RNNs and LSTM have been used in PV power prediction [19,21,22]. Classic
RNNs have some limitations, such as the difficulty they encounter in remembering long-
term dependencies and their inability to effectively relate old information to new inputs.
LSTM, a variant of classic RNNs, aims to solve these limitations. It mitigates the gradient
vanishing and exploding and improves the ability to preserve long sequences by adding
gates within each cell state. These gates, namely the forget gate, input gate, and output gate,
play crucial roles in filtering, preserving, and generating information, respectively [36,37].
The structure of LSTM is depicted in Figure 5.
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The forget gate in LSTM networks has the function of selectively filtering and retaining
information from the processing of the previous memory cell. The output or activation of
the forget gate ft at the time step t is as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(20)
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where xt is the input sequence at the time step t, ht−1 is the previous hidden state or
memory cell, σ(·) is the sigmoid activation function, W f is the weight matrix for the forget
gate, and b f is the bias term for the forget gate.

The input gate controls the influence of the current input on the memory cell. Its
expression is as follows:

it = σ(Wi · [ht−1, xt] + bi) (21)

C̃t = tanh(Wc · [ht−1, xt] + bc) (22)

Ct = ft ∗ Ct + it ∗ C̃t (23)

where C̃t represents the candidate value for the cell state, Ct represents the new cell state,
tanh(·) is the hyperbolic tangent function, Wi represents the weight matrix of the input
gate, Wc represents the weight matrix of the cell state, bi represents the bias of the input
gate, bc represents the bias of the cell state, and it represents the state of the input gate.

The output gate controls the output state of the memory cell. Its expression is
as follows:

ot = σ(Wo · [ht−1, xt] + bo) (24)

ht = ot ∗ tanh(Ct) (25)

where Wo represents the weight matrix of the output gate, bo represents the bias of the
output gate, and ot represents the output state of the output gate.

One limitation of an LSTM neural network is that it relies on the historical information
of the forward sequence. To address this limitation, the BiLSTM neural network was
introduced. It consists of two LSTM neural networks, one for processing the forward
sequence and the other for processing the backward sequence. By integrating information
from both directions, the BiLSTM neural network can capture the intrinsic patterns of past
and future data, thus enhancing its predictive capability [38–41]. In this paper, it is selected
as the PV power prediction algorithm.

In a BiLSTM network, the forward and backward sequences are first processed inde-
pendently in different hidden layers. The outputs of these hidden layers are then combined
and used as inputs to the output layer, thus improving the accuracy of the model. The
structure of a typical BiLSTM network is shown in Figure 6.
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The hidden state at each layer of the BiLSTM network is composed of three parts:
the forward hidden state at the previous time step At−1, the backward hidden state at the
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previous time step Ai−1, and the input at the current time step xt. The combination process
of the hidden states at each layer can be represented as follows:

At = LSTM(xt, At−1)
Ai = LSTM(xt, Ai−1)
At = at At + bt Ai + ct

(26)

where LSTM() represents the operation of the traditional LSTM network, At refers to the
forward hidden state, Ai refers to the backward hidden state, at represents the weight of
the output from the hidden layer of the forward propagation unit, bt represents the weight
of the output from the hidden layer of the backward propagation unit, and ct represents
the bias optimization parameter of the hidden layer at current time step.

5. Experimental Procedure

The flowchart of the short-term PV power prediction based on the DT model is shown
in Figure 7. As can be seen from Figure 7, the detailed steps are as follows:
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Step 1. Collect meteorological parameters such as irradiance, temperature, and humid-
ity via sensors.

Step 2. Transmit meteorological parameters to the FPGA via the UDP communication
protocol and then import them into a PV simulator to generate the PV power data.

Step 3. Construct a PV dataset consisting of meteorological parameters and the PV
power data.

Step 4. Build the PV mechanism model based on the analysis of the working principle,
physical properties, capacity, and series and parallel connections of the PV power generation.

Step 5. Build the PV data-driven model based on CNN, train it with the PV dataset,
and update the PV data-driven model using the sliding time window method. This is
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performed by importing the latest data from the sliding time window into the CNN model
for rebuilding the data-driven model.

Step 6. Establish the PV DT model. According to the BPA, the weights of the mecha-
nism model and the data-driven model are first calculated, and then, these two models are
converged using DS evidence theory to obtain the DT model.

Step 7. Build the BiLSTM prediction model of the PV power, using the experi-
mental dataset and the augmented dataset of the DT model as inputs to achieve PV
power prediction.

Step 8. Evaluate the model performance with metrics such as RMSE, MAE, and MAPE
to verify the effectiveness of the method.

6. Experimental Results
6.1. Evaluation Metrics

Evaluation metrics for machine learning methods include mean squared error (MSE),
root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), symmetric mean absolute percentage error (SMAPE), etc. This study adopts
MAE, MAPE, and RMSE to evaluate the model performance. MAE is the average of
absolute errors and is a basic indicator for error evaluation. MAPE can further investigate
the ratio between errors and actual values. RMSE can accurately identify large or small
errors in the predicted data. Their formulas are expressed as follows:

MAE =

n
∑

i=1

∣∣∣Xreal,i − Xpred,i

∣∣∣
n

(27)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Xreal,i − Xpred,i

Xreal,i

∣∣∣∣ (28)

RMSE =

√√√√√ n
∑

i=1

(
Xreal,i − Xpred,i

)2

n
(29)

where Xreal,i is the true value, Xpred,i is the predicted value, and n is the data volume.

6.2. Experimental Data

Irradiance, temperature, and humidity are important meteorological parameters that
affect PV power generation [36]. In this study, a PV data collection and processing ex-
perimental platform was built, as shown in Figure 8, which contained several irradiance,
temperature, and humidity sensors; an FPGA; and a PV simulator. Meteorological parame-
ter data were first collected by sensors at intervals of 1 h from 7 a.m. to 5 p.m. every day
in October 2022. They were then transferred to the FPGA via the UDP communication
protocol, which was formed by programming the FPGA Verilog code. Finally, these data
were imported into the PV simulator to calculate the PV power. Therefore, we constructed
an experimental dataset consisting of meteorological parameters such as irradiance, tem-
perature, and humidity and PV power. The dataset was divided into four data subsets:
subset 1 was from 1 October 7 a.m. to 10 October 7 a.m. and was used to determine the
initial BPA in the DS evidence theory; subset 2 and subset 3 were from 10 October 8 a.m.
to 19 October 8 a.m. (before the data update) and 19 October 9 a.m. to 28 October 9 a.m.
(after the data update) and were used to build and update the data-driven model in the
DT model, respectively; subset 4 was from 29 October 7 a.m. to 31 October 5 p.m. and was
used to validate the predictive effectiveness of the method.
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The meteorological parameters collected during October 2022 are shown in Figure 9,
and the experimental data for 1 October 2022 are shown in Table 1 in detail.
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Table 1. Experimental data for 1 October 2022.

Time Temperature
(◦C) Humidity (%) Irradiance

(W/m2) PV Power (W)

1 October 2022 7:00 16 73 103 1494.98
1 October 2022 8:00 16 75 108 1586.75
1 October 2022 9:00 17 73 106 1544.16

1 October 2022 10:00 17 85 110 1609.77
1 October 2022 11:00 19 87 115 1665.91
1 October 2022 12:00 21 70 120 1735.27
1 October 2022 13:00 21 69 122 1767.55
1 October 2022 14:00 22 87 118 1696.66
1 October 2022 15:00 20 80 105 1509.54
1 October 2022 16:00 19 75 103 1493.43
1 October 2022 17:00 18 70 90 1300.26

6.3. Data Augmentation Effects of the PV DT Model

According to the DS evidence theory, the convergence of the mechanism model and
the data-driven model must first determine the weights of these two models, and the model
weights are calculated as the BPA. In this paper, the BPA is determined as the inverse ratio
of the error between the output power calculated or derived from the PV mechanism model
and data-driven model and the actual output power and the inverse ratio of the RMSE.
The BPAs of the mechanism and data-driven models obtained from data subset 1 and data
subset 2 are shown in Tables 2 and 3, respectively.

Table 2. BPAs of the mechanism and data-driven models obtained from data subset 1.

BPA (Inverse Ratio of Error) BPA (Inverse Ratio of RMSE)

Mechanism model 0.187 0.23
Data-driven model 0.813 0.77

Table 3. BPAs of the mechanism and data-driven models obtained from data subset 2.

BPA (Inverse Ratio of Error) BPA (Inverse Ratio of RMSE)

Mechanism model 0.231 0.20
Data-driven model 0.769 0.80

Based on the BPAs listed in Tables 2 and 3, the weights of the mechanism and data-
driven models before and after the data update were calculated, as shown in Table 4.

Table 4. Weights of the mechanism and data-driven models before and after the data update.

Weight (before the Data
Update)

Weight (after the Data
Update)

Mechanism model 6.4% 7.0%
Data-driven model 93.6% 93.0%

According to the model weights listed in Table 4, the PV DT model was obtained by
converging the mechanism and data-driven models based on the DS evidence theory. The
comparisons of the output powers of the PV mechanism model, data-driven model, and
DT model with the actual PV power before the data update and after the data update are
illustrated in Figures 10 and 11, respectively.
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Figure 10. Comparison of the output power of the DT model, mechanism model, and data-driven
model with actual PV power before the data update. (a) Power. (b) Absolute error.
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Figure 11. Comparison of the output power of the DT model, mechanism model, and data-driven
model with actual PV power after the data update. (a) Power. (b) Absolute error.

From Figures 10 and 11, it can be seen that compared with the actual PV output power,
the error of the mechanism model was the largest, and the error of the data-driven model
was smaller, but the power curve of the DT model was well fitted, with minimum error.
Further analysis of the absolute error revealed that the errors of both the data-driven model
and the DT model were further reduced after the data update compared to before the
data update; in particular, the error of the DT model had a lowest average value of only
5.62 W, as shown in Figure 11b. Therefore, the DT model built in this study realized data
augmentation with high fidelity.

6.4. PV Power Prediction Results

In this section, the established PV DT model combined with BiLSTM is used for PV
power prediction, which is compared with the main PV power prediction models such
as CNN, LSTM, gate recursive unit (GRU), and CNN-Attention. The effectiveness of the
proposed method is evaluated and validated through the metrics RMSE, MAE, and MAPE.

The RMSEs of PV prediction models using the original experimental dataset and the
augmented dataset of the DT model are shown in Tables 5 and 6, respectively; Table 6
contains the RMSEs before and after the data update of the DT model. For comparative
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analysis, the RMSEs of the prediction models in Tables 5 and 6 are summarized as shown
in Figure 12, where “experimental” and “digital” represent the original experimental
dataset and the augmented dataset of the DT model, respectively, and “before” and “after”
represent the status before and after the data update of the DT model, respectively.

Table 5. RMSEs of different models with the experimental dataset (Unit: W).

LSTM CNN GRU CNN-Attention BiLSTM

Sunny 52.8 81.3 13.3 24.1 18.9
Rainy 74.1 109.2 30.2 22.6 31.7

Cloudy 185.7 116.7 81.9 109.8 107.8

Table 6. RMSEs of different models with the augmented dataset of the DT model (Unit: W).

LSTM CNN GRU CNN-Attention BiLSTM

Before After Before After Before After Before After Before After

Sunny 50.7 18.2 80.6 41.7 10.6 10.8 11.9 9.4 10.8 4.8
Rainy 71.8 52.0 85.5 56.9 25.4 23.7 19.8 19.6 22.4 14.4

Cloudy 167.4 103.7 86.8 89.7 77.2 76.6 87.4 84.7 74.8 50.9
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Figure 12. RMSEs of different methods.

As can be seen from Table 5, when the prediction models adopted the experimental
dataset for sunny, rainy, and cloudy weather conditions, the RMSEs of the LSTM and CNN
models were large, indicating that the predictions of these models deviated greatly from the
true values and were poor, whereas the RMSEs of the GRU, CNN-Attention, and BiLSTM
models were small and close, indicating that their predictions worked well. In addition,
the RMSEs of these models were much larger under cloudy weather conditions than under
sunny and rainy conditions, showing that it is difficult to accurately predict PV power
in complex and changeable cloudy weather. It can be seen from Table 6 that when the
prediction models adopted the augmented dataset, before the data update of the DT model,
the RMSEs of the LSTM and CNN models were still large, and the RMSEs of the GRU,
CNN-Attention, and BiLSTM models were small and relatively close. However, the RMSEs
of all models decreased compared with the experimental dataset, with the RMSE of the
BiLSTM model in particular decreasing significantly. After the data update of the DT model,
most of the RMSEs of these models were further reduced, and the prediction effects of these
models were significantly improved. In particular, compared with the dataset before the
DT model update and the experimental dataset, the RMSE of the BiLSTM model decreased
by 6 and 14.1 for sunny weather conditions, 6 and 17.3 for rainy weather conditions, and
significantly decreased by 23.9 and 56.9 for cloudy weather conditions, respectively. The
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prediction effect of the BiLSTM model was thus significantly improved. Figure 6 further
illustrates these results.

The MAEs and MAPEs of the prediction models are shown in Figures 13 and 14,
respectively. Similar to the RMSE, both the MAE and MAPE values of the prediction models
decreased significantly with the DT augmented dataset compared to the experimental
dataset, and both decreased further after the data update of the DT model. Among
these prediction models, the prediction effect of BiLSTM combined with the DT model
(after the data update) was still the most prominent; the MAE and MAPE were very low
under sunny and rainy weather conditions, and both were also greatly reduced under
cloudy conditions.
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The above results and analyses show that the evaluation metrics of RMSE, MAE,
and MAPE of the DT model combined with BiLSTM were all reduced to a very low
level, and the PV prediction effect was significantly improved. The prediction results and
prediction errors under sunny, rainy, and cloudy weather conditions were compared and
analyzed to further verify the proposed method, as shown in Figures 15–17, respectively,
where the comparison models CNN-Attention, GRU, LSTM, CNN, and BiLSTM used the
experimental datasets.
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Figure 15. Comparison of the predicted and actual PV power under sunny conditions. (a) Predicted
output power. (b) Absolute error.
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Figure 16. Comparison of the predicted and actual PV power under rainy conditions. (a) Predicted
output power. (b) Absolute error.
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Figure 17. Comparison of the predicted and actual PV power under cloudy conditions. (a) Predicted
output power. (b) Absolute error.
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As we can see from Figures 15–17, the power curve of the DT model combined with
BiLSTM fits well with the actual power generation under sunny, rainy, and cloudy weather
conditions, and the prediction error is also the smallest, showing excellent prediction
performance. Specifically, under sunny weather conditions, during the peak period of
PV output (9–14 o’clock), the prediction error of GRU is the smallest, while that of DT-
BiLSTM and CNN-Attention is slightly larger; during the trough periods of PV output
(7–8 o’clock and 15–17 o’clock), the prediction error of DT-BiLSTM is much smaller than
that of GRU and CNN-Attention and reaches a very low level. In summary, DT-BiLSTM
has the best prediction effect under sunny weather conditions. Under rainy weather
conditions, during the peak period of PV output (9–16 o’clock), DT-BiLSTM makes similar
predictions as CNN-Attention with smaller prediction errors; during the trough periods of
PV output (7–8 o’clock and 17 o’clock), the prediction error of DT-BiLSTM is significantly
smaller than that of CNN-Attention. DT-BiLSTM also shows the best prediction under
rainy weather conditions. Under cloudy weather conditions, the power fluctuation is very
extreme. During the peak period of PV output (11–15 o’clock), the prediction error of
DT-BiLSTM is the smallest, followed by CNN-Attention and GRU. In the trough periods of
PV output (7–10 o’clock and 16–17 o’clock), the prediction error of DT-BiLSTM and GRU is
the smallest, followed by CNN-Attention. In summary, DT-BiLSTM also achieves the best
prediction effect under cloudy weather conditions.

7. Conclusions

This paper proposed a method for the short-term prediction of PV power based on a
DT model combined with BiLSTM. The DT model was composed of a mechanism model
and a data-driven model converged by DS evidence theory for augmenting the PV power
dataset. The BiLSTM network model was used for short-term prediction of the PV power.
The following conclusions can be drawn:

(1) The PV DT model implements data augmentation, which has the advantages of
strong followability, small error deviation, and strong interpretability compared to
mechanism and data-driven models, and the fidelity of the data-driven model is
further improved after the data update.

(2) The PV DT model combined with BiLSTM achieves an accurate prediction of the
PV power. Compared with several main PV prediction models, our method had the
lowest values for the evaluation indexes of RMSE, MAE, and MAPE under sunny,
rainy, and cloudy weather conditions, and the prediction results fit well with the
actual values, with a small absolute error value, which was especially obvious under
cloudy weather.

In conclusion, the proposed DT model combined with BiLSTM shows excellent pre-
diction accuracy under different weather conditions and can be used for the short-term
prediction of ship PV power generation, providing a reference basis for energy management
and scheduling of ship power systems and guaranteeing the stable and reliable operation
of solar ships. In the future, datasets from different regions and ship routes will be collected
to verify the generalizability of the proposed method. PV DT modeling techniques will be
further studied in depth. Refined modeling will be carried out on the basis of a single-diode
mechanism model with high universality in order to better simulate the actual operation of
PV, and the data-driven model will adopt new types of networks with superior performance
to improve the fidelity of the PV DT model and the accuracy of PV power prediction.

Author Contributions: Conceptualization, C.X. and B.L.; methodology, C.X. and B.L.; software, B.L.
and P.S.; validation, C.X. and B.L.; formal analysis, T.Y.; investigation, B.L.; resources, B.L.; data
curation, T.Y.; writing—original draft preparation, B.L. and P.S.; writing—review and editing, C.X.;
visualization, B.L.; supervision, B.H. All authors have read and agreed to the published version of
the manuscript.



J. Mar. Sci. Eng. 2024, 12, 1219 18 of 19

Funding: This work was financially supported by the National Science Foundation of China, grant
number 51507025, and the Opening Foundation of Shanghai Ship and Shipping Research Institute
Co., Ltd., grant number 85230030.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: Bing Han was employed by the company Shanghai Ship and Shipping Research
Institute Co., Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Manolache, A.I.; Andrei, G.; Rusu, L. An Evaluation of the Efficiency of the Floating Solar Panels in the Western Black Sea and the

Razim-Sinoe Lagunar System. J. Mar. Sci. Eng. 2023, 11, 203. [CrossRef]
2. Du, Z.; Chen, Q.; Guan, C.; Chen, H. Improvement and Optimization Configuration of Inland Ship Power and Propulsion System.

J. Mar. Sci. Eng. 2023, 11, 135. [CrossRef]
3. Lee, K.-J.; Shin, D.; Yoo, D.W.; Choi, H.K.; Kim, H.J. Hybrid photovoltaic/diesel green ship operating in standalone and

grid-connected mode—Experimental investigation. Energy 2013, 49, 475–483. [CrossRef]
4. Wang, Z.; Ma, Y.; Sun, Y.; Tang, H.; Cao, M.; Xia, R.; Han, F. Optimizing Energy Management and Case Study of Multi-Energy

Coupled Supply for Green Ships. J. Mar. Sci. Eng. 2023, 11, 1286. [CrossRef]
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