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Abstract: A well-performing data-driven sparse sensor deployment strategy is critical for marine
monitoring systems, as it enables the optimal reconstruction of marine physical quantities with
fewer sensors. However, ocean data typically contain substantial amounts of noise, including
outliers (incomplete data) and inherent measurement noise, which heightens the complexity of sensor
deployment. Therefore, this study optimizes the sparse sensor placement model by establishing noise
indicators, including small noise weight and large noise weight, which are measured by entropy
to minimize the prediction bias. Building on this, a robust sparse sensor placement algorithm is
proposed, which utilizes the block coordinate update (BCU) iteration method to solve the function.
During the iterative updating process, the proposed algorithm simultaneously updates the selection
matrix, reconstruction matrix, and noise matrix. This allows for effective identification and mitigation
of noise in the data through evaluation. Consequently, the deployed sensors achieve superior
reconstruction performance compared to other deployment methods that do not incorporate noise
evaluation. Experiments are also conducted on datasets of sea surface temperature (SST) and global
ocean salinity, which demonstrate that our strategy significantly outperforms several other considered
methods in terms of reconstruction accuracy while enabling autonomous sensor deployment under
noisy conditions.

Keywords: sparse sensor placement; robust; noise indicator; ocean monitoring; data reconstruction

1. Introduction

The establishment of an effective ocean observation system is paramount for compre-
hensive ocean monitoring. The deployment of sensors plays a critical role in determining
the efficiency and accuracy of such a system. Through the strategic placement of these
sensors, the ocean observation system is capable of collecting a wide array of oceanic data.
The precision of these data is of utmost importance for the study of global oceanic phenom-
ena, including the El Niño and La Niña events [1–3]. However, the placement of oceanic
sensors is influenced by a variety of factors, including deployment and maintenance costs,
areas of interest, and specific monitoring objectives. Consequently, the investigation of
optimal sensor placement strategies, given a limited number of sensors, is of paramount
importance and presents a significant challenge in the field of signal processing for global
ocean observation.

The main concern regarding the deployment of marine observation sensors is to
conduct direct marine measurements with a small number of optimally deployed sensors
under constrained conditions, and then accurately describe and predict the process of
changes in the marine environment based on the data collected from these measurements.
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Traditional research on sensor placement in the ocean mainly includes model-based sensor
placement [4–8], interest area-based sensor placement [9–12], and sensor placement based
on empirical interpolation [13–15].

As data processing technologies evolve, data-driven sensor deployment is becoming
increasingly valuable for real-world physical systems. Data-driven sensor deployment
primarily relies on data analysis and machine learning on the sensory data from physi-
cal systems, which is generally researched as finding the low-dimensional patterns and
features corresponding to sensory attractors for high-dimensional systems. Dimensional-
ity reduction methods are effective ways for discovering low-dimensional map patterns
constructed from limited measurements by deployed sensors, such as proper orthogonal
decomposition (POD) [16,17], dynamic mode decomposition (DMD) [18,19], and neural
networks (NN) [20,21].

In the context of ocean monitoring, various data-driven methods have been developed
to optimize sensor deployment. Due to the vastness of the ocean, utilizing a limited
number of sensors for monitoring can effectively reduce deployment and maintenance
costs. A data-driven sparse sensor deployment strategy can efficiently leverage the intrinsic
characteristics of marine data. By employing a constrained number of sensors to collect
low-dimensional data, it is possible to achieve a comprehensive reconstruction of the
full state of oceanic physical quantities (thereby obtaining high-dimensional data). For
example, the POD method has been applied to wind field simulation data [22], while the
QR algorithm has been utilized for the reconstruction of the flow field [23]. Additionally,
the QR algorithm under cost constraints has been employed for ocean climate data and
fluid data [24], and the observation point selection of autonomous underwater vehicles
(AUV) has been explored [25]. Furthermore, information entropy-based QR placement
has been used for ocean temperature monitoring [26]. These methods illustrate that by
processing data, sensor locations can be optimized based on the inherent characteristics
and information content of the data. This optimization can lead to improved reconstruction
accuracy and meet other monitoring requirements, such as cost, energy consumption, and
information volume.

However, data reconstruction using the singular value decomposition (SVD) basis
typically involves selecting sensors corresponding to low-rank modes of the data. In such
cases, noise in the sensor measurements can significantly impact the global data reconstruc-
tion results obtained from a limited number of sensors. Moreover, Peherstorfer et al. [27]
demonstrated that utilizing the SVD basis for data reconstruction can lead to noise amplifi-
cation issues, which become more pronounced as the number of sensors increases.

In ocean monitoring systems, it is common for the data collected by deployed sensors
to be incomplete, with outliers frequently and unavoidably occurring [28], or to contain
noise, including measurement and process noise [29]. The noise is primarily caused by the
constantly changing marine environment and the susceptibility of communication signals
to interference from the ionosphere [30], as well as events such as oil spills [31], typhoons,
tsunamis, and other similar occurrences. Since data-driven sparse sensor deployment
relies on processing and analyzing data to extract intrinsic features, noise within the data
(including outliers) significantly impacts the formulation of sparse sensor deployment
strategies. Specifically, noise impacts the data training process, subsequently influencing
the outcomes of sensor selection in data-driven sensor placement, as well as the robustness
of oceanic sensor deployment.

To mitigate the impact of noise, Clark et al. [32] optimized the QR greedy sensor place-
ment strategy by categorizing noise under specific basis choices of SVD and randomized
modes. Ghayem et al. [33] proposed a sensor deployment algorithm designed to maximize
the probability of achieving a high signal-to-noise ratio, with sensor locations being se-
quentially selected in a greedy manner. These noise-aware methodologies demonstrate
that the robustness of sensor deployment can be enhanced through noise measurement.
However, the greedy algorithm may compromise the overall measurement effectiveness of
the selected sensor set to a certain extent.
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Furthermore, despite these multiple constraints, the aforementioned methods still fall
short in simultaneously optimizing both the selected sensor candidate set and the basis
used for data reconstruction. This issue can be addressed through feature selection and
subspace learning via advanced optimization methods. Zhou et al. [34,35] addressed the
feature selection problem as a sparse subspace learning problem in high-dimensional space,
employing local preserving regularization terms such as the similarity matrix of features.
After relaxing the problem formulation, the block coordinate update (BCU) method was
used to alternately iterate between the selection matrix and the corresponding reconstruc-
tion matrix. This insight inspires us to address the sparse sensor placement problem
through a subspace learning approach, thereby overcoming the limitations associated with
the greedy method when solving it from a global perspective.

In this study, we propose a robust sparse sensor placement strategy based on indicators
of noise. The key contributions of this work are as follows:

• Establishing noise indicators for the sparse sensor placement model, which encompass
both small and large noise weight matrices, and employing the entropy of noise to
minimize the prediction bias, thereby deriving a novel optimization objective function
for robust sensor deployment;

• The block coordinate update (BCU) iteration method is adopted in the proposed
algorithm of robust sparse sensor placement based on indicator of noise (RSSPIN) to
solve the optimization objective function, which contains non-convex components.
Additionally, the RSSPIN algorithm simultaneously updates the selection matrix,
reconstruction matrix, and noise matrix during each iteration;

• During the iterative updating process, continuous noise evaluation is performed, and
the selection matrix and reconstruction matrix are updated based on the updated
noise matrix. This ensures that the full-state reconstruction capability of the sensor
measurement subset corresponding to the obtained selection matrix is minimally
affected by noise;

• Experimental verification has been performed to demonstrate the robustness and effec-
tiveness of the RSSPIN algorithm under noisy conditions. Comparative analyses with
existing methods reveal that the proposed method achieves superior reconstruction
accuracy while facilitating autonomous sensor deployment in the presence of noise.

The remaining part of this paper is arranged as follows. In Section 2, we provide a brief
overview of the notations and definitions used in this paper, as well as the sparse sensor
deployment optimization problem that arises in existing sparse sensor placement methods.
In Section 3, we develop a robust sparse sensor deployment optimization model that
incorporates noise regularization methods and propose an algorithm that iteratively solves
the model using BCU. This section also includes a theoretical analysis of the convergence of
the proposed algorithm. The experimental results and analysis are presented in Section 4.
Finally, Section 5 concludes the paper and provides a discussion.

2. Preliminary

Sparse sensor placement based on data reconstruction generally obtains measurement
results Y ∈ Rp×m by selecting partial data corresponding to selected sensors from the
existing full-state measurement X ∈ Rn×m through a matrix C [23,28,36], as follows:

Y=CX (1)

where C ∈ Rp×n, and it is utilized as a selection matrix to select the optimal partial
measurements in X. There are p non-zero variables in C, p≪ n. That is, C has p non-zero
basis vectors to select from n candidate locations. C has the following structure:

C = [eT
ξ1

eT
ξ2
· · · eT

ξp
] (2)
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where ei represents the i-th location of the selected p locations. Then the measurement
selected by C is as follows:

Y = CX = [xξ1 , xξ2 , · · · , xξp ]
T (3)

The selection matrix C can be used as a parameter matrix to obtain the complete recon-
structed data X̂ = O(Y; C) by finding the appropriate mapping relationship, wherein O(·)
is the mapping function from Y to X̂. The criterion for selecting p sensors is generally set to
choose an appropriate selection matrix C, with the aim of ensuring that the reconstructed
data X̂ closely mirror the original data X. To quantify this similarity, the L2-norm is a
common choice (which can also be interpreted as the minimum mean square error, MSE),
as follows:

C = argmin
C
∥X− X̂∥2 = argmin

C
∥X−O(Y; C)∥2 (4)

In compress sensing theory, an appropriate basis Ψ from training data Xtr can be
employed to reconstruct the test data Xte. In practice, Ψ can be obtained using SVD
decomposition as Xtr = ΨΛΥ ≈ ΨrΛrΥr. In this context, Ψr is the first r columns of Ψ.
According to data-driven sparse sensor selection [23], when the test data Xte are provided,
the reconstructed data are represented as follows:

X̂te = ΨrŜ, where Ŝ =

{
(CΨr)

−1Y, p = r
(CΨr)

†Y, p > r
(5)

where Ŝ represents the coefficient matrix for data reconstruction. Consequently, Equation
(4) can be transformed as follows:

Ĉ = argmin
C
∥Xte − X̂te∥2 = argmin

C
∥Xte −Ψr(CΨr)

†Y∥2

= argmin
C
∥Xte −Ψr(CΨr)

†CXte∥2

= argmin
C
∥Xte − ACXte∥2

(6)

where A = Ψr(CΨr)
† denotes the reconstruction matrix corresponding to the selection

matrix C. As previously mentioned, the value of A influences the reconstruction accuracy,
but the choice of the base matrix Ψr, which affects the value of A, will introduce noise. The
noise in the original data X will also affect the establishment of the selection matrix C and
reconstruction matrix A.

In the following section of this study, a robust sparse sensor placement strategy
is proposed for accurate data reconstruction by iteratively updating matrices C and A
concurrently, thereby minimizing the impact of noise.

3. Robust Sparse Sensor Placement Based on Indicator of Noise

When measuring general physical quantities, the associated noise typically includes
both process noise and measurement noise. The process noise is usually generated by the
physical quantity being measured, whereas the measurement noise is usually introduced by
the sensors themselves. For the monitoring of physical quantities in the ocean, the measure-
ment noise is often significant due to the instability of long-distance transmission channels
and the variability of the measurement environment state (ocean surface measurements
are highly dynamic and time-varying under the influence of winds, swells, and currents).
In this section, we first establish noise indicators that contain a small noise weight matrix
W and a large noise weight matrix W (including the outlier entries). Following this, the
reconstruction objective function is constrained by the noise weights to derive a new robust
sensor deployment strategy objective function. Subsequently, the BCU method is employed
for solving the objective function.
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3.1. Problem Formulation

In order to enhance the robustness to noise, a small noise distribution weight matrix
W ∈ Rn×m and large noise distribution weight matrix W ∈ Rn×m are established as noise
indicators for data reconstruction, similar to that in [37], and W + W = 1n×m. Then, the
objective function of the sparse sensor placement problem in Equation (6) can be redefined
as follows:

1
2

M

∑
i=1

N

∑
j=1

wij∥xij − x̂ij∥2
2 =

1
2
∥
√

W ⊙ (X− X̂)∥2
F (7)

wherein wij ∈W is an element of the small noise weight matrix of the data X, and ⊙ is the
Hadamard product operator.

If the number of sensors to be selected is p, the model of robust sparse sensor placement
problem with small noise and large noise can be represented by combining Equations (6)
and (7). Then, we have the following:

min
A,C,W

1
2∥
√

W ⊙ (X− ACX)∥2
F

s.t. W ∈ {0, 1}n×m

C ∈ {0, 1}p×n, CT1n×1 = 1p×1, ∥C1p×1∥0 = p

(8)

However, it is hard to solve the optimal problem in Equation (8) under non-convex
constraints. Hence, the maximum rank of the constraint selection matrix C is established as
the maximum number p of sensors to be selected, which is represented as r(C) ≤ p, and
then it is incorporated into the objective function as a penalty term. At the same time, due
to the sparsity of the weights of outliers caused by large noise, the sparse constraint term
∥W∥1 is also added as a penalty term in Equation (8), resulting in the following:

C ← argmin
A,C,W

1
2∥
√

W ⊙ (X− ACX)∥2
F + αr(C) + β∥W∥1

s.t. W + W = 1, W and W ∈ {0, 1}n×m

C ∈ Rp×n
+ ,

(9)

wherein the penalty terms of αr(C) and β∥W∥1 are used to limit the number of elements in
the selected sensor set J = [ξ1, ξ2, · · · , ξp] and the sparsity of outliers, respectively. The
indicators of the noise matrix can be relaxed from binary W and W ∈ {0, 1}n×m into real-
valued W and W ∈ [0, 1]n×m and be measured using entropy −wij log wij and −wij log wij,
as in [37]. The maximum entropy criterion indicates that the distribution with higher
entropy can more accurately represent the probability distribution of system variables.
Consequently, Equation (9) is updated as follows:

C ← argmin
A,C,W

1
2∥
√

W ⊙ (X− ACX)∥2
F + αr(C) + β∥W∥1

+γ∑
i,j
(wij log wij + wij log wij)

s.t. W + W = 1, W and W ∈ [0, 1]n×m

C ∈ Rp×n
+ ,

(10)

Equation (10) represents the model of our robust sparse sensor placement problem
proposed in this study. Following this, we provide the method for solving the model.

3.2. Algorithm Development

It is challenging to solve the problem of robust sparse sensor placement based on
the indicators of noise in Equation (10) directly because of the non-convex components.
Therefore, the BCU iterative method [38] is introduced here to solve the problem.
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Firstly, for the variables C, A, and W to be solved in Equation (10), in order to simplify
the calculation process, let the following:

F(C, A, W) =
1
2
∥
√

W ⊙ (X− ACX)∥2
F (11)

Gα(C) = α∥C∥2,1 (12)

H(W) = β∥W∥1 + γ∑
i,j

(wij log wij + wij log wij) (13)

Please note that W = 1−W. Then, the total objective function can be expressed
as follows: O(C, A, W) = F(C, A, W) + Gα(C) + H(W). During the k-th iteration, each
variable is updated individually according to the following formula:

Ck+1 = argmin
C∈RP×N

+

〈
∇CF(Ĉk, Ak, Wk), C− Ĉk

〉
+

Lk
C

2
∥C− Ĉk∥2

F + Gα(C) (14a)

Ak+1 = argmin
A

F(Ck+1, Ak, Wk) (14b)

Wk+1 = argmin
W

[F(Ck+1, Ak+1, Wk) + H(Wk)] (14c)

where Lk
C is the Lipschitz constant of ∇CF(C, Ak, Wk). We also have the following:

Ĉk = Ck + ωk(Ck − Ck−1) (15)

where ωk ∈ [0, 1] is the extrapolated weight set according to the BCU method.
The Lipschitz constant Lk

C at the k-th step of the iteration process can be obtained by
computing ∇CF(C, A, W). Through matrix calculation, the following is easy to derive:

∇CF(C, A, W) = −AT [W ⊙ (X− ACX)]XT (16)

Assuming that two matrix variables, Ĉ and C̃, are provided, then apply the following:

∥∇CF(Ĉ, A, W)−∇CF(C̃, A, W)∥F

= ∥−AT[W ⊙ (
X− AĈX

)]
XT + AT

[
W ⊙

(
X− AC̃X

)]
XT∥

F
= ∥AT

{
W ⊙

[
A(Ĉ− C̃)X

]}
XT∥

F
≤ ∥AT∥2∥W∥2∥A∥2∥Ĉ− C̃∥F∥X∥2∥XT∥2
= ∥A∥2

2∥X∥
2
2∥W∥2∥Ĉ− C̃∥F

(17)

The inequality part in Equation (17) is transformed using the Cauchy–Schwarz in-
equality, i.e., ∥UV∥F ≤ ∥U∥2∥V∥F. Therefore, according to the definition, the Lipschitz
constant of the partial derivative function ∇CF(C, A, W) with respect to C is identified
as follows:

Lk
C = ∥Ak∥2

2∥X∥
2
2∥Wk∥2 (18)

According to reference [38], the extrapolated weights in Equation (15) are set as follows:

ωk = min(ω̂k, δω

√√√√ Lk−1
C

Lk
C

) (19)

where δω < 1, ω̂k = (tk−1 − 1)/tk and t0 = 1, tk = (1 +
√

1 + 4t2
k−1)/2.

References [39,40] indicate that choosing appropriate extrapolation weight values can
significantly enhance the BCU method for solving multi-block concave optimization problems.
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3.2.1. C-Subproblem Solution

Given that the location selection matrix C is composed of 0 and 1 elements, it is
difficult to directly apply the gradient method for its solution. Therefore, referring to [35],
the location selection matrix C is updated using the block proximal gradient method.
Specifically, apply the following:

First, rewrite Equation (14a) as follows:

argmin
C∈RP×N

+

1
2
∥C− S∥2

F + λ∥C∥2,1 (20)

with S = Ĉk − 1
Lk

C
∇CF(Ĉk, Ak, Wk) and λ = α

Lk
C

.

Then, the problem in Equation (20) can be decomposed into n independent subprob-
lems, each corresponding to a column of matrices C and S; referring to [34], it can be
reformulated in the following specific manner:

argmin
c≥0

1
2
∥c− s∥2

2 + λ∥c∥2 (21)

Equation (21) has a closed-form solution, where s represents the i-th column of the
matrix S, Ω represents the index set of the positive elements of s, and ∥sΩ∥2 > 0. Then,
apply the following:

cΩ = (∥sΩ∥2 − λ)
sΩ

∥sΩ∥2
(22)

For ease of understanding, we introduce the complete update process of matrix C, as
outlined in Algorithm 1, as follows:

Algorithm 1: Nonnegative group Lasso Proximal Operator C = Prox-NGL(S, λ)

1: Input: S, λ.
2: Initialize: C0 ∈ Rp×n ← 0 , k = 0.
3: for i in range (n):
4: s = S:,i, c = 0.
5: for j in range (p):
6: if sj > 0,then:
7: Ωk = j, k = k + 1.
8: end if
9: end for
10: if ∥sΩ∥2 > λ, then:
11: cΩ = (∥sΩ∥2 − λ)sΩ/∥sΩ∥2.
12: end if
13: Ci,: = c.
14: end for
15: Output: C

3.2.2. A-Subproblem Solution

The solution for determining A can be obtained by solving Equation (14b), which is
as follows:

Ak+1 = argmin
A

1
2
∥
√

Wk ⊙ (X− ACk+1X)∥
2
F (23)

By taking the first-order partial derivative of the right side of this equation with respect

to A and setting it to zero, we have the following: Wk ⊙
(

Ck+1X
)T

(X− ACk+1X) = 0.
Therefore, we can obtain the following:

Ak+1 = X
(

Ck+1X
)†

(24)
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where (·)† is the pseudoinverse. The update result of this step exactly matches the method
proposed in [36], which utilizes the training dataset as the basis library.

3.2.3. W −W Subproblem Solution

The solutions for W and W can be obtained by solving Equation (14c). Since this
subproblem involves two variables, W and W, and W +W = 1n×m, the Lagrange multiplier
method is used for solving it. At the same time, the term (i, j) is taken as an example to
convert the variables W and W in Equations (11) and (13). The deformed function is then
as follows:

HL = 1
2 wij

[
X− Ak+1Ck+1X

]2

ij
+ βwij + γ(wij log wij + wij log wij)

+ρi(wij + wij − 1)
(25)

where ρi is the Lagrange multiplier.
By taking the first-order partial derivative with respect to wij, wij, and ρi, respectively,

in Equation (25) and setting these expressions to zero, we have the following:

∂HL
∂wij

=
1
2

[
X− Ak+1Ck+1X

]2

ij
+ γ log wij + γ + ρi = 0 (26)

∂HL
∂wij

= β + γ log wij + γ + ρi = 0 (27)

∂HL
∂ρi

= wij + wij − 1 = 0 (28)

By solving Equations (26)–(28), the optimal solution for wij can be obtained as follows:

wij
k+1 ← exp(β/γ)

exp([X−Ak+1Ck+1X]
2
ij/(2γ))+exp(β/γ)

= 1
exp(([X−Ak+1Ck+1X]

2
ij/2−β)/γ)+1

(29)

Correspondingly, wij can be obtained as follows: wij
k+1 ← 1− wij

k+1 .

3.3. Algorithm and Computational Complexity

After solving each subproblem, the pseudocode of the entire algorithm can be derived
as Algorithm 2, which is named the algorithm of robust sparse sensor placement based on
indicator of noise (RSSPIN).

Now, let us analyze the computational complexity of Algorithm 2. For Algorithm 2,
the computational complexity is rooted in the size of data matrix X. If matrix X is sparse,
the computational complexity will be greatly reduced. For the sensor deployment problem,
the number of locations to be selected is p ≪ n and p < m. The main parts with higher
computational complexity during the execution of Algorithm 2 are step 5 (Update C), step 6
(Update A), and step 8 (Update wij). In this case, when Algorithm 1 is executed at step 5 to
update C, the primary task is to complete the calculation of Equation (16). Therefore, when
performing gradient calculation according to Equation (16), a total of 2pn2m + mn floating-
point operations are executed. When updating A, a total of pnm + rCX

2(p + m) + n2m
float operations are executed according to Equation (24), wherein rCX is the rank of matrix
CX. When updating wij, a total of pn2m floating-point operations are executed. Step 8
performs floating-point operations mn times. Since p≪ n, the computational complexity
of each iteration can be approximated as follows: O(pn2m + mn + n2m + pnm) = O((p +
1)(n + 1)nm). This result shows that the complexity of Algorithm 2 mainly depends on the
number of training samples and candidate locations for sensor placement.



J. Mar. Sci. Eng. 2024, 12, 1220 9 of 23

Algorithm 2: Robust Sparse Sensor Placement based on Indicator of Noise (RSSPIN)

1: Input: Data matrix X, number of sensors p, support Σ, parameter α, β, γ.
2: Initialize: C0 ∈ Rp×n

+ , A0 ∈ Rn×p, W0 ∈ Rn×m ← Σ⊙ 1 , 0 < δω < 1, k = 0.
3: While Not convergent do:
4: Compute Lk

C according to Equation (18).
5: Update Ck+1 according to Algorithm 1.
6: Update Ak+1 according to Equation (24).
7: for ∀(i, j)& Σijdo:
8: Update wij

k+1 according to Equation (29).
9: end for
10: if O(Ck+1, Ak+1, Wk+1) ≥ O(Ck, Ak, Wk), then:
11: Set Ĉk = Ck.
12: else:
13: Compute ωk according to Equation (19).
14: Get Ĉk according to Equation (15).
15: end if
16: Let k← k + 1 .
17: end while
18: Normalize each column of C′ = Ck.
19: Sort ∥C′ :,i∥2, i = 1 · · · n, select sensors corresponding to the p largest ones as J.
20: Output: Ck, Ak, J.

3.4. Convergence Analysis

In this section, we analyze the convergence of the RSSPIN algorithm. First, define the
indicator function of the nonnegative quadrant as follows:

l+(C) =
{

0,
+∞,

i f C ≥ 0
otherwise

(30)

And let the following:

Q(C, A, W) = F(C, A, W) + Gα(C) + H(W) + l+(C) (31)

Then, the optimum problem in Equation (10) is equivalent to the following: min
A,C,W

Q(C, A, W).

The first-order optimal condition is as follows: 0 ∈ ∂Q(C, A, W), and any point satisfying
this condition is a critical point of Equation (10).

In order to prove that the proposed Algorithm 2 can converge effectively, we first
present Lemma 1 and Proposition 1 for the W −W subproblem, followed by Theorem 1,
which can prove the convergence of Algorithm 2, as follows:

Lemma 1. At stage k, with a fixed AkCk, the solutions, which are wij of the W −W subproblem in
Equation (29), are globally optimal for their respective intermediary problems.

Proof. Taking the subproblem in Equations (11) and (13) as examples, having fixed AkCk,
the objective function in Equation (14c) is convex with respect to wij. The solution in
Equation (29) is computed using the Lagrange multiplier method in Equation (25), which
guarantees that the solution is feasible and satisfies the KKT conditions of Equation (25). □

Proposition 1. The function in Equation (29), which contains two parameters, β and γ, and
lets ηij = [X− ACX]2ij/2, has the following properties:

1. wij(β, γ, ηij) is monotonically decreasing with respect to ηij, which holds that the follow-
ing: lim

ηij→0
wij(β, γ, ηij) =

1
exp(−β/γ)+1 and lim

ηij→∞
wij(β, γ, ηij) = 0;
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2. wij(β, γ, ηij) is monotonically increasing with respect to β, which holds that lim
β→0

wij(β, γ, ηij) =

1
exp(ηij/γ)+1 and lim

β→∞
wij(β, γ, ηij) = 1;

3. wij(β, γ, ηij) is an inverse “S”-shaped function, which approximates a binary function
when γ→ 0 and remains constant at 1/2 when γ→ +∞ .

Each statement addresses one target parameter, while the others are held constant.

Proof. It can be easily verified by the definition. □

Theorem 1. (Iterate subsequence convergence). Let
{

Ck, Ak, Wk
}∞

k=1
be the sequence generated

from Algorithm 2. The sequence of Q(Ck, Ak, Wk) produced by the BCU method converges in a
monotonic manner.

Proof. For C, we can deduce according to Lemma 2.1 in [38], as follows:

Q(Ak, Ck+1, Wk)−Q(Ak, Ck, Wk) ≥
Lk

C
2
∥Ck+1 − Ck∥2

F ≥ 0 (32)

where Lk
C ≥ 0 according to Equation (18).

For A, referencing Lemma 3.1 of [41], we have the following:

Q(Ck+1, Ak, Wk)−Q(Ck+1, Ak+1, Wk)

= 1
2∥
√

Wk ⊙ (X− AkCk+1X)∥
2
F − 1

2∥
√

Wk ⊙ (X− Ak+1Ck+1X)∥
2
F

= 1
2∥
√

Wk ⊙ [(Ak − Ak+1)Ck+1X]∥
2
F ≥ 0

(33)

For W, according to the aforementioned Lemma 1, we have the following:

Q(Ck+1, Ak+1, Wk)−Q(Ck+1, Ak+1, Wk+1) ≥ 0 (34)

From Equations (32)–(34), the following can be deduced:

Q(Ck, Ak, Wk) ≥ Q(Ck+1, Ak, Wk) ≥ Q(Ck+1, Ak+1, Wk) ≥ Q(Ck+1, Ak+1, Wk+1) (35)

In other words, the objective function in Equation (10) has a lowest bound. Thus,
Algorithm 2 can be guaranteed to converge. □

4. Experimental Evaluation and Results
4.1. Dataset and Quality of Reconstruction
4.1.1. Dataset

The algorithm presented in this paper is fundamentally applicable to flow field data
characterized by low-rank properties, which can be sparsely represented. As a result,
it is feasible to reconstruct the global flow field effectively using data from a limited
number of sampling points, thereby enabling efficient global monitoring through sparsely
deployed sensors. To rigorously evaluate the performance of the algorithm, two real-world
oceanographic datasets were utilized. The specific details of these datasets are introduced
as follows:

(a) The sea surface temperature (SST) dataset is used to present and evaluate Algo-
rithm 2. The SST dataset is downloaded from the website of the NOAA Physical Sciences
Laboratory, which is part of the NOAA optimum interpolation (OI) sea surface temperature
(SST) V2 dataset [42]. The SST dataset comprises temperature values of 360 × 180 locations,
encompassing both global land and sea areas. However, in this instance, only 44,219 candi-
date locations in the sea area are used for algorithm evaluation. Given that the application
scenario is set for ocean monitoring, the data from the remaining 360 × 180 − 44,219 land
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locations are not taken into consideration. Furthermore, the SST dataset includes 1724 times
measurements (once a week) recorded from 1990 up until the date of download.

(b) The global ocean salinity dataset is also used to evaluate Algorithm 2. This salinity
dataset was downloaded from the website of the Institute of Atmospheric Physics (IAP),
Chinese Academy of Sciences [43,44]. It includes bias-corrected in situ observations from
the World Ocean Database, as well as additional data owned by the IAP. The dataset
employed in this study has a horizontal resolution of 1◦ × 1◦ at vertical levels of 1 m, and
it provides monthly data spanning from 2010 to 2019. Furthermore, the dataset contains
43,401 valid seawater salinity data coordinates. These 43,401 coordinates are used as
candidate locations for evaluating Algorithm 2.

4.1.2. Quality of Reconstruction

(a) Reconstruction error of subspace learning

Given that the objective function of Equation (6) evaluates the error in subspace
learning and is based on the principle of simultaneously obtaining both the feature space
and the mapping relationship in subspace learning, the algorithm proposed in this paper
iteratively updates both selection matrix C and reconstruction matrix A. Therefore, a viable
approach involves comparing the subspace learning error with that of the benchmark
methods. The performance of the proposed method is evaluated using reconstruction
errors, which are expressed as follows:

Error1 =
∥Xte − X̂te∥
∥Xte∥

=
∥Xte − ACXte∥
∥Xte∥

(36)

where A and C are obtained through Algorithm 2 by imputing training data Xtr, while Xte
represents the test data partitioned from the entire dataset X.

(b) Reconstruction error of low-dimensional sampled data

Upon obtaining index J through Algorithm 2, the low-dimensional data sampled by
the deployed sensors are as follows: Y = XJ, :. The low-dimensional data representation
obtained from the test set sampling is as follows: Yte = Xte J, :. The reconstruction error of
the low-dimensional data obtained from sampling can be expressed as follows:

Error2 =
∥Xte − X̂te∥
∥Xte∥

=
∥Xte −

⌢
AYte∥

∥Xte∥
(37)

where
⌢
A = ACXtrYtr

† is the reconstruction matrix derived from the low-dimensional
test data.

The method for obtaining
⌢
A is detailed in Appendix A. Ytr = Xtr J, : represents the

low-dimensional sampling data derived from the training dataset Xtr, indexed by J. Both
matrices A and C are also derived through Algorithm 2.

4.1.3. Experimental Settings

In this scenario, the SST dataset is partitioned, with 1040 samples used as the training
set and the remaining 687 sample data used as the test set. The salinity dataset is partitioned,
with 100 samples used as the training set and the remaining 20 samples used as the test set.
The robustness considered in this paper includes robustness to noise and outliers. Here,
outliers mainly refer to incomplete data, which can be attributed to special events such as
sensor failures or certain natural conditions. The robustness is evaluated by introducing a
proportion of outliers into the experimental data.

The experiments were conducted using MATLAB R2022a as the programming lan-
guage. The hardware configuration for the experiments included a computer running
Windows 11 Professional, which is a 64-bit operating system. The system was equipped
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with 16 GB of RAM and powered by an AMD Ryzen 5 5600G processor (AMD, Santa Clara,
CA, USA).

To test the effectiveness of the relevant parameters, a low-rank data matrix was
constructed, as sensor deployment methods based on sparse selection are theoretically
suitable for flow field data with low-rank structures. During testing, the low-rank data
matrix was constructed with dimensions of 100 × 100 and a rank of five, following the
methods referenced in [38,39]. When executing the proposed algorithm, the outlier ratio
was set to 0.2 and the signal-to-noise ratio (SNR) was 60. Figure 1 shows the reconstruction
error and execution time for different parameters for this low-rank data matrix. The
number of iterations is set to 500. The primary objective here is to identify an effective
range of parameters rather than the optimal parameters. Effective parameters imply that
the algorithm can continuously iterate and update until convergence or the maximum
number of iterations is reached. In Figure 1, γ is set to 1 × 10−5. Figure 1a indicates that
the reconstruction error varies with changes in α and β. Figure 1b demonstrates that the
execution time of the proposed algorithm significantly differs with changes in α and β. Some
unsuitable parameters cause the algorithm to terminate iterations quickly, while parameters
within an appropriate range allow the algorithm to continue iterative optimization. For
instance, when the value of β is set to 1, the algorithm terminates the iterative process
very quickly, resulting in a relatively high reconstruction error. This indicates that β = 1
does not facilitate effective variable updates and is therefore unsuitable for this algorithm.
Conversely, when the value of β ranges from 1 × 10−4 to 1 × 10−32, the algorithm can
perform effective iterative solving, with minimal differences in reconstruction error in
most cases.
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tion error of different α and β; (b) Execution time of different α and β.

Tests conducted on this low-rank matrix indicate that provided the algorithm can
effectively converge through iterations, the parameter sizes can be fine-tuned with relatively
little impact on the reconstruction error. However, the different data scales of actual datasets
still influence the choice of parameters. Therefore, the parameters used for the subsequent
two real datasets are slightly different but remain adjustable.

For convenience of calculation, the data were normalized when implementing Algorithm 2.
During the implementation of the algorithm in this study, the samples were chosen sequen-
tially, with the first sample from the test dataset used as the test data. Naturally, it can also
be adjusted to include multiple samples as required.
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The proposed method is evaluated and contrasted with four other data-driven sparse
reconstruction methods in [36], as follows: random selection (RS), QR-conditioning [23],
POD, and sparse representation (SR). The sensor selection method and reconstruction basis
adopted in these methods are listed in Table 1 below. Specifically, X̂te of RS and QR is
calculated using the following: X̂te = (Φ/ΦJ,:) · Xte J,:, wherein Φ = XtrG, G ∈ Rm×2p,
and its elements follow a standard normal distribution. X̂te of POD is calculated using the
following: X̂te = Ψr · (CΨr/Xte J,:), wherein Ψr is the first r columns of matrix Ψ, which is
computed using the SVD of training dataset Xtr. X̂te of SR is calculated using the following:
X̂te = Ψtr ŝ, wherein Ψtr = Xtr J,: is the training library, which is set as selected samples
in training dataset Xtr, and ŝ is the coefficient vector acquired by solving the appropriate
optimization problem in [36].

Table 1. Different methods for sparse sensor placement.

Method Sensor Selection Reconstruction Basis

RS Random Randomized rank reduction
QR Column pivot Randomized rank reduction

POD Random Reduced order mode
SR Random Training library

RSSPIN Iteration of BCU Iteration of BCU

4.2. Experimental Results of SST

In this section, the proposed algorithm, RSSPIN, is initially executed to demonstrate
its convergence. Subsequently, the proposed RSSPIN is compared with the aforementioned
methods by setting the outlier ratio at 0, 0.2, and 0.4. Finally, the reconstructed data and
sensor locations are provided. The parameters adopted here are as follows: α is set to
1 × 106, β is set to 3.4263× 10−29, γ is set to 1 × 10−4, and δω is set to 0.5. These parameters
are mainly set according to whether effective updating and iteration can be achieved during
the execution of Algorithms 1 and 2.

4.2.1. Convergence of RSSPIN

The converge analysis of the RSSPIN algorithm is performed with varying numbers of
training samples. It is important to mention that the outlier rate (ra) in Figure 2a,b is set
to 0, signifying that the proportion of incomplete data is zero. Figure 2a indicates that the
RSSPIN algorithm can effectively converge when varying numbers of samples are input
into the algorithm, wherein more samples lead to relatively larger values of all parts in
the overall objective O(C, A, W), resulting in a slower convergence of the overall objective.
Figure 2b illustrates that when a larger number of training samples are input, the increase in
the total data leads to heavier computation requirements. Consequently, the reconstruction
error of the normalized data has not been effectively improved within the same number of
iterations. In addition, given that there are multiple sub-objective functions within the total
objective function, it is logical to expect some fluctuations in the reconstruction error value
when examining the reconstruction error without noise weighting. Variables A and W are
initialized randomly because Lc in Equation (18) appears as a denominator when solving
for variable C in Algorithm 1, and thus its value cannot be zero. This initialization method
may also cause instability in the sub-objective function.

Moreover, as the number of iterations increases, the reconstruction error exhibits a
trend of continuous decrease. Furthermore, to aid in boosting the overall iteration speed
of the proposed algorithm, subsequent comparative experiments are conducted by using
50 samples as a reference, taking into account the proportion of outliers and comparisons
with other methods. Certainly, the proposed method can improve reconstruction accuracy
by performing more iterations when using a larger number of samples. However, due to
the time-consuming nature of unlimited iterations, this approach has not been adopted in
the experiments of this study.



J. Mar. Sci. Eng. 2024, 12, 1220 14 of 23

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 

functions within the total objective function, it is logical to expect some fluctuations in the 

reconstruction error value when examining the reconstruction error without noise 

weighting. Variables A and W are initialized randomly because Lc in Equation (18) appears 

as a denominator when solving for variable C in Algorithm 1, and thus its value cannot be 

zero. This initialization method may also cause instability in the sub-objective function. 

Moreover, as the number of iterations increases, the reconstruction error exhibits a 

trend of continuous decrease. Furthermore, to aid in boosting the overall iteration speed 

of the proposed algorithm, subsequent comparative experiments are conducted by using 

50 samples as a reference, taking into account the proportion of outliers and comparisons 

with other methods. Certainly, the proposed method can improve reconstruction accuracy 

by performing more iterations when using a larger number of samples. However, due to 

the time-consuming nature of unlimited iterations, this approach has not been adopted in 

the experiments of this study. 

  
(a) (b) 

Figure 2. Convergence for different numbers of samples in RSSPIN, in which normalized data are 

used. (a) Convergence rate of total objective results without outliers in iteration; (b) convergence 

rate of reconstruction errors without outliers in iteration. 

Figure 3a,b contrasts the performance of the algorithm proposed in this study when 

the input training data contain varying proportions of outliers. Specifically, referring to 

Figure 3a, it can be seen that as the outlier ratio increases, the convergence speed of the 

algorithm accelerates due to more outliers (incomplete data) resulting in fewer data par-

ticipating in the training. However, referring to Figure 3b, it is distinctly noticeable that as 

the outlier ratio rises, the reconstruction error of the algorithm enlarges when the iteration 

results tend to stabilize with the increase in the number of iterations. This phenomenon is 

understandable, primarily because more incomplete data lead to the loss of valuable data 

information, resulting in a deterioration of the algorithm’s reconstruction accuracy. 

Figure 2. Convergence for different numbers of samples in RSSPIN, in which normalized data are
used. (a) Convergence rate of total objective results without outliers in iteration; (b) convergence rate
of reconstruction errors without outliers in iteration.

Figure 3a,b contrasts the performance of the algorithm proposed in this study when
the input training data contain varying proportions of outliers. Specifically, referring
to Figure 3a, it can be seen that as the outlier ratio increases, the convergence speed of
the algorithm accelerates due to more outliers (incomplete data) resulting in fewer data
participating in the training. However, referring to Figure 3b, it is distinctly noticeable that
as the outlier ratio rises, the reconstruction error of the algorithm enlarges when the iteration
results tend to stabilize with the increase in the number of iterations. This phenomenon is
understandable, primarily because more incomplete data lead to the loss of valuable data
information, resulting in a deterioration of the algorithm’s reconstruction accuracy.
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4.2.2. Reconstruction Error of Different Methods

This section compares the proposed RSSPIN algorithm with other relevant data-driven
methods mentioned earlier. Since the sensor locations or base matrices in the comparison
methods are randomly determined, increasing the number of executions does not signifi-
cantly affect the reconstruction error. Therefore, the comparison methods were executed
100 times, and the median reconstruction error of sensor deployment was compared.

After training with the same dataset, the reconstruction error of the test data (using
normalized test data for the comparison methods) is illustrated in Figure 4a,b. The error
results for our method, as shown in Figure 4a,b, are calculated using Equation (36).

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 25 
 

 

using this method is still lower than that of other comparison methods when the number 

of training samples is 500 and 1000. However, when the sample size is 50, the reconstruc-

tion results are not ideal. This may be because the presence of both outliers and noise 

makes it difficult to achieve optimal feature selection with a smaller sample size for sub-

space learning. 

  
(a) (b) 

  

(c) (d) 

Figure 4. Reconstruction error of different methods for SST. (a) Reconstruction errors of different 

outlier rates using Equation (36); (b) reconstruction errors of different samples using Equation (36); 

(c) reconstruction errors of different outlier rates using Equation (37); (d) reconstruction errors of 

different samples using Equation (37). 

Figure 5 presents the test data and the denormalized reconstruction results obtained 

using the method proposed in this study. In this context, the reconstructed image is gen-

erated from the reconstructed data under the conditions of ra = 0 and sn = 0. The black 

dots in Figure 5b,c represent the deployment locations of the 10 sensors obtained by the 

RSSPIN algorithm, and the full-state data reconstruction of the entire SST is performed 

Figure 4. Reconstruction error of different methods for SST. (a) Reconstruction errors of different
outlier rates using Equation (36); (b) reconstruction errors of different samples using Equation (36);
(c) reconstruction errors of different outlier rates using Equation (37); (d) reconstruction errors of
different samples using Equation (37).



J. Mar. Sci. Eng. 2024, 12, 1220 16 of 23

Figure 4a demonstrates that the method proposed in this study exhibits a significantly
lower reconstruction error across various outlier ratios (ra = 0, 0.2, 0.4). Specifically, referring
to Figure 4a, when using 50 samples for training, the performance of the comparison
methods deteriorates markedly, particularly for the sparse representation (SR) training
library, which is more reliant on the number of historical data samples. This indicates
that the method proposed in this study can achieve superior data reconstruction through
iterative calculations with a limited number of samples.

In Figure 4b, when ra = 0.2, additional noise is added to the training data with varying
sample sizes. The signal-to-noise ratio, sn = 60, is set, so the training data include not only
their inherent measurement noise and model noise but also the impact of this additional
noise. The comparison results from Figure 4b demonstrate that even after adding additional
noise, the method proposed in this study still exhibits significantly smaller reconstruction
errors. This further illustrates that the reconstruction performance of the comparison
methods improves as the number of training samples increases, whereas the method
proposed in this study shows a relatively low dependence on the number of samples with
additional noise.

Refer to Figure 4c,d for the comparison of non-normalized reconstruction errors. The
reconstruction error is calculated according to Equation (37). As shown in Figure 4c,
when there are outliers of varying proportions, the reconstruction results obtained using
this method are still superior to other comparison methods, with the only exception
being a slightly higher error than the QR method when the outlier proportion is 0.4. As
shown in Figure 4d, when both outliers and noise are present, the reconstruction error
obtained using this method is still lower than that of other comparison methods when the
number of training samples is 500 and 1000. However, when the sample size is 50, the
reconstruction results are not ideal. This may be because the presence of both outliers and
noise makes it difficult to achieve optimal feature selection with a smaller sample size for
subspace learning.

Figure 5 presents the test data and the denormalized reconstruction results obtained
using the method proposed in this study. In this context, the reconstructed image is gener-
ated from the reconstructed data under the conditions of ra = 0 and sn = 0. The black dots
in Figure 5b,c represent the deployment locations of the 10 sensors obtained by the RSSPIN
algorithm, and the full-state data reconstruction of the entire SST is performed using the
sampled data from these locations. As observed in Figure 5b, the data reconstructed using
our method, even with a limited number of samples, effectively represent the distribution
characteristics of the SST test data. However, as shown in Figure 5c, increasing the sample
size without changing the number of iterations did not significantly improve the overall
reconstruction quality of the test data. When training with a large number of samples, the
algorithm proposed in this study can achieve higher reconstruction accuracy by increasing
the number of iterations. Nevertheless, this approach is not as cost-effective compared to
scenarios in which calculations are performed with a smaller sample size.

The reconstruction results shown in Figure 5b,c indicate that sparse sensor deployment
can achieve satisfactory full-state data reconstruction. This is because SST data, being a
typical type of fluid flow data, exhibit strong spatiotemporal correlations. Consequently, it
is easier to obtain its low-dimensional features through data processing, making it suitable
for sparse reconstruction. This further demonstrates that effective ocean monitoring can be
achieved with limited sensors, which undoubtedly provides valuable insights for practical
sensor deployment.
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Figure 5. Reconstructed SST of different samples by RSSPIN (Ra = 0; Sr = 0). (a) Snapshot of test data;
(b) reconstructed SST of 50 samples using RSSPIN; (c) reconstructed SST of 500 samples using RSSPIN.

4.3. Experimental Results of Salinity

In this section, the proposed RSSPIN is evaluated against the previously mentioned
methods by setting the outlier ratio to 0.2 and 0.4. Subsequently, the reconstructed data
and sensor locations are presented. The parameters used in this study are as follows: α
is set to 1 × 106, β is set to 1 × 10−6, γ is set to 1 × 10−6, and δω is set to 0.5. Similarly,
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these parameters are primarily set based on whether effective updating and iteration
can be achieved during the execution of Algorithms 1 and 2. In this experiment, only
Equation (37) was used for the reconstruction error comparison, and it was implemented
on a non-normalized dataset. It should be understood that during the implementation
of Algorithm 2, data normalization is still required. However, the reconstruction error is
calculated using non-normalized test data.

4.3.1. Reconstruction Error of Different Methods

Figure 6 presents the results of applying the proposed method and the comparison
methods to global ocean salinity data. As shown in Figure 6a, the reconstruction error
obtained using the proposed method is significantly lower than that of the comparison
methods across various outlier ratios. Figure 6b demonstrates that, even in the presence
of both outliers and substantial noise, the reconstruction error achieved by the proposed
method remains significantly lower than that of the comparison methods.
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4.3.2. Reconstruction Salinity of Outlier Ratio

Figure 7 displays the original test data of salinity and the reconstruction results of the
method proposed in this study. The reconstructed global ocean salinity field is presented for
different proportions of outliers in the original data. Similarly, the black dots in Figure 7b,c
represent the deployment locations of the sensor subsets obtained by the proposed RSSPIN
algorithm. The high-dimensional SST data reconstruction is performed using the low-
dimensional data acquired from these sparsely deployed sensors. As shown in Figure 7b,
although the reconstructed salinity field contains more noise points compared to the
original salinity distribution, the overall salinity distribution characteristics of different
regions remain clearly distinguishable. Figure 7c illustrates that as the proportion of
outliers increases, the salinity reconstruction field exhibits more noise points. However, it
remains possible, to some extent, to distinguish high-salinity areas (depicted in red) from
low-salinity areas (depicted in blue).
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5. Conclusions and Discussion

In this study, we develop a robust sparse sensor placement strategy based on noise
indicators in ocean observations. This strategy models the sparse sensor placement problem
by utilizing sparse regularization terms for selected sensors and assigning a large noise
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weight while adding a small noise weight for reconstructed data obtained from the selected
sensors. Then, the entropy of noise weight is introduced into the model to minimize the
reconstruction bias. Subsequently, a BCU-based algorithm is proposed to compute the
reconstruction matrix and selection matrix. During the iterative updating process, the
algorithm continuously identifies and evaluates the impact of noise while simultaneously
updating the selection matrix, reconstruction matrix, and noise matrix. As a result, the
selection and reconstruction matrices gradually become less influenced by data with high
noise impact. Experiments demonstrate that the strategy is effective, yielding impressive
reconstruction errors compared to the selected benchmark methods, even when the number
of training samples is small. In this study, the reconstruction matrix and selection matrix are
updated simultaneously, rather than introducing random elements into either the selection
matrix or the reconstruction basis, which would result in unstable outcomes in other related
data-driven reconstruction methods.

This study optimizes the deployment of sparse sensors using marine data containing
noise, achieving better reconstruction of marine data under noisy conditions. This provides
a meaningful reference for the selection of sensor locations in marine monitoring systems,
enabling more cost-effective and efficient marine monitoring.

Furthermore, while the accuracy has yielded satisfactory results, the complexity of
this strategy requires further reduction to expedite convergence. Additionally, a nonlinear
reconstruction model should be considered for sparse sensor placement and compared
with the linear model. Specifically, in the context of ocean monitoring, further research is
necessary to optimize the deployment of multifunctional sensors. These sensors, which
monitor various distinct parameters, should be comprehensively considered, taking into
account the data characteristics of different physical states.

Moreover, the proposed RSSPIN algorithm in this paper addresses the non-convex
problem and is influenced by multiple parameters set during the iterative optimization
process. Although the parameter values used in this study enable effective iteration and
solution updates, they are not yet optimal. Determining the optimal parameters will be
considered in future research. For instance, we will explore the use of parameter learning
algorithms from the field of machine learning, such as Bayesian learning and particle
filtering, to further refine the algorithm.
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Notations
In this study, matrices are represented in uppercase letters. Please refer to the table below for

the associated mathematical symbols and their respective physical interpretations.
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Notation Terminology
X ∈ Rn×m Global measurement data with noises
Y ∈ Rp×m Measurement data of selected sensors
C ∈ Rp×n Selection matrix or sensor selected matrix
A ∈ Rn×p Reconstruction matrix
W ∈ Rn×m Smaller noise distribution weight matrix
W ∈ Rn×m Larger noise distribution weight matrix
n Number of all candidate locations
m Number of samples
p Number of selected sensors
J = [ξ1, ξ2, · · · , ξp] Selected sensors index set
XJ, : ∈ Rp×m Data of selected sensors
Lk

C The Lipschitz constant of the k-th iteration
ωk Extrapolated weight
α Penalty parameter for the selected sensors
β Penalty parameter for the outliers
γ Penalty parameter for the maximum entropy criterion of outliers
∥·∥2 L2-norm of matrix
∥·∥F The Frobenius norm of matrix
∇CF(·) Partial derivative of function F(·) respect to C
Ĉk Estimated selected operator of the k-th iteration

Appendix A

In this study, for the selection matrix C, it is transformed into a low-dimensional

sampling matrix
⌢
C , with the columns corresponding to the index J being all-ones vectors,

others are zero vectors. The low-dimensional data Ytr sampled from training data Xtr can
be represented as follows:

Ytr = Xtr J, : =
⌢
CXtr (A1)

⌢
A is the low-dimensional reconstruction matrix for the training data Xtr corresponding

to
⌢
C . Therefore, by definition, for the training set we have the following:

ACXtr =
⌢
A
⌢
CXtr =

⌢
AYtr (A2)

It is easy to have the following:

⌢
A = ACXtrYtr

† (A3)

Therefore, for the test data Xte, the reconstructed data X̂te can be obtained from
the limited low-dimensional measurements Yte acquired by sparsely deployed sensors,
as follows:

X̂te =
⌢
AYte = ACXtrYtr

†Yte (A4)
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