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Abstract: Unmanned surface pursuit is a complex and challenging engineering problem, especially
when conducted by multiple intelligent surface vehicles (ISVs). To enhance the pursuit performance
and facilitate strategic interaction during the target pursuit, this paper proposes a novel game
theory-based maneuver planning method for pursuit ISVs. Firstly, a specific two-player zero-sum
pursuit–evasion game (ZSPEG)-based target-pursuit model is formed. To ensure the vehicles reach a
quick consensus, a target-guided relay-pursuit mechanism and the corresponding pursuit payoffs are
designed. Meanwhile, under the fictitious play framework, the behavioral pattern and the strategies
of the target could be fictitiously learned. Furthermore, mixed-strategy Nash equilibrium (MNE)
is employed to determine the motions for the vehicles, the value of which is the best response in
the proposed ZSPEG model. Finally, simulations verify the effectiveness of the above methods in
multi-ISV surface pursuit.

Keywords: unmanned surface pursuit; maneuver planning; multiple intelligent surface vehicles;
zero-sum pursuit–evasion game; fictitious play; mixed-strategy Nash equilibrium

1. Introduction

From conceptualization to realization, the utilization of multiple intelligent surface ve-
hicles (ISVs) to conduct surface pursuits has attracted widespread attention [1–5]. However,
how to effectively and efficiently pursue a moving target still poses a significant challenge
for a multi-ISV system. The system necessitates numerous advanced technologies, includ-
ing target recognition, target positioning, and dynamic maneuver planning [6,7]. Focusing
on providing an efficient maneuver planner for the multi-ISV pursuit system, this paper
aims to address the concerns regarding realizing the strategic interaction and addressing
the data scarcity of the target.

There are three mainstream methods in maneuver planning for a multi-vehicle tar-
get pursuit: graph theory-based algorithms, the cooperative target hunting approach,
and game theory-based methods. Based on graph theory, the prevailing approach is the
Voronoi-related algorithm, which could visually represent the relationships among the
motion sets for the vehicles [8,9]. However, all the graph theory-based algorithms do not
directly provide information regarding strategic choices and the interaction between the
pursuit vehicles and the target. As for the cooperative target hunting methods, researchers
have focused on the formation control and dynamic task allocation during the planning
process [10–12]. Nevertheless, these methods require detailed models for both the vehicles
and the environmental information. Game theory, as a mature mathematical theory, has
broad applicability and theoretical rigor in maneuver planning [13]. It offers advantages
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such as equilibrium point analysis, strategy optimization, and the handling of incomplete
information. To realize intelligent and cognitive interactions between the pursuit team
and the target, this paper focuses on developing a novel and practical game theory-based
maneuvering planning method.

Under the game theory-based target-pursuit framework, three types of game models,
Stackelberg games [14], cooperative games [15], and zero-sum games (ZSGs) [16–19],
demonstrate different characteristics. The Stackelberg game involves a leader–follower
model, where the leader takes action first and the follower adjusts their strategy after
observation [20]. Hence, the Stackelberg game-based model is suitable for simulating the
dynamics in a leader–follower structure. However, the complexity of the Stackelberg game
is high, requiring sophisticated real-time decision-making. Cooperative games emphasize
teamwork [21]. In cooperative games, team members depend on each other. The action
of one member may affect the entire team [22]. The interdependence of the members
may result in a decrease in team effectiveness when one team member fails to fulfill their
responsibilities. Compared with the two previously mentioned games, ZSGs are more
applicable to intense competition [23]. In ZSGs, the success of one team inevitably leads
to the failure of other teams. ZSGs enable participants to adopt clear confrontational
strategies. Moreover, due to the relative simplicity of the ZSG models, decision-making
is more explicit and easier to implement, contributing to more effective target pursuit in
competitive environments.

The application of ZSGs to target pursuit manifests as zero-sum pursuit–evasion
games (ZSPEG). The ZSPEG-based model comprises two players: the pursuer and the
evader [16–19]. In refining the ZSPEG-based model to be more specific and tailored, re-
searchers focus on enriching its objective function and considering various involved factors.
A divide-and-conquer approach is used for a multi-player ZSPEG where the pursuers
have a twofold goal [11]. To identify unknown sets of incoming attackers, a multi-model
adaptive estimator is implemented in the offline design policy sets [24]. Furthermore, a
bilateral adaptive parameter estimation method is adopted to deal with a multi-agent
ZSPEG model with unknown general quadratic goals [25]. In recent years, various algo-
rithms have been developed to solve ZSG-based models, such as regret matching [26],
fictitious play [27], double oracle [28], etc. Among them, the most popular algorithms are
regret learning-based methods. They rely on the concepts of external regret, internal regret,
swap regret, and Nash equilibrium-based regret [29]. Building on this foundation, the
current mainstream algorithms are the optimistic follow-the-regularized-leader [30] and the
optimistic mirror descent algorithm [31]. Despite the extensive research on ZSPEG-based
methods and the relevant algorithms, there is little research on applying the ZSPEG to
multi-ISV target pursuit. The main reason for this is the high complexity, data scarcity,
and many technical challenges in multi-ISV target pursuit. In this context, comparing
other algorithms to the ZSG-based models, the fictitious play algorithm can provide more
effective assistance. Firstly, fictitious play could simulate the behavior of the target, which
could help the pursuit system to better understand the behavioral patterns of the target,
thereby addressing the data scarcity of the target. Additionally, the fictitious play algorithm
allows for the experiment to be validated and for an easier evaluation of the feasibility
of different strategies and algorithms. This characteristic could prove advantageous for
multi-ISV systems by mitigating the complexity during the surface pursuit. Thus, fictitious
play is adopted as the solution framework for our developed ZSPEG-based, multi-ISV,
target-pursuit model.

Building upon the above discussions, this paper formulates an innovative ZSPEG-
based maneuver planning method for multiple-pursuit ISVs. The main contributions are
summarized as follows:

i By employing the ZSPEG framework, the surface pursuit system gains the ability to
explore and analyze the intense competition between the pursuit team and the target.

ii Through the utilization of fictitious play, the data scarcity concerning the target can be
alleviated, thereby reducing the complexity associated with surface pursuit.



J. Mar. Sci. Eng. 2024, 12, 1221 3 of 20

iii Under the fictitious play framework, a mixed-strategy Nash equilibrium (MNE)-based
decision-making process is employed. This approach could derive the best responses
to maneuver the surface vehicles effectively and stably.

The subsequent sections of this paper follow a structured organization. Section 2
provides the details of the multi-ISV target-pursuit model, which is based on the ZSPEG
framework. Following this, Section 3 introduces the design of a motion planner for the
pursuit vehicles, utilizing the MNE methodology. Section 4 shows the execution of the
simulations. Finally, Section 5 presents the conclusions drawn in the study.

2. System Model

ZSG means that, under strict competition conditions, one player gains benefits while
another player suffers loss. The sum of their benefits is zero [32]. The development of a
ZSPEG model for a multi-ISV pursuit system includes three foundational elements in the
ZSG-based model: the two players, their strategy sets, and the payoff function.

2.1. Game Scenario and the Players

A classic ZSG model can be formulated as follows:

G = {S1, S2, F}, (1)

where S1 denotes the strategy set for player 1. It is assumed that S1 = { a1, a2, · · · , am }. m
is the positive integer. Similarly, S2 denotes the strategy set for player 2, which is assumed to
be S2 = {b1, b2, · · · , bn}. F represents the payoff matrix for player 1. As for the state in the
ZSG, when i ∈ {1, 2, · · · , m} and j ∈ {1, 2, · · · , n}, if player 1 adopts strategy ai and player
2 adopts strategy bj, the game state could be formulated by

(
ai, bj

)
. Under this game state,

the payoff for player 1 is assumed to be fij. Then, the payoff matrix F =

 f11 · · · f1n
...

. . .
...

fm1 · · · fmn


for player 1 is obtained. Different rows in F denote the different strategies of player 1, while
different columns in F denote the different strategies chosen by player 2.

The pursuit scenario with n ISVs pursuing a mobile target is presented in Figure 1.
In accordance with this scenario, the constructed ZSSG model includes two players: the
pursuit team, consisting of n vehicles, and the moving target. Then, the ZSSG-based model
for the multi-ISV target-pursuit scenario could be formulated by G =

{
Sp, Se, F

}
, where

Sp and Se denote the strategy sets for the two players. It should be noted that the red star
in the figure represents the attached points of the moving target. Once the target reaches
this point, the pursuit team fails the protection task. F represents the payoff matrix for the
pursuit team.
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2.2. Strategy Set

Before designing the maneuver strategy sets, the kinematic model of the surface
vehicle should be formulated. When the vehicle moves on the surface, three primary types
of motion on the horizontal plane are typically identified: surge, sway, and yaw. The
corresponding motion analysis is presented in Figure 2. The motions of the vehicle are
described using two reference coordinates: the geodetic reference coordinate ∑I and the
vehicle body reference coordinate ∑B [33]. As shown in Figure 2, when i ∈ {1, 2, · · · , n},
under ∑I , the position of the ith vehicle is xi = [xi, yi]

T . ui is the speed at which the vehicle
oscillates left and right along YB, which is usually set to be zero. vi is the speed at which
the boat oscillates forward and backward along XB. ϕi is the yaw angle of the vehicle. vc is
the velocity of the currents at ∑I .
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Assumption 1. It is assumed that all the vehicles have a constant-speed motion, and the sway
velocity for the individual vehicle is zero.

Under Assumption 1 and the discrete maneuver, the three-degrees-of-freedom kine-
matics model of the ith vehicle is shown as follows:{

xi(k + 1) = xi(k) + (vi(k)ri(k) + vc)∆t
ri(k) = [cosϕi(k), sin ϕi(k)]

T , (2)

where the control variable is the unit vector of yaw angle ri(k) at the current kth step,
where k is a non-negative integer. xi(k + 1) represents the position of the vehicle at the next
time step. xi(k) represents the position at the current kth step. ∆t is the unit time period.
vi(k)ri(k) is a standard vector–scalar multiplication, where scalar vi scales the components
of vector ri. This results in a new vector (vicosϕi, vi sin ϕi) , which represents the velocity
of the vehicle in Cartesian coordinates.

Based on the above introduction, ri(k) is what should be determined for the pursuit
vehicle in the ZSSG-based model. Then, if there are N yaw vectors for the ith vehicle to
choose, there would be Nn choices in the Sp for the pursuit team. Therefore, to reduce
the computational overhead, one decomposing method is adopted in this paper. The
decomposing method that is employed is named the target-guided relay-pursuit (TGRP)
strategy, which is elaborated in Definition 1. This strategy hinges on the principle of relay
pursuit, where only one vehicle is active at any given time, while the others remain on
standby, ready to take over the pursuit as the scenario evolves. There are two reasons
for adopting the TGRP strategy. The core reason behind using TGRP is to dynamically
assign the pursuit role to the ISV that is best positioned to continue the chase, minimizing
the overall time to intercept and enhancing the strategic positioning of the pursuit team.
Furthermore, if fewer ISVs are actively maneuvering at any one time, the risk of collisions
is significantly decreased, enhancing safety and operational integrity. However, while
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the TGRP strategy is designed to be highly effective under a wide range of conditions, it
is necessary to clarify that it may not always represent the absolute optimal strategy. Its
performance can be considered close to optimal in scenarios characterized by complex
dynamics and the need for rapid tactical shifts.

Definition 1 (TGRP strategy [34]). In the TGRP strategy, only one vehicle is active, while the
others are stationary. This relay-pursuit mechanism could effectively avoid collisions among the
vehicles. Furthermore, the distribution of the active vehicle changes over time, which depends on the
outcome of the game at each time step. If the active vehicle is determined by index i∗, the heading
vector ri for the ith pursuit ISV could be obtained by Equation (3).

ri =

{
ai

∥ai∥
, if i = i∗

0 (0 ∥ ai), others
, (3)

where ai := xt − xi is the relative position vector from the target to the ith vehicle. 0 ∥ ai denotes
the heading angle for the inactive vehicle towards the direction of the target.

Under the TGRP strategy, the pursuit team has n total motions. When i ∈ {1, . . . , n},
the ith motion denotes that the ith vehicle actively pursues the target. By utilizing the
fictitious play, the restricted strategy set St for the target is assumed to include n + 1 choices.
The former n actions represent an evasion of the corresponding pursuers. The n + 1 action
means that the target is moving towards its target node xn. Then, when j ∈ {1, . . . , n + 1},
rtj denotes the jth maneuver strategy for the moving target. The payoff matrix F for the
pursuit team is demonstrated in Table 1.

Table 1. Formulation of the payoff matrix.

Payoff
Strategy of the Invading Vehicle: Se

Evading P1 Evading Pj Evading Pn Towards xa

Strategy of the
pursuit ISV: Sp

Active P1 f11 f1j f1n f1(n+1)

Active Pi fi1 fij fin fi(n+1)

Active Pn fn1 fnj fnn fn(n+1)

2.3. Pursuit Payoff Function

In this paper, two goals are set for each pursuit vehicle. The first goal is to capture
the target as quickly as possible. The second is to prevent the target from reaching its
intended node. The two goals are the minimum time required for the vehicle to capture the
target, and the alignment of the target with the point of attack from its current position,
respectively.

2.3.1. Minimum Time-to-Capture

To calculate the minimum time-to-capture, several parameters need to be introduced.
xt, vt, and rt represent the location, the surge velocity, and the unit yaw vector for the target,
respectively. l is the length of the vehicle.

Then, a time metric is introduced [23]. It is associated with the minimum positive
solution, t

(
xt, xi, rtj , ri

)
, in the following equation:(

v2
t − v2

i

)
t2 + 2

[
vtrtj

Tai − lvri

]
t + ∥ai∥2 − l2 = 0, (4)

where ai := xt − xi. As the time-of-capture (TC)ij is bounded by the TU , the final (TC)ij can
be obtained as follows:

(TC)i,j = min
{

t
(

xt, xi, rtj , ri

)
, TU

}
. (5)
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2.3.2. Avoidance of Being Attacked

There is a goal to avoid the target reaching the point of attack: xa, (AN):,j denotes the
extent to which target is heading towards xa from its current location. Therefore, (AN):,j is
assumed to be cos θ, where θ is the angle between rtj and vectors xa − xt. Therefore, (AN):,j
is formed as follows:

(AN):,j = cos


〈

rtj , xa − xt

〉
∥∥∥rtj , xa − xt

∥∥∥
, (6)

where (AN):,j is the alignment metric for the target with respect to its attack node under the

jth strategy, and cos

( 〈
rtj , xa−xt

〉
∥∥∥rtj , xa−xt

∥∥∥
)

represents the cosine of the angle between the target’s

heading vector rtj and the vector pointing from the target to the attack node xa − xt. This
measures how well-aligned the target’s heading direction is with the vector pointing
towards the attack node. According to Equation (6), a higher value of (AN):,j (close to 1)
indicates that the target is moving directly towards the attack node, suggesting a higher
likelihood of an attack. A lower value (close to −1) suggests the target is moving directly
away from the attack node. Values of around 0 indicate perpendicular movement, implying
that the target is neither approaching nor directly retreating from the attack node. This
metric helps to evaluate the level of threat posed by the target to the attack node. By
continuously monitoring (AN):,j, the pursuit system can prioritize targets that are better
aligned with critical points, thus optimizing the pursuit strategies.

2.3.3. Goal/Payoff Function

To balance multiple critical aspects of the pursuit dynamics, the goal/payoff function
(7) is formed based on the two introduced metrics: the minimum time-to-capture TC and
the avoidance of being attacked AN . This goal function could reflect both the urgency of
intercepting the target and the strategic necessity of managing risks.

fij = −
(TC)i,j

max
i,j

(TC)
i,j

− (AN):,j, (7)

where the minimum time-to-capture (TC)i,j is normalized with the maximum value in

vector TC. This ensures that all values of
(TC)i,j

maxi,jTC
are uniformed between zero and one so

that their size is similar to the values of (AN):,j.
There are two main motivations for adopting this goal/payoff function. First, this

function facilitates a more holistic evaluation of pursuit strategies by not only focusing
on quick interception but also ensuring that the maneuvers are strategically sound and
sustainable over the long term. Second, the inclusion of both TC and AN allows the function
to adapt to different tactical situations, providing a flexible tool that can adjust to the target’s
behavior and environmental variables. Based on function (7), the payoff assignment is
presented in the Algorithm 1, which formulates the payoff matrix under the pursuit station
(xt, vt, xa, xi, vi). The calculated payoff matrix would assist in the latter solution to the
proposed ZSPEG-based model.
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Algorithm 1: Payoff assignment for the pursuit team

Input: xt, vt, xa, xi, vi;
Output: F = − (TC)

maxi,jTC
− (AN);

1 for i = 1 → n do
2 for j= 1 → n do
3 rt =

xt−xi
∥xt−xi∥ ;

4 (TC)i,j = min
{

t
(

xt, xi, rtj

)
, TU

}
;

5 (AN):,j = cos

( 〈
rtj , xa−xt

〉
∥∥∥rtj , xa−xt

∥∥∥
)

;

6 end for
7 end for
8 if j = n + 1 then
9 rtj =

xt−xi
∥xt−xi∥ ;

10 for j = 1 → n do

11 (TC)i,j = min
{

t
(

xt, xi, rtj

)
, TU

}
;

12 (AN):,j = 1;

13 end for
14 end if

3. Methodology

The solution to the proposed ZSPEG-based model is to calculate the accurate and
stable equilibrium point. Two types of Nash equilibrium exist in the ZSG-based models:
pure-strategy Nash equilibrium and MNE.

3.1. Pure-Strategy Nash Equilibrium

A pure-strategy Nash equilibrium exists when each player selects a deterministic
strategy. To obtain this equilibrium, players do not employ probability distributions. Based
on the definition of the Nash equilibrium in [35], the pure-strategy Nash equilibrium for
the proposed ZSPEG-based model G :=

{
Sp, St, F

}
could be explained by Definition 2.

Definition 2 (Pure-strategy Nash equilibrium [36]). Firstly, it is assumed that the pursuit team
selects the i∗th vehicle and the target chooses motion rtj*

, which satisfies the following conditions:

i∗ ∈ arg max
Sp

min
St

Fij, (8)

j∗ ∈ arg min
St

max
Sp

Fij, (9)

where Fij = fi under the condition that rt = rtj . Then,(i∗, j∗) would be a pure-strategy Nash
equilibrium if, and only if, Equation (10) is satisfied.

max
Sp

min
St

Fij = min
St

max
Sp

Fij. (10)

Corollary 1. There exists a situation where there is no pure-strategy equilibrium value in the
pursuit model.

Proof of Corollary 1. For any fixed i ∈ {1, · · · , n}, Equation (11) could be established
because the maximum value of Fij is greater than or equal to any value of Fij.

min
St

max
Sp

Fij ≥ min
St

Fij. (11)
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For the best i′ on the right-hand side of Equation (11), the corresponding best min
St

Fi′ j

is one of any min
St

Fij. Therefore, Equation (12) could be obtained as follows:

min
St

max
Sp

Fij ≥ max
Sp

min
St

Fij. (12)

According to the above two equations, once the maximum value of min
St

max
Sp

Fij is grater

than the value of min
St

Fij, the following equation would be obtained, which did not satisfy the

requirement of the existence of the PNE. In this situation, there is no PNE in the model.

min
St

max
Sp

Fij > max
Sp

min
St

Fij. (13)

□

3.2. MNE

Given the potential absence of a pure-strategy Nash equilibrium, MNE would be calcu-
lated for the proposed model based on the minimax theorem. MNE denotes a scenario in a
game where players employ probability distributions to select various pure strategies. The
minimax theorem, proposed by Jon Von Neumann, provides a solution that incorporates
strategic randomness [37].

Assume that the ISVs adopt the mixed strategy, p = [p1, · · · , pn]
T , to choose their

motion, where ∀i ∈ {1, · · · , n}, 0 ≤ pi ≤ 1, and the sum of p is equal to 1. Similarly, the
target is assumed to adopt the mixed strategy: q = (q1, · · · , qn+1). The constraints for q are
the same as that for p. Therefore, under mixed strategies, the payoff for the pursuit team
can be calculated by Equation (14).

Vp = pTFq. (14)

The goal of the pursuit ISVs is to maximize its reward, while the aim of the target is to
minimize the reward of the pursuit team. Hence, their payoff functions are expressed in
the following two equations, respectively.

Vp∗ = max
Sp

(Fq), (15)

Vq∗ = max
St

(
pTF

)
. (16)

After formulating the two payoffs, the existence of MNE in the proposed model is
given and explained by Theorem 1.

Theorem 1 (existence of MNE [38]). For any two-player ZSG models, the following conditions
could be satisfied:

• Vp∗ = Vq∗ = V∗, where V∗ is called the minimax value of the game.
• The Nash equilibrium in this ZSG model is (p*, q*).

Proof of Theorem 1. Suppose that
(∼

p,
∼
q
)

is an MNE in this model. Then, the payoff for
the ISV is obtained by Equation (17).

V* =
∼
p

T
F
∼
q. (17)
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As both the sum of
∼
p and

∼
q are equal to one, according to the above equations,

Equation (18) could be obtained.

V∼
q
= min

st

(
∼
p

T
F
)
≤ ∼

p
T

F
∼
q ≤ max

sp

(
F
∼
q
)
= V∼

p
. (18)

Based on Corollary 1, it could be inferred that min
st

(
∼
p

T
F
)
≥ max

sp

(
F
∼
q
)

. Therefore, the

value of V∼
q

is equal to V∼
p
. Equation (19) is subsequently formulated.

V∼
q
= min

st

(
∼
p

T
F
)
=

∼
p

T
F
∼
q = max

sp

(
F
∼
q
)
= V∼

p
. (19)

It could be concluded that when
(∼

p,
∼
q
)

is an MNE,
∼
p and

∼
q must be the optimal

strategies for the pursuit team and the target, respectively. □

Definition 3 (best response strategy [39]).Suppose that p−* is the mixed strategy set other than
p*; then, the best response strategy for p* is formulated by Equation (20).

BRp*
:= arg max

p∈∆i
u
(
p*, p−*

)
, (20)

s.t. ∀p′ ∈ △, u
(
p*, p−*

)
≥ u

(
p′, p−*

)
Notations:

• The equation must be constructed from the expected reward u.
• BRp∗takes the mixed strategy in the p−*as the independent variable. Correspondence: △−* → △ .
• All the mixed strategies in theBRp∗have no differences.

Corollary 2. p* is the best response to q*, and vice versa.

Proof of Corollary 2. Based on Equation (19), the following equations could be formulated:

Vp* = min
st

(
pTF

)
, (21)

Vq* = max
sP

(Fq). (22)

The expected reward in Definition 3 for p* and the q* can be calculated by
Equations (23) and (24), respectively.

u
(
p*, p−*

)
= p*

TFq, (23)

u
(
q*, q−*

)
= pTFq*. (24)

The best response for p* and q* is denoted by Equations (25) and (26).

BRp* = arg max u
(
p*, p−*

)
, (25)

BRq* = arg max u
(
q*, q−*

)
. (26)

Based on Equation (19), Equations (27) and (28) can be established.

max u
(
p*, p−*

)
= min p*

TFq, (27)

max u
(
q*, q−*

)
= min pTFq*, (28)
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where the solution to the minp*
TFq is q = q*, and the solution to the maxpTFq* is p = p*.

Finally, Equations (29) and (30) can be formulated.

BRp* = arg max u
(
p*, p−*

)
= q*, (29)

BRq* = arg max u
(
q*, q−*

)
= p*. (30)

Based on the above equations and proofs, q* is the best response to p*, and vice versa.
□

3.3. Computing Pursuit Motions

As MNE proved to be the best response in the proposed model, the solution to the
max

sp
(Fq) or min

st

(
pTF

)
can provide the optimal and stable motions for the vehicles. The

calculation process is as follows. First of all, pTFq is set as V. Then, as the values in q are
summed to be 1, the minimum value of pTFq is equal to the minimum value in the vector
of
(
p*

TF
)
. Therefore, solving the max

Sp
Fq problem is equivalent to solving the following

linear programming problem (31):

maxV,
s.t. pTF ≥ V1,

p1 + · · ·+ pn = 1,
pi ≥ 0, i ∈ {1, · · · , n}.

(31)

With the assistance of Algorithm 1 in generating the payoff matrix F, the MNE-based
maneuver planning algorithm is shown in Algorithm 2. Based on the MNE framework de-
rived from game-theoretic principles, Algorithm 2 aims to dynamically adjust the strategies
of multiple pursuit agents based on real-time feedback from the operational environment
and the target’s maneuvers. The algorithm calculates the Nash equilibriums for differ-
ent strategic setups, allowing each pursuit vehicle to select the best possible action that
maximizes the collective chances of success.

Algorithm 2: MNE-based maneuver planner for pursuit vehicles.

Input: xt, vt, xn, xi, vi, i ∈ {1, · · · , n};
Output: ri;

1 if t ≤ TS and di ≤ dc and dt ≤ da then
2 formulate F according to Algorithm 1;
3 solve the problem (31);
4 obtain MNE p*;
5 i* = arg max (p*);
6 end if
7 if i = i* then
8 ri =

xt−xi
∥xt−xi∥ ;

9 else

10 ri = 0 → 0 ∥ xt − xi
∥xt − xi∥

;
11 end if

3.4. Step-by-Step Process

Based on the above introduction, the flowchart illustrating the different phases of the
algorithm in Section 3 is provided in Figure 3.
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4. Simulations

In this section, we present the results obtained from the simulations and discuss their
implications. The objective is to evaluate the performance of the proposed ZSPEG-based
model and its effectiveness in achieving stable and accurate equilibrium points. We will
analyze the outcomes of different scenarios and compare them with baseline methods
to demonstrate the advantages of our method. The results will be examined in terms of
time-to-capture, maneuver efficiency, etc.

To set the parameters before the simulations, a series of parameters were chosen
based on their relevance to the performance and functionality of the ISV during pursuit
tasks. The chosen parameters are presented in Table 2. The selection criteria for these
parameters were as follows: (i) Sway velocity of the vehicle (v)—the sway velocity range
of 5 m/s to 15 m/s was determined by referring to the currently used ISVs, ensuring that
the vehicle could adapt to the various operational speeds required for different scenarios.
(ii) Sway velocity of the target (vt)—a fixed value of 10 m/s was chosen based on the average
target speeds observed in similar pursuit and evasion scenarios. This value balances the
difficulty for the ISV to capture the target while allowing for a meaningful analysis of
the algorithm’s effectiveness. (iii) Length of the vehicle (l)—a standard length of 4 m
was selected to represent the typical dimensions of ISVs used in practical applications,
ensuring the results are applicable to real-world scenarios. (iv) Intercepted distance to
target (dc)—the value of 12 m was derived based on the length of the vehicle, indicating
the optimal interception distance for successful captures while minimizing the risk of
overshooting or collision. (v) Attack distance of target (da)—an attack distance of 6 m was
chosen based on the ISV’s common response capabilities, ensuring effective engagement.
(vi) Safe distance between the ISVs (ds)—a safe distance of 9 m was determined to prevent
collisions between multiple ISVs operating within the same area, allowing for coordinated
maneuvers. (vii) Interval time (∆t)—an interval time of 0.01 s was selected to ensure
precise and responsive updates to the ISV’s path-planning algorithm, enabling real-time
adjustments. (viii) Survival time of target (TS)—the survival time of 2.0 s was established
to assess the ISV’s rapid response capabilities, providing a challenging yet achievable
timeframe for the pursuit. (IX) Protected area (A)—the protected area of 40 m × 80 m was
set to represent a controlled environment where the ISVs and targets operate, allowing for
consistent and repeatable testing conditions.
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Table 2. Parameters chosen for the monomer pursuit.

Parameters Definitions Values

v Sway velocity of the vehicle 5–15 m/s
vt Sway velocity of the target 10 m/s
l Length of the vehicle 4 m

dc Intercepted distance to target 12 m
da Attack distance of target 6 m

ds
Safe distance between the

ISVs 9 m

∆t Interval time 0.01 s
TS Survival time of target 2.0 s
A Protected area 40 m × 80 m

First of all, to compare the proposed ZSPEG-based planning scheme in both the single-
ISV scenario and the multi-ISV scenario, the strategy set and the reward function for the
single-ISV pursuit scenario are constructed as follows. In the single-ISV pursuit scenario,
the heading vector of the ISV is limited to within their field of vision constraints, which
are denoted by FoVP. Therefore, rp, the unit yaw vector for the pursuit vehicle, is limited

to the range of
[
− FoVP

2 , FoVP
2

]
. Furthermore, the maneuver planning for the ISV is closely

related to its minimum steering angle (MSA). Then, under the constraints of the FoV and
MSA, there could be ⌊FoVP/MSAP⌋ options for ISV to move. Hence, the ith strategy for
the pursuit vehicle is denoted by rpi

= i − FoVP
2 , i ∈ {1, 2, · · · , ⌊FoVP/MSAP⌋}. Similarly,

the maneuver strategy set for the moving target could be assumed by rtj = i − FoVT
2 ,

j ∈ {1, 2, · · · , ⌊FoVT/MSAT⌋}. The payoff function for the single-ISV target pursuit is
designed to consider two factors: the distance between the pursuit ISV and the target,
and the distance between the target and the point of attack. These two factors could be
formulated by the following equations:

(DP)i,j = −
tan
(

d1
p
(
rpi

, rti

)
− d0

p

)
KA

, (32)

(DT)i,j = −
tan
(

d1
t

(
rtj

)
− d0

t

)
KB

, (33)

where (DP)i,j denotes the pursuit feedback of the distance between the vehicle and the
target. (DT)i,j denotes the attacking feedback of the distance between the target and the

intended node. d1
p

(
rpi

, rtj

)
and d1

t

(
rtj

)
denote the corresponding distance in the future

situation after adopting the related motions. d0
p and d0

t represent the distances in the current
situation. Then, the payoff for the pursuit ISV can be obtained by Equation (34).

(F)i,j = lg
(
(DP)i,j + (DT)i,j + KC

)
, (34)

where KA, KB, and KC are all constants.
To generate and analyze the trajectories under the single-ISV pursuit model, the initial

position for the moving target is set to along the boundary of the protected area. The
position of the unknown attacked node should be within the protected area. Thus, it is
assumed that xt(0) = (80,5), xa = (20,10), xp(0) = (40,22), FoVT = 120◦, and MSAT = 1◦.
After being solved by Algorithm 2, under different FoVP and MSAP configurations, nine
trajectories in the single-ISV pursuit are shown in Figure 4. Although the rational motions
were sequentially generated for the ISV in time, the vehicle fails to capture the target in
all the situations. If the ISV does not fulfil the necessary conditions, the target could gain
the initiative to attack its intended node. Therefore, it is an inevitable trend that multi-ISV
pursuit replaces single-ISV pursuit.
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4.1. Model Evaluation

In this subsection, we evaluate our proposed ZSPEG-based model by comparing it
with two other target-pursuit methods through a series of simulations. The compared
methods include the following:

Graph theory-based: There are many versions of Voronoi algorithms being applied in a
multi-robot pursuit scenario [40]. Among these Voronoi-based methods, the GAM–Voronoi
algorithm outperforms the others in a bounded convex environment, which utilizes a
global area-minimization (GAM) strategy [41]. This was chosen as the representative of the
Voronoi-related algorithms.

Cooperative target hunting: To compare our method with strategy-based cooperative
pursuit methods, a popular method, called Cooperative Hunting based on the Dynamic
Hunting Points Allocation (CH-DHPA) [42–44], is selected. This method transforms the
target pursuit to the dynamic hunting points allocation problem.

Our Proposed Method (TGRP-MNE): This method aims to achieve stable and accurate
equilibrium points by implementing the ZSPEG-based model.

The reasons why the GAM–Voronoi algorithm and CH-DHPA were chosen for the
comparison with our proposed methods include two main criteria. First, both the GAM–
Voronoi and CP-DHPA methods address the core issue of maneuver planning in pursuit
scenarios, similar to our study’s focus. This relevance ensures that the comparisons are
directly applicable and meaningful to the field of pursuit–evasion games involving multiple
ISVs. Second, by comparing these methods, this study could have significant theoretical im-
plications regarding the applicability of game theory versus graph theory and cooperative
strategies in real-world scenarios.

The required parameters, the pros, and the cons of the three methods are shown in
Table 3. To ensure the fairness of the experiment, while providing our method with ad-
ditional parameters and information, we established ideal environmental conditions for
the other two methods. The relevant environmental elements and geographic information
were set to ideal situations devoid of external disturbances. Furthermore, we also idealized
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the communication situation for these two methods. As they involve distributed commu-
nication, effective communication among multiple ISVs is crucial during task allocation
and team collaboration. Hence, to enhance fairness during the comparison simulation,
signal transmission was also configured to be in an ideal state for the methods of GAM–
Voronoi and CP-DHPA. Based on the above settings, simulations were conducted under
the fixed initial positions for the ISVs. The relevant initial positions were set as follows:
x1(0) = (40,30), x2(0) = (40,10), x3(0) = (50,20), and x4(0) = (30,20). Furthermore, xt(0)
and xn(0) were randomly chosen. The settings for the other parameters are shown in
Table 2. For every group, the simulations were carried out 1000 times. The assessed met-
rics include the capture success rate—rs(%); the rate of nodes being attacked—ra(%); the
number of collisions—C; and the approximate average energy consumption per successful
capture—AEC (m·s).

Table 3. Preliminaries of the three methods.

Methods Required Parameters Pros Cons

GAM–Voronoi

(i) (Spatial positioning
parameters;

(ii) Target attributes;
(iii) Initial conditions.

Effectively partitions space to
address unknown target
movements

Requires more geographic
information and robust
communications

CP-DHPA

(i) Pursuit team attributes;
(ii) Target attributes;
(iii) Environmental factors;
(iv) Allocation rules.

(i) Emphasizes teamwork
and flexibility;

(ii) Utilizes team resources
efficiently;

Requires more internal team
coordination and robust
communications

TGRP-MNE (ours)

(i) Behavioral patterns of
the target;

(ii) Pursuit team attributes;
(iii) Rules of the game.

(i) Reflects the competitive
interaction;

(ii) Fictitiously plays the
strategies and the
motions of the target;

(iii) Maintains high
flexibility;

Requires more parameters
and pursuit information

The selected three parameters were computed as follows: (i) The capture success rate
rs(%)—this parameter represents the percentage of simulations where the pursuit strategy
successfully led to the target being captured within the defined constraints and conditions.
It is computed by dividing the number of successful captures by the total number of
simulation runs and then multiplying by 1000 to express this as a percentage. (ii) The rate
of nodes being attacked ra(%)—similar to the success rate, the avoidance rate measures the
percentage of simulations in which the target successfully evaded capture for the duration
of the simulation or until it reached a safe zone. This is calculated by counting the instances
of successful evasion, dividing this by the total simulations, and converting the result into
a percentage. (iii) The average energy consumption per successful capture AEC (m·s)—to
compute the AEC, the total energy consumed in each run is summed up and then divided
by the number of runs to obtain the average. This provides a measure of how much energy,
on average, is required for a vehicle to participate in a pursuit scenario over the course

of the simulations. Mathematically, it can be represented as AEC = ∑n
i=1 Ei

n , where Ei is
the energy consumed in the ith simulation and n is the total number of simulations. This
calculation helps to understand the energy efficiency of the different tactical approaches
under various operational conditions, which is crucial for optimizing the pursuit strategies
in terms of both effectiveness and sustainability.

The simulation results under the varying survival times, the varying pursuit veloci-
ties, and the different areas are shown in Tables 4–6, respectively. It should be noted that
only the CP-DHPA method has the collision parameter C. This is because the CP-DHPA
method requires additional collision avoidance measures, for which we need to analyze
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its effectiveness in avoiding collisions. However, in the GAM–Voronoi method, collision
avoidance is inherently built into the method, preventing any collisions from occurring.
In our TGRP-MNE method, a relay–pursuit strategy is adopted. Therefore, collisions
between pursuit vehicles are not a concern, either. As presented by these three tables,
our method outperforms the other two methods in achieving a relatively high success
rate of capture rs and the lowest average energy consumption AEC. To be specific, when
comparing Tables 4 and 5, we observed that the rate of nodes being attacked, ra, in the
CP-DHPA method is lower than that in our proposed TGRP-MNE method. This phe-
nomenon indicates that that our TGRP-MNE method might implement a more effective or
aggressive pursuit strategy. Such a strategy could better block the routes of the target or
more accurately predict the target’s movements, but may not provide sufficient protection
for the target’s attack point. Furthermore, according to Table 6, our proposed method
demonstrates a superior performance compared to GAM–Voronoi and CP-DHPA in terms
of its success rate and energy consumption across all area scales. Based on these findings, if
node protection is the primary goal in surface pursuit, CP-DHPA would be the preferred
choice among the three methods. However, in general situations, achieving a high and
stable success rate of capture is paramount for the surface pursuit. With adaptability to
factors TS, vp, and the area scale, and the ability to achieve a high and stable success rate of
capture and low energy consumption, our method can be considered the optimal choice for
surface pursuit.

Table 4. Comparison under a varying TS with vp = 15 m/s.

TS(s)
TGRP-MNE (Ours) GAM–Voronoi CP-DHPA

rs(%) ra(%)
AEC
(m·s) rs(%) ra(%)

AEC
(m·s) rs(%) ra(%) C AEC

(m·s)

1.0 48.7 8.0 134.21 51.0 11.4 520.92 78.3 7.3 113 497.61

1.5 84.6 10.1 184.07 78.8 9.8 707.13 89.4 10.0 101 484.65

2.0 87.8 12.8 201.75 84.6 14.4 792.63 82.7 6.6 109 478.98

2.5 88.6 11.2 206.06 86.2 13.8 801.63 80.5 7.0 125 509.58

3.0 87.8 12.2 200.48 85.9 14.1 809.64 83.7 6.3 100 466.83

Table 5. Comparison under a varying vp with TS = 2.0 s.

TS(s)
TGRP-MNE (Ours) GAM–Voronoi CP-DHPA

rs(%) ra(%)
AEC
(m·s) rs(%) ra(%)

AEC
(m·s) rs(%) ra(%) C AEC

(m·s)

5.0 63.0 18.3 256.59 60.4 21.4 1084.4 83.3 13.1 7 820.89

7.5 73.4 18.8 245.07 66.3 17.8 992.16 84.1 11.7 31 742.42

10.0 80.6 16.9 237.92 71.4 18.1 873.45 84.9 9.5 55 613.80

12.5 84.0 14.6 217.19 83.4 11.8 834.48 84.4 8.7 69 519.21

15.0 87.8 12.8 201.75 84.6 14.4 792.63 82.7 6.6 109 478.98
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Table 6. Comparison under different areas.

A(m2)

TGRP-MNE (Ours) GAM–Voronoi CP-DHPA

rs(%) ra(%)
AEC
(m·s) rs(%) ra(%)

AEC
(m·s) rs(%) ra(%) C AEC

(m·s)

40 × 40 92.0 8.0 82.7 85.7 14.3 490.05 82.0 5.0 130 81.12

40 × 60 89.9 10.0 95.72 79.6 16.3 710.73 72.0 7.0 210 129.24

40 × 80 86.8 7.7 122.15 60.6 18.1 963.54 84.0 2 120 253.80

40 × 80 87.8 12.8 201.75 84.6 14.4 792.63 82.7 6.6 109 478.98

4.2. Sensitive Analysis

In this subsection, the sensitivity of our method under different conditions is tested
and analyzed. The conducted experiments include the following: (i) analysis of n, TS, and
vp, where we tested our methods under multiple scenarios with different initial conditions,
including the number of vehicles n, the survival time TS, and the pursuit velocity vp; (ii) system
stability, where we assessed the stability of the pursuit system by observing the consistency
of the pursuit strategies over extended simulation runs with different target strategy sets.
These experiments could allow for a comprehensive evaluation of the proposed method,
demonstrating its advantages and identifying potential areas for improvement.

Analysis of n, TS, and vp: To explore the impact of variables on the performance,
simulations are conducted using different numbers of vehicles n, various survival times TS,
and changing pursuit velocities vp. The results are shown in Figure 5. In Figure 5a, once
TS exceeds 1.6 s, all the success rates would be stable, with a small fluctuation of around
85%. As shown in Figure 5b, there were no significant differences or changes among the
data. The rates of attack were all below 15%. The above observations indicate that when
the survival time exceeds a certain value, further increasing TS no longer contributes to
improvements in the performance. According to the results shown in Figure 5c,d, with
the pursuit velocity increases, the capture success rate in all the teams increases, while the
rates of the node being attacked all decrease. To obtain a higher success rate and a lower
rate of being attacked in a pursuit team, improving the pursuit velocity could be helpful.
Furthermore, the team with n = 5 always achieves the best pursuit performance due to
its having the highest number of vehicles. In sum, the variation in the team-scale and the
pursuit velocity has a more significant impact on the model’s performance compared to
the changes in time. Therefore, during the optimization of the system, particular attention
should be paid to the n and vp adjustments.

System stability: To determine how the strategy set of the target affects the pursuit,
the strategy sets for the target are redesigned. For a pursuit team with n = 3, the strategy
sets for the target are reformulated by the two newly designed sets: Stg and Stc. The first
strategy set is based on the ZSG model, which was introduced in Section 2.2. Stc is more
complex than the ZSG-based strategy set and the original one. The detailed strategies in
Stc are shown as follows, and are also displayed in Figure 6:

rt1 : the target evades from the nearest ISV.
rt2 : the target adopts the collective evasion strategy, which is explained in Definition 4.
rt3 : the target heads directly toward its attacked node, denoted by the red star in Figure 6.
rt4 : the direction of the target is the angle bisector formed by rt1 and rt2 .
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Definition 4 (collective evasion strategy). From the perspective of the target, all angles formed
between the two adjacent ISVs are taken into account in the collective evasion strategy. Additionally,
the moving direction of the target is the parallelogram of the maximum angle formed by the two
adjacent ISVs. The purpose of this strategy is to enable the target to move immediately away
from the entire pursuit team, rather than just from one ISV. The calculation for this evasion
motion is as follows: Firstly, αi := ∡(xt, xi) is set to represent the angle of the vector (xt − xi).
βi := αi+1 − αi denotes the angle between two adjacent ISVs. If i = n, αi+1 is equal to α1.
Therefore, rt2 could be obtained by Equation (35).

rt2 =
[
cos
(

βimh + βim
)
, sin

(
βimh + βim

)]T (35)

where im is the index when βiis taken to its maximum value. βimh is half of the βim.

With changing survival times, simulations were carried out under St = Stg, St = Stc
and St = Sto, respectively. The results are shown in Figure 7. In terms of the success rate of
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capture and the rate of being attacked, it is apparent that there is no significant difference
among the three strategy sets. This discovery underscores the robustness of our proposed
method, showcasing its ability to maintain a consistent performance despite variations in
the target’s strategy set.
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5. Conclusions

This paper introduced a novel ZSPEG-based maneuvering method for multiple ISVs
to pursue a moving target. The proposed method addresses the challenge of realizing
the interaction between the pursuit team and the target and mitigating the data scarcity
of the target. At first, the original n + 1 non-cooperative multi-ISV game model was
reformulated into a two-player ZSPEG model. Based on the fictitious play solution, an
MNE-based decision-making process was designed to provide the vehicles with rational
and stable motions. Finally, the simulation results show that the proposed method achieves
a comprehensively outstanding performance, obtaining high capture success rates, low
energy costs, generalization, and adaptability. Nevertheless, the proposed model depends
on centralized computing to achieve a consensus among multiple ISVs, which limits its
adaptability to more intricate surface environments. To enhance the navigation of the
surface vehicles under constrained surface communication conditions, future research will
integrate decentralized computing into the proposed method.
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