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Abstract: Maneuver simulation of a standard ship model gives indication of numerical accuracy. In
the numerical calculation of ship maneuvering, uncertainty analysis is a necessary step to ensure the
accuracy of the calculation. In this study, uncertainty pair analysis is carried out in the simulation of
the turning circle motion of the standard ship model ONRT in waves. According to the uncertainty
analysis procedure recommended by the International Towing Tank Conference (ITTC), the change
of ship resistance caused by the number of grids is studied to determine the influence of grid density
on the numerical prediction. The simulation of turning motion in waves is carried out based on
the uncertainty analysis. It is found that the minimum number of overset grids for this simulation
is 1.4 million. The numerical results are fairly accurate compared to experimental results, and this
technique provides a method with low calculated cost for this simulation.

Keywords: CFD; overset grid; uncertainty analysis; numerical prediction; ship maneuvering

1. Introduction

The maneuverability of a ship is directly related to its safety during navigation. Many
international standards have been proposed for ship maneuvering issues, which provide
regulations and safety recommendations for maneuverability indicators of different ship
types and propose new research directions [1–3]. This indicates that ship maneuvering
remains one of the most important research areas in the field of ocean engineering [4,5].
The prediction of ship maneuverability can be achieved through free-running model
tests, which involve using scaled models of the hull, propellers, and rudders to conduct
standard maneuvering tests in a physical maneuvering basin. The International Towing
Tank Conference (ITTC) has developed corresponding specifications for ship maneuvering
tests [6,7], and various classification societies have provided guidelines for maneuvering
tests [8]. However, this method requires a large testing basin, precise control systems for
propellers and rudders, and six-degree-of-freedom motion measurement devices for the
model, making it expensive. Therefore, using mathematical models for simulating ship
maneuverability has become a more focused-on approach. To evaluate the accuracy of
numerical calculations in predicting ship maneuverability, ITTC provides experimental
data for specified tests conducted in a water basin, which can be used for comparing with
computational fluid dynamics (CFD) results, along with recommended procedures for CFD
uncertainty analysis [9].

Simulation methodologies for ship maneuvering primarily encompass three approaches:
direct prediction methods, system-based research methods, and CFD (Computational
Fluid Dynamics) numerical simulation techniques. CFD numerical simulation methods
can be divided into constrained ship model and self-propelled ship model simulations.
With the advancement of computational power, CFD techniques have achieved significant
breakthroughs, providing robust support for the numerical calculation of ship maneuvers
under substantial interactions among the hull, propeller, and rudder. Due to their excellent
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intuitiveness and accuracy, CFD methods are widely employed within the industry. CFD
techniques are capable of simulating various maneuvering motions for self-propelled
vessels, forecasting the vessel’s trajectory and typical maneuvering parameters, such as
overshoot angle, advance, and transfer, which directly reflect the ship’s maneuverability
performance. Despite the complexity of simulating a self-propelled ship, this remains one
of the most popular research topics due to the numerous advantages it offers.

To obtain more accurate self-propulsion maneuvering results and detailed flow field
information, it is necessary to implement the coupled motion solution of the hull, propeller,
and rudder. The overset grid method allows for the treatment of complex motion coupling
between the ship, propeller, and rudder without causing grid deformation during the calcu-
lation process, ensuring the accuracy of the computation. Carrica and Stern [10] integrated
the hydrodynamic solver CFD Ship-Iowa, which is based on the overset grid method,
to achieve numerical simulation of the self-propelled ship’s maneuvering motion. They
directly constructed discrete models of the hull, propeller, and rudder based on geometric
bodies, using the overset grid method to handle the coupled motion of ship, propeller,
and rudder during self-propulsion maneuvering operations. They conducted numerical
simulations of the zigzag maneuver motion and turning circle motion for the KVLCC
ship type. Shen et al. [11] use the solver naoe-FOAM-SJTU, which is developed based on
OpenFOAM, and obtained results that are very close to the experimental values. Mofidi
and Carrica [12] used the same solution and numerical methods to simulate the typical
10/10 zigzag maneuver test and the modified 15/1 zigzag maneuver test numerically. The
predicted ship motion and maneuverability parameters were in good agreement with the
experimental results, and they analyzed the detailed flow field during the self-propulsion
maneuvering process. Broglia et al. [13] and Dubbioso et al. [14] respectively conducted
numerical simulations of turning circle tests for twin-propeller ships with single and twin
rudders. The motion of the rudder and hull was treated using a dynamic overset grid. The
numerically simulated ship’s trajectory was compared with the experiment, and the turning
circle trajectories under single and twin rudder conditions were compared, along with
the reduction of the propeller speed, drift angle, and roll angle over time. They analyzed
the changes in rudder force and lateral force on the hull and appendages throughout the
turning motion, noting that under twin-propeller conditions, the presence of rudders would
significantly interfere with the loads experienced by the propellers. Muscari et al. [15] also
employed the same approach, using an in-house developed CFD solver with the overset
grid method to handle the motion of the hull and rudder. They numerically simulated the
pure yaw and turning circle maneuvering motions of twin-propeller, twin-rudder vessels.

CFD analysis of the maneuvering of a self-propelled ship requires a large computa-
tional resource that restricts its use as part of a ship design process. Researchers have been
working on reducing the computational cost [16], and this could aid CFD practitioners to
make their work easier. To find fewer grids for the calculation, uncertainty analysis is a
good method to apply.

Uncertainty is a concept derived from metrology. Physical experiments or measure-
ments require quantitative statements to assess the quality of the measurement results,
i.e., to provide quantitative determination of the quality of the measurement results. The
usefulness of physical experiments or measurement results largely depends on the mag-
nitude of their uncertainties. In other words, measurement results must be accompanied
by uncertainty statements to be complete and meaningful. Commonly used generalized
probabilistic methods for uncertainty analysis include robust Bayesian theory [17], interval
description [18], possibility theory [19], etc. The Dempster–Shafer theory of evidence
(DSTE) proposed by Dempster provides practical and effective methods for handling
cognitive uncertainty and has been widely used [20–22]. In CFD simulation of ship ma-
neuvering motion, it is necessary to perform uncertainty analysis on the CFD simulation
results to assess their credibility. It is generally believed that the numerical uncertainty
of CFD calculations originates from three sources: truncation error, iteration error, and
discretization error. In ship hydrodynamic calculations, the first one can be neglected,
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while the second one is easy to reduce to negligible level. Discretization error is the most
important part of the error and is generated in the process of converting continuous partial
differential equations into algebraic equation systems. It is primarily determined by the
numerical discretization scheme and grid used for the simulation. Together with physical
modelization error, they constitute the two most significant parts of the error in practical
simulations of complex turbulent flows.

This study is based on the ITTC recommended procedures and focuses on CFD
uncertainty analysis of the ONRT model, and is used to figure out the minimum grid
number needed to simulate the standard ship movement with high precision.

2. Governing Equations

It is well known that the motion of fluid within a flow field generally needs to satisfy
several conditions: the law of mass conservation, the law of momentum conservation, and
the law of energy conservation. During numerical simulations, the governing equations
are used to mathematically express the aforementioned conservation laws. The governing
equations are represented by the continuity equation (mass conservation equation) and the
Navier–Stokes (N-S) equations (momentum conservation equations), which are expressed
as follows:

∂Ui
∂xi

= 0 (1)

ρ
∂Ui
∂t

+ ρ
∂
(
UiUj

)
∂xi

= − ∂P
∂xi

+ ρ
∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj

∂xi

)]
+ ρgi (2)

In the equations, Ui represents the velocity component in the direction of the xi
coordinate axis; P denotes pressure; ρ signifies fluid density; and gi symbolizes the gravity
force. For the time-averaged treatment of the Navier–Stokes (N-S) equations, the Reynolds
Averaged Navier–Stokes (RANS) approach is predominantly utilized. The RANS equations
are capable of decomposing turbulent flows into mean flow terms and fluctuating flow
terms. The transient variables within the equations are separated into time-averaged
quantities and fluctuating quantities, as illustrated in the following expressions:

φ = φ + φ′ (3)

In the equations: φ represents the time-averaged quantity and φ′ denotes the fluctu-
ating quantity. Consequently, the time-averaged versions of Equations (1) and (2) can be
expressed as Equation (4) and Equation (5), respectively:
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= 0 (4)
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In the equations: For convenience of expression, the time-averaged quantity φ is often
denoted by φ and the Reynolds stress is represented by u′

iu′
j, which is considered as an

unknown term.
The present study employs the Finite Volume Method (FVM) for the discretization of

the governing equations. The Finite Volume Method, as the name suggests, involves the
integration of the governing partial differential equations within a finite volume, with the
conservation equations expressed as Equation (6):∫

∆V

∂(ρϕ)

∂t
dV +

∫
∆V

div
(

ρ
→
u ϕ
)

dV =
∫
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div(Γgradϕ)dV +
∫
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SdV (6)
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In the formulation: ϕ signifies a generic variable; Γ represents the generalized diffusion
coefficient; and S denotes the generalized source term. Using the Gauss divergence theorem,
Equation (6) is transformed into the following expression:∫

∆V

∂

∂t
(ρϕ)dV +

∫
A

→
n
(

ρ
→
u ϕ
)

dA =
∫
A

→
n (Γgradϕ)dA +

∫
∆V

SdV (7)

The essence of solving the discretized equations involves selecting appropriate dis-
cretization schemes for the governing equations. In accordance with the coupling principle
between pressure P and velocity V, the solution methodology adopted in this article primar-
ily utilizes the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm.
The core of the SIMPLE algorithm is to iteratively guess and correct the solution using the
basic grid, ultimately solving the momentum equation. In addition, there is the SIMPLEC
(Semi-Implicit Method for Pressure-Linked Equations, Consistent) algorithm, which is very
similar to the SIMPLE algorithm. However, in the SIMPLEC algorithm, the flux correction
approach is further refined, allowing for better convergence. The PISO (Pressure-Implicit
with Splitting of Operators) algorithm, in contrast to the previous two methods, intro-
duces an additional correction term, achieving a secondary improvement and significantly
enhancing the convergence speed within a single iteration step.

The Reynolds stress modelized by Equation (8):

−ρu′
iu′

j = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3

(
ρk + µt

∂uk
∂xk

)
δij (8)

In the equation: µt represents the turbulent viscosity; ui denotes the time-averaged
velocity; and k signifies the turbulent kinetic energy.

In this study, k-ω SST model [23] is selected as the turbulence model for the numerical
simulations of this paper. The k-ω SST model combines the characteristics of both k-ε and
k-ω, thereby employing k-ε in the free-stream regions while utilizing k-ω in the near-wall
regions. The definition of the turbulent viscosity is presented as Equation (9):

µt =
ρk
ω

1

max
(

1
α∗ , SF2

α1ω

) (9)

Equations (10) and (11) represent the transport equations corresponding to k and ω,
respectively:
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In equations: Γk = µ + µi
σk

Γω = µ + µi
σω

; G̃k = min(Gk, 10ρβ∗kω); Gk = µtS2; Gω =
α
νi

Gk.

3. CFD Uncertainty Analysis Method

The error of numerical simulation is the difference between the calculated value
and the true value, and it consists of two parts: modelization error and numerical error.
Under certain conditions, the error value can be estimated. However, since the true value
is often unknown, there is also an error in this estimation process: uncertainty is an
estimate of the error. Due to the unknown true value, the error is often unknown as well,
and the magnitude of the error does not change with people’s level of understanding.
Uncertainty represents the degree of lack of knowledge about the error. Uncertainty is
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objectively present, but the results of uncertainty analysis will change with people’s level
of understanding.

It is generally believed that the numerical uncertainty of CFD calculations originates
from three sources: truncation error, iteration error, and discretization error. In ship hy-
drodynamic calculations, the first error can be neglected, while the second error is easy to
reduce to a negligible level. Discretization error is generated in the process of converting
continuous partial differential equations into algebraic equation systems, primarily deter-
mined by the numerical simulation grid, and constitutes the most significant part of the
error with modelization in practical simulations of complex turbulent flows.

According to the ITTC recommended procedures [24], the process of CFD uncertainty
analysis can be divided into two parts: verification and validation. The verification process
evaluates the numerical uncertainty and estimates the magnitude and sign of the numerical
error, along with its uncertainty. The verification process is essentially an assessment of
whether the equations have been correctly solved. The validation process evaluates the
model uncertainty and estimates the magnitude and sign of the model error, along with its
uncertainty. The confirmation process is essentially an assessment of whether the correct
equations have been solved, i.e., whether the mathematical model has been established
correctly.

The definitions of error and uncertainty are the same as those in experimental un-
certainty analysis. The difference between the numerical simulation result S and the true
value T is the numerical simulation error δS, which consists of the model error δSM and
numerical error δSN :

δS = S − T = δSM + δSN (12)

For specific cases, the sign and magnitude of the numerical error δSN can be estimated
as:

δSN = δ∗SN + εSN (13)

where δ∗SN is the estimated value of δSN (including sign and magnitude) and εSN is the
error in the estimation.

A more accurate extrapolated result SC can be obtained with:

SC = S − δ∗SN (14)

Verification is the process of calculating the numerical uncertainty USN of the numeri-
cal simulation. If conditions permit, estimating the sign and magnitude of the numerical
error δ∗SN itself and the uncertainty USC N in this error estimation. For unmodified numerical
simulation methods, the numerical error can be decomposed into errors δ1, δG, δT , and δP,
which come from the iteration count, grid size, time step, and other parameters, respectively.
Therefore, the numerical uncertainty of the numerical simulation can be expressed as:

USN
2 = U1

2 + UG
2 + UT

2 + UP
2 (15)

For modified numerical simulation methods, the solution is modified, leading to the
numerical benchmark SC. The estimated values δ∗SN and USC N of the simulated numerical
error are given by the following equations:

δ∗SN = δ∗1 + δ∗G + δ∗T + δ∗P (16)

USC N
2 = UIC

2 + UGC
2 + UTC

2 + UPC
2 (17)

Validation is the process of using the extrapolated result to evaluate the model uncer-
tainty USM of the numerical simulation, and, if conditions permit, estimate the sign and
magnitude of the model error δSM itself. The error comparison E is given by the difference
between the test data D and the simulation value S:

E = D − S = δD − (δSM + δSN) (18)
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By comparing E with the validation uncertainty UV , the validation can be assessed.

UV
2 = UD

2 + USN
2 (19)

If |E| < UV , all the combinations of errors in D and S are less than UV , and the
validation at this level is achieved. If UV << |E|, the model can be improved using
the sign and magnitude of E ≈ δSM. For modified numerical simulation methods, the
corresponding equations are:

EC = D − SC = δD − (δSM + εSN) (20)

UVC
2 = UEC

2 + USM
2 = UD

2 + USC N
2 (21)

4. CFD Uncertainty Analysis Results

The verification and validation methods and procedures for CFD uncertainty analysis
in this study are based on the ITTC Quality Manual, and the variables’ definitions also
follow the manual. The ONRT ship model used in the simulation of ship motion under
calm water and wave conditions in this study is consistent. It is a full-appended model
with twin propellers and twin rudders. This model is widely used for CFD validation and
is listed as a standard model for the free-running model problem at the Tokyo 2015 CFD
Workshop. There are abundant maneuvering test data available for this model, making it
suitable for verifying the reliability of current numerical prediction methods. Optimizing
this model simulation in terms of different parameters has been a popular issue in ship
research, and the data are becoming more abundant [25,26]. The geometric model of the
hull is shown in Figure 1, and the main dimensions of the hull are listed in Table 1.
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Figure 1. The model of ONRT. (a) Side of the model; (b) Planform of the model; (c) Bow of the model;
(d) Stern of the model.

Table 1. Parameters of ONRT.

Parameters Symbol Modal Scale Full Scale

Length at the Waterline (m) LWL 3.147 154.0

Beam (m) BWL 0.384 18.78

Depth (m) D 0.266 14.5

Draft (m) T 0.112 5.494

Wetted surface (m2) S0 1.5 NA

Block coefficient (CB) ∇/(LWLBWLT) 0.535 0.535
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Table 1. Cont.

Parameters Symbol Modal Scale Full Scale

Displacement (kg) ∆ 72.6 8.507 × 106

Vertical position of CG (m) KG 0.156 NA

Buoyant to bow (m) LCB a f t FP 1.625 NA

Moment of inertia
Kxx/BWL 0.444 0.444

Kyy/LWL, Kzz/LWL 0.25 0.25

Propeller diameter (m) DP 0.1066 NA

Max steering (deg/s) 35.0 NA

This study is based on the STAR-CCM+ (18.02) software and primarily focuses on
numerical computational analysis of typical free-running motion under wave conditions.
The waves in the calculations are in the initial head sea state. Detailed calculation condi-
tions can be found in Table 2. In the numerical simulation, the ship navigates with full
degrees of freedom at the model’s self-propulsion point. The ship’s speed is U = 1.11 m/s,
corresponding to Fr = 0.20.

Table 2. Numerical conditions for simulation.

Wave Length λ (m) 3.147

λ/LWL 1.0

Wave Height H (m) 0.06294

Wave Steepness H/λ 0.02

Rudder Angle (◦) 35◦

When conducting calculations for the design speed Fr = 0.20, the grid uncertainty
analysis for this speed was first performed. The numerical uncertainty analysis used here
follows the method recommended by ITTC. Three sets of grids were used for convergence
verification, ranging from 0.56 × 106 to 1.95 × 106 grid cells. The grid scaling factor was√

2, y+ = 11.63, and the surface grids of the ship with different sizes are shown in Figure 2.
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Figure 2. Surface grid of the ship with different sizes. (a) Fine grid; (b) Medium grid; (c) Coarse grid.

To achieve this scaling effect, during the grid generation process, the scale of the
background grid was uniformly scaled in the X, Y, and Z directions according to this
ratio. Then, relative sizes were used when locally refining the grid using grid partitioning
tools. This ensured that the majority of the generated grid maintained this proportional
relationship. However, the automated process of generating purely unstructured grides
involves complex procedures like expanding boundary layers, which may not fully meet
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the required proportional criteria in certain detailed areas. Nevertheless, this does not affect
the overall grid uncertainty analysis. To minimize uncertainty factors, the grid uncertainty
analysis is performed with simulations in which all degrees of freedom of the ship are fixed
except the forward motion.

The calculation employed overset grid techniques. During computations, the compu-
tational domain is treated as an entirety, with the governing equations being discretized
through the Finite Volume Method and solved within the temporal domain using a seg-
regated solver for the unsteady solution. The numerical simulation of the six degrees of
freedom motion of the ship model on the free surface is realized by the simultaneous solu-
tion of the ship body motion and surrounding flow field. In the numerical solution process,
the resultant forces and moments acting on the ship model include viscous forces, pressure,
and the ship model’s gravity force, all of which stem from the interaction between the ship
model and the flow field. As shown by the computational flow chart below, the actual
computation is a process of continuous coupling and iteration of flow field information.
Initially, the surrounding flow field of the ship model is calculated to determine changes in
shear stress and pressure. Subsequently, the resultant forces and moments are obtained
from the external force equations, which are then input into the six degrees of freedom
motion differential equations for integration to yield the ship model’s displacement. The
grid node positions are then updated based on the ship model’s displacement to solve the
new flow field around the ship model. Factors such as water viscosity, turbulence intensity,
free surface deformation, gravity, and atmospheric pressure are considered during the
solution process. Through continuous coupling and iterative computation, the external
forces and the ship model’s posture are obtained in real time, ultimately enabling the
simulation of the ship model’s dynamic response. The overset grid diagram is shown in
Figure 3.
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cally evaluated using Richardson extrapolation (RE). For the second case of oscillatory 
convergence, the grid uncertainty is determined by the average difference between the 
maximum value 

US  and the minimum value 
LS  of the oscillations, i.e.,: 

Figure 3. Distribution of overset grid in the longitudinal section of the computational domain.

The main verification object of grid uncertainty analysis is the dimensionless resistance
coefficients, including the total resistance coefficient (CT), pressure resistance coefficient
(CP), and viscous resistance coefficient (CV), which are defined as follows:

CT
CV
CP

 =


RT

0.5ρU2
0 TLPP

RV
0.5ρU2

0 TLPP

RP
0.5ρU2

0 TLPP

 (22)

where RT is the total resistance experienced by the model, RP is the pressure resistance,
which is the integral of the normal forces, and RV is the viscous resistance, which is the
integral of the tangential forces. ρ represents the density of water, U0 is the ship’s velocity,
T represents the ship’s draft, and LPP is the length between perpendiculars of the ship.

According to the ITTC guidelines for verification and validation (V&V) of CFD nu-
merical calculations, the determination of convergence forms in grid uncertainty analysis is
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based on the convergence parameter RG, whose value is determined by different density
grid solutions (generally including three density grid: coarse, medium, and fine) denoted
as Si. It is defined as follows:

RG =
S2 − S1

S3 − S2
(23)

where the subscript Si, with i = 1, 2, 3, represents the results for fine grid, medium grid, and
coarse grid, respectively. Different values of RG correspond to different convergence forms:

(i) 0 < RG < 1 Monotonic convergence
(ii) 0 < |RG| < 1, RG < 0 Oscillatory convergence
(iii) |RG| > 1 Divergence

(24)

For the first case, which is consistent convergence, the grid uncertainty UG is typically
evaluated using Richardson extrapolation (RE). For the second case of oscillatory conver-
gence, the grid uncertainty is determined by the average difference between the maximum
value SU and the minimum value SL of the oscillations, i.e.,

UG = 1/2(SG − SL) (25)

In the third case, it is proven that convergence has not been achieved, and therefore
grid uncertainty is not applicable. The resistance parameters for different grids can be
seen in Table 3. From the table, it can be observed that as the grid is refined, the numerical
predictions tend to converge consistently with the experimental values. Therefore, it is
necessary to use the Richardson extrapolation (RE) method to evaluate grid uncertainty.
The order of discretization P is defined by the following equation:

P =
In(1/RG)

In(r)
(26)

Table 3. Grid uncertainty analysis of ONRT at design speed.

Grid Symbol Number CP CV CT CT Error

Experiment 1.706 × 10−2

fine S1 1.95 M 0.507 × 10−2 1.171 × 10−2 1.678 × 10−2 −1.66%
medium S2 1.40 M 0.499 × 10−2 1.162 × 10−2 1.661 × 10−2 −2.64%
coarse S3 0.56 M 0.437 × 10−2 1.124 × 10−2 1.597 × 10−2 −6.39%

RG 0.307 0.237 0.265
P 3.4088 4.1559 3.834

GCI12 0.87% 0.31% 0.45%
GCI23 2.88% 1.27% 1.74%

Convergence uniform uniform uniform

The Grid Convergence Index (GCI) can be obtained using the following equation:

GCIij = FS

∣∣eij
∣∣

rp − 1
(27)

where FS is a safety parameter, which is typically set to 1.25 when using three or more
grids. eij represents the difference between Si and Sj. The Grid Convergence Index (GCI)
can characterize the impact of different grids on the numerical results, and a smaller GCI
value indicates low sensitivity of the numerical results to the grid.

From Table 3, it can be seen that all the resistance coefficients exhibit consistent
convergence. The GCI12 (difference between fine grid and medium grid) for the total
resistance coefficient is only 0.45%, and the GCI23 is consistently larger than the former.
This indicates that after reaching a medium grid density, the numerical predictions are less



J. Mar. Sci. Eng. 2024, 12, 1230 10 of 14

affected by changes in the grid. To improve computational efficiency while maintaining
accuracy, it is recommended to use the medium grid for simulation.

After using the medium grid for numerical calculations, this section provides a direct
numerical validation for the free turning maneuvering motion with a rudder angle of
35 degrees. The free turning trial is the most commonly used method for assessing the
maneuverability of a ship. During this trial, while the ship is cruising in a straight line,
the rudder is turned to a certain angle—typically the maximum angle of 35 degrees—and
held constant, resulting in the ship entering a turning motion. The entire turning motion
is generally divided into three phases: the initial rudder turning phase, which extends
from the commencement of the rudder turn command until the specified rudder angle
is reached; the transition phase, which spans from the cessation of rudder turning until
the ship enters a steady state of turn; and finally, the steady-state phase, where the ship’s
motion parameters become stable and the vessel enters a new stage of equilibrium.

The numerical simulation of the free turning maneuvering trial still focuses on the
fully appended ONRT ship model, which is equipped with twin propellers, twin rudders,
and appendages such as struts, deadwood, and bilge keels. The ship’s parameters and
principal dimensions are presented in Table 1. In the numerical simulation, the propeller
rotation speed is set to the self-propulsion point of 8.97 RPS, which was determined from a
self-propulsion computation, and the ship’s speed corresponds to a Froude number (Fr) of
0.20. The numerical simulation encompasses the process of the ship model completing one
full cycle of free turning.

The numerical calculation of the free-running maneuver test is still carried out using
a high-performance parallel computing cluster. During the numerical calculation of the
free-running maneuver test, a total of 36 processes are used for parallel computing, among
which 35 are for fluid field calculation and 1 is for interpolation calculation. The time step
is set to ∆t = 0.005 s. The propeller is simulated by using the volume force method, which
is equivalent to propulsion provided by the propeller.

The computed trajectory of the ship’s turning motion at a rudder angle of 35 degrees
and its comparison with experimental values are shown in Figure 4.
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Figure 4 demonstrates that the numerically predicted trajectory of the free-running
turning motion of the ship is largely consistent with the turning circle measured in the
experiment. The specific parameters of the turning circle from numerical predictions show
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good agreement with the experimental values, with the numerically calculated turning
radius being slightly larger than that obtained from the experiment. To quantitatively
analyze the precision of the current numerical prediction, Table 4 presents a comparison of
the characteristic parameters of the free-running turn against the experimental values.

Table 4. Comparison of Gyroscopic Characteristic Parameters.

Characteristic Parameters CFD EFD Error

Advance (m) 6.963 6.998 0.50%
Transfer (m) 3.872 3.880 0.21%

T90 (s) 11.582 11.570 0.10%
T180 (s) 22.653 22.410 1.08%

Tactical Diameter (m) 9.784 9.646 1.43%

This fully demonstrates that the current numerical methods can simulate the free-
running maneuvering motion with high precision. To examine whether the attitude of the
ship is safe or not, the freedom of motion was investigated. Figures 5–7 present the heave,
pitch, and roll of the ship versus time. It can be observed from the figures that there is
significant fluctuation in the curves at the initial moment due to the presence of the rudder
turn phase and the transition phase. The curves of the numerically predicted motions of
the ship during free turning in waves are given. From the figure, it can be seen that the
ship’s heave, pitch, and roll motions oscillated with wave frequency. In addition, because
the ship’s encounter wave direction is changing all the time during the free turning, there
are also low-frequency fluctuations due to the free turning maneuvering under the high-
frequency motion. The maximum amplitude of heave is 0.06 m, the maximum amplitude
of pitch is between −2.3◦ to 2.2◦, and the amplitude of roll is between −3.8◦ and 7◦ during
the whole turning motion. In addition, it can be seen from Figure 7 that the amplitude of
the roll motion due to the waves is larger than that due to the initial maneuvering.
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Figure 8 presents the free surface wave profile around the ship during the steady-state
turning phase. In contrast to the towing conditions, a noticeable difference in the free
surface on both sides of the ship can be observed here. Due to the presence of the turning
motion, the wave height at the bow on one side of the ship is significantly different from
the other side, and there is also a strong asymmetry in the wave pattern at the stern.
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After conducting numerical calculations using a medium grid, the CFD results closely
match the experimental results. Figure 4 illustrates the comparison between the predicted
ship motion trajectory obtained from numerical simulations in waves and the correspond-
ing experimental values. It can be observed from the figure that the current numerical
predictions are in good agreement with the experimental results. Additionally, it can be seen
that as the heading angle of the ship ranges from 270◦ to 360◦, the turning curve exhibits
a noticeable expansion. The numerical calculation yields a turning radius significantly
smaller than the experimental value, primarily due to modifications made to the geometric
model of the rudder in order to ensure sufficient interpolation between overlapping grid
cells in the numerical simulation. This modification reduced the effective rudder area,
resulting in a decrease in rudder effectiveness. The current numerical calculations can
accurately predict the maneuvering characteristics of a ship freely turning in waves with
high precision.

5. Conclusions

In this study, the standard ship model ONRT was modeled, and computational simu-
lations were conducted. The influence of grid refinement on ship resistance was analyzed
to assess the impact of grid uncertainty on numerical calculations. It was found that using
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a medium grid (1.4 million cells) for simulation yielded results that closely matched the
standard experimental values, accurately reflecting the maneuvering performance of the
actual ship during free-running motion in waves. Therefore, it is recommended to use
STAR-CCM+ with overset grides for ship maneuvering simulations and the grid should
not be less than 1.4 million cells.

Following the numerical methods in this paper may provide a way to make the
calculating cost lower for some practitioners who do not have very good calculating
resources. The future work will focus on improving the accuracy with same numbers of
cell, as there is still room for improvement in the rationalization of the grid.
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