Design of Inner Ribs with Unequal Stiffness for Deep-Sea Highly Pressure-Resistant Cylindrical Shells and Utilizing NSGA-2 for Lightweight Optimization
Abstract
:1. Introduction
2. Pressure-Resistant Cylindrical Shells with Non-Uniform Internal Ribs Reinforced Structurally
2.1. Design of Pressure-Resistant Shell Structure Scheme with Inner Rib Reinforcement
Material and Basic Shape Selection for Reinforced Pressure-Resistant Shell with Internal Ribs
2.2. Stiffness Distribution Design for the Inner Ribs Using Liz Method
2.2.1. A Summary of Inner Rib Rigidity Adjustment Techniques
2.2.2. Based on the Internal Rib Stiffness Allocation Using the Ritz Method, a Critical Instability Pressure Model for Pressure-Resistant Shells
- 1.
- The stress of equal-stiffness stiffened pressure-resistant shells can be calculated using this formula.
- (a)
- —at the midpoint of two ribs, the shell plate’s axial normal stress;
- (b)
- —the normal stress axially at the rib’s edge;
- (c)
- —the pressure that the pressure-resistant shell can withstand from the outside.
- (a)
- —the normal stress around the circumference of two ribs at their midpoint;
- (b)
- —the normal stress circumferential at the rib’s edge;
- (c)
- —the circumferential normal stress at the midpoint of two ribs on the shell plate.
- 2.
- The Liz method determines the unstable pressure of a pressure-resistant shell and provides instructions for modifying the internal rib stiffness.
- (1)
- For the internal rib stiffness allocation to the pressure-resistant shell, derive the expression of the instability displacement correlation function. This function must be able to satisfy the boundary conditions and determine the displacement of the ribbed shell deviating from its initial position;
- (2)
- Find the expression for the strain and its displacement in different directions at any point in the shell;
- (3)
- Determine how the external force work and the shell’s strain energy are related to each other. Then, utilize this expression to determine the expressions for the shell’s total potential energy after deviation, its strain energy, and the external force work;
- (4)
- Determine the shell’s stability equation using the principle of minimum potential energy, and then solve for the minimum critical pressure.
- 3.
- We calculate the theoretical critical pressure for pressure-resistant shells that have an internal distribution of rib stiffness.
- (a)
- —the length of the shell;
- (b)
- —the half-wave number of axial instability when the shell is unstable;
- (c)
- —the whole-wave number of circumferential instability when the shell is unstable;
- (d)
- —the axial displacement of the shell;
- (e)
- —the circumferential displacement of the shell;
- (f)
- —the radial displacement of the shell; A, B, and C are constants.
- (a)
- —shell bending strain energy;
- (b)
- —strain energy in the middle surface of the shell,
2.2.3. Examining the Critical Instability Pressure of Cylindrical Shells with Adjustable Internal Rib Stiffness
- (a)
- —the moment of inertia of each rib section;
- (b)
- —the rib cross-sectional area;
- (c)
- —the distance from the axis of the rib section to the middle surface of the shell;
- (d)
- —the thickness of pressure-resistant shell;
- (e)
- —the rib spacing.
2.2.4. Analyzing Cylindrical Shells through Simulation with Adjustable Internal Rib Stiffness
2.3. Optimization of the Inner Rib Reinforcement Cross-Sectional Orthogonal Topology Using the Variable Density Approach
2.3.1. Design Strategy for Orthogonal Topology Optimization
- (a)
- —the relative density of the unit materials, one of the design variables;
- (b)
- —the optimized design area’s quality, represented by the objective function;
- (c)
- —the volume occupied by the design area;
- (d)
- —the relative density of unit materials, represented by the relative elastic modulus;
- (e)
- —the penalty factor;
- (f)
- —the material’s true elastic modulus;
- (g)
- —the optimized quality’s maximum value;
- (h)
- —maximize the quantity of limited components within the design domain;
- (i)
- —the lowest relative density of the material in question.
2.3.2. Test Results and Analysis
Test Result
Range Analysis of Experimental Results
Analysis of Optimization Results
3. NSGA-2-Based Multi-Objective Parameterization Optimization of Cylindrical Pressure-Resistant Shells
3.1. Sensitivity Analysis of Parameters for Cylindrical Shells with Inner Rib Reinforcement under High Pressure
3.2. Multi-Objective Parameterized Optimization Process
- (a)
- —a set of design variables;
- (b)
- —the function of boundary conditions;
- (c)
- —the function of constraint conditions;
- (d)
- —the objective function for optimization.
3.3. Analysis of Optimization Results
4. Conclusions
- (1)
- In order to optimize deep-sea high-pressure structural layers, this article suggests a lightweight design approach for pressure-resistant devices in high-pressure deepwater environments that satisfies the non-unstable requirement.
- (2)
- The determined pressure-resistant shell was subjected to internal rib stiffness adjustment using the proposed internal rib stiffness adjustment method in conjunction with the Liz method. Through the use of ANSYS 2023 R1simulation software, this process was compared and verified with traditional uniform rib addition. There was a 9.65 MPa increase in the critical instability pressure following the modification of the internal rib stiffness and an improvement in the pressure-resistant shell’s overall anti-instability performance.
- (3)
- Titanium alloy TB9 material is unique in a high-pressure setting. An orthogonal topology optimization method was proposed for the inner rib section in order to reduce material costs. This method yielded the optimal inner rib arch section shape and resulted in a 106.8 g weight reduction. Based on this, a sensitivity analysis was performed on the pressure-resistant shell, and a second-generation fast non-dominated genetic algorithm was applied to carry out additional multi-objective optimization. After determining the pressure-resistant shell’s ideal structural parameters, 1.2492 kg of weight—or 17.26% of the original pressure-resistant shell—was reduced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramadass, G.A.; Vedachalam, N.; Ramesh, S.; Sathianarayanan, D.; Subramanian, A.N.; Ramesh, R.; Chowdhury, T.; Pranesh, S.B.; Atmanand, M.A. Challenges in developing deep-water human occupied vehicles. Curr. Sci. 2020, 118, 1687–1693. [Google Scholar] [CrossRef]
- Ramadass, G.A.; Ramesh, S.; Vedachalam, N.; Subramanian, A.N.; Sathianarayanan, D.; Ramesh, R.; Harikrishnan, G.; Chowdhury, T.; Jyothi, V.B.N.; Pranesh, S.B.; et al. Unmanned underwater vehicles. Curr. Sci. 2020, 118, 1681–1686. [Google Scholar] [CrossRef]
- Joo, M.G.; Qu, Z. An autonomous underwater vehicle as an underwater glider and its depth control. Int. J. Control Autom. Syst. 2015, 13, 1212–1220. [Google Scholar] [CrossRef]
- Jaffre, F.; Littlefield, R.; Grund, M.; Purcell, M. Development of a New Version of the REMUS 6000 Autonomous Underwater Vehicle. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019. [Google Scholar]
- Purcell, M.; Gallo, D.; Packard, G.; Dennett, M.; Rothenbeck, M.; Sherrell, A.; Pascaud, S. Use of REMUS 6000 AUVs in the search for the Air France Flight 447. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011. [Google Scholar]
- Roper, D.; Harris, C.A.; Salavasidis, G.; Pebody, M.; Templeton, R.; Prampart, T.; Kingsland, M.; Morrison, R.; Furlong, M.; Phillips, A.B.; et al. Autosub Long Range 6000: A Multiple-Month Endurance AUV for Deep-Ocean Monitoring and Survey. IEEE J. Ocean. Eng. 2021, 46, 1179–1191. [Google Scholar] [CrossRef]
- McPhail, S. Autosub6000: A Deep Diving Long Range AUV. J. Bionic Eng. 2009, 6, 55–62. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liang, Y.; Wang, S.; Zhang, L.; Yang, M. Optimization design of neutrally buoyant hull for underwater gliders. Ocean. Eng. 2020, 209, 107512. [Google Scholar] [CrossRef]
- Prasanna, A.S.; Raju, K.K.S.; Ramji, K.; Satish, P. Free Vibration, Buckling and Design Optimisation of Composite Pressure Hulls. Mater. Today Proc. 2017, 4, 7381–7387. [Google Scholar] [CrossRef]
- Imran, M.; Shi, D.; Tong, L.; Waqas, H.M.; Muhammad, R.; Uddin, M.; Khan, A. Design Optimization and Non-Linear Buckling Analysis of Spherical Composite Submersible Pressure Hull. Materials 2020, 13, 2439. [Google Scholar] [CrossRef] [PubMed]
- Fathallah, E.; Qi, H.; Tong, L.; Helal, M. Design Optimization of Composite Elliptical Deep-Submersible Pressure Hull for Minimizing the Buoyancy Factor. Adv. Mech. Eng. 2014, 2014, 987903. [Google Scholar] [CrossRef]
- Shi, D.; Tong, L.; Elahi, A.; Waqas, H.M.; Uddin, M.; Imran, M. Multi-objective design optimization of composite submerged cylindrical pressure hull for minimum buoyancy factor and maximum buckling load capacity. Def. Technol. 2021, 17, 1190–1206. [Google Scholar]
- Wang, C.; Yang, M.; Wang, Y.; Ren, M.; Wang, Z.; Yang, S. Design and optimization of cylindrical hull with non-uniform arch ribs for underwater gliders based on approximate model and experiments. Ocean. Eng. 2022, 259, 111831. [Google Scholar] [CrossRef]
- Liu, H.; Li, B.; Yang, Z.; Hong, J. Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm. J. Manuf. Syst. 2017, 43, 375–384. [Google Scholar] [CrossRef]
- Foryś, P. Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behaviour. Thin-Walled Struct. 2015, 95, 231–243. [Google Scholar] [CrossRef]
- Ghasemi, A.R.; Hajmohammad, M.H. Minimun-Weight Design of Stiffened Shell under Hydrostatic Pressure by Genetic Algorithm; Techno-Press: Daejeon, Republic of Korea, 2015. [Google Scholar]
- Shimoda, M.; Okada, T.; Nagano, T.; Shi, J.-X. Free-form optimization method for buckling of hull structures under out-of-plane and in-plane shape variations. Struct. Multidiscip. Optim. 2016, 54, 275–288. [Google Scholar] [CrossRef]
- Wu, H.; Yan, Y.; Yan, W.; Liao, B. Adaptive Approximation-based Optimization of Composite Advanced Grid-stiffened Cylinder. Chin. J. Aeronaut. 2010, 23, 423–429. [Google Scholar]
- Mehrabani, M.M.; Jafari, A.A.; Azadi, M. Multidisciplinary optimization of a stiffened hull by genetic algorithm. J. Mech. Sci. Technol. 2012, 26, 517–530. [Google Scholar] [CrossRef]
- Akl, W.; Ruzzene, M.; Baz, A. Optimal design of underwater stiffened hulls. Struct. Multidiscip. Optim. 2002, 23, 297–310. [Google Scholar] [CrossRef]
- Sofiyev, A.H.; Fantuzzi, N. Stability analysis of shear deformable inhomogeneous nanocomposite cylindrical shells under hydrostatic pressure in thermal environment. Materials 2023, 16, 4887. [Google Scholar] [CrossRef]
- Wang, M.; Liu, F.; Zhang, J. Collaborative optimization of a composite pressure cylindrical shell based on dynamic penalty functions. Ocean. Eng. 2024, 309, 118542. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Pan, G.; Xu, Y. Buckling and strength failure for unstiffened and ring-stiffened composite shells. Ocean. Eng. 2023, 278, 114513. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Wu, R.; Peng, Y. Buckling performance of inner corrugated pressure shells under external hydrostatic pressure. Ocean. Eng. 2023, 288, 115963. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yun, L.; Liang, X. Mechanical performance of bio-inspired bidirectional corrugated sandwich pressure shell under external hydrostatic pressure China. Ocean. Eng. 2024, 38, 297–312. [Google Scholar] [CrossRef]
- Wang, B.; Yang, M.; Zeng, D.; Hao, P.; Li, G.; Liu, Y.; Tian, K. Post-buckling behavior of stiffened cylindrical shell and experimental validation under non-uniform external pressure and axial compression. Thin-Walled Struct. 2021, 161, 107481. [Google Scholar] [CrossRef]
- Wei, R.; Shen, K.; Pan, G.; Li, Z. Experimental study on buckling behavior of composite cylindrical shells with and without circular holes under hydrostatic pressure. Compos. Struct. 2023, 322, 117434. [Google Scholar] [CrossRef]
- Cheng, Y. Structural Optimization Design of the Pressure Hull Based on Nonuniform Ring-Frames Theory. Master’s Thesis, Harbin Engineering University, Harbin, China, 2012. [Google Scholar]
- Feng, Y. HXJ180 Marine Workover Machine Derrick Lightweighting Study. Master’s Thesis, Yangtze University, Jingzhou, China, 2023. [Google Scholar]
- Du, Y.-X.; Wang, W.; Tian, Q.-H. Optimal Designs of Parameters of Structural Topology Optimization by Orthogonal Experiment. Mach. Des. Res. 2011, 27, 14–17. [Google Scholar]
- Yang, R.; Tang, P.; Ni, X.; Xiao, L.; Zhao, H. Structural Analysis and Design of an Electric Bus Frame. J. Yancheng Inst. Technol. (Nat. Sci. Ed.) 2022, 35, 30–37. [Google Scholar]
- Ren, S.; Gao, A.; Zhang, Y.; Han, W. Finite element analysis and topology optimization of folding mechanism of six-rotor plant protection UAV. J. Chin. Agric. Mech. 2021, 42, 53–58+194. [Google Scholar]
- Yang, S. Structure Design and Optimization of Pressure Cabinof Underwater Vehicle. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2020. [Google Scholar]
Performance | Structural Steel Q345 | Titanium Alloy TB9 | Aluminum Alloy 6061T6 | Resin-Based Carbon Fiber T700 | Silicon Nitride Ceramics | Glass |
---|---|---|---|---|---|---|
Elastic modulus (GPa) | 210 | 100 | 69 | 120 | 300 | 100 |
Density (g/cm3) | 7.8 | 4.5 | 2.7 | 1.6 | 3.2 | 2.32 |
Poisson’s ratio | 0.28 | 0.31 | 0.33 | 0.3 | 0.27 | 0.2 |
Yield limit (MPa) | 345 | 975 | 280 | 600 | 3820 | 1450 |
Specific strength (MPa/(g/cm3)) | 44 | 172 | 104 | 375 | 1194 | 650 |
Specific rigidity (GPa/(g/cm3)) | 27 | 22 | 26 | 75 | 94 | 45 |
Rib Number | 1 and 6 | 2 and 5 | 3 and 4 |
---|---|---|---|
Inertia of rib section with plate/mm4 | 4902.17 | 6923.24 | 9675.33 |
Rib height/mm4 | 2.643 | 2.966 | 3.316 |
Horizontal | Volume Coefficient (A) | Penalty Factor (B) | Grid Size (C) |
---|---|---|---|
1 | 0.4 | 2.0 | 0.5 |
2 | 0.5 | 3.0 | 0.75 |
3 | 0.6 | 4.0 | 1.0 |
Test Number | Volume Coefficient (A) | Penalty Factor (B) | Grid Size (C) | Blank (D) |
---|---|---|---|---|
1 | 0.4 | 2.0 | 0.5 | - |
2 | 0.4 | 3.0 | 0.75 | - |
3 | 0.4 | 4.0 | 1 | - |
4 | 0.5 | 2.0 | 0.75 | - |
5 | 0.5 | 3.0 | 1 | - |
6 | 0.5 | 4.0 | 0.5 | - |
7 | 0.6 | 2.0 | 1 | - |
8 | 0.6 | 3.0 | 0.5 | - |
9 | 0.6 | 4.0 | 0.75 | - |
Test Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Combination number | A1B1C1 | A1B2C3 | A1B3C3 | A2B1C2 | A2B2C3 | A2B3C1 | A3B1C3 | A3B2C1 | A3B3C2 |
Cross-sectional figure | |||||||||
Maximum stress (MPa) | 267.74 | 285.59 | 259.47 | 241.85 | 259.24 | 269.01 | 221.72 | 239.14 | 249.34 |
Iteration steps | 18 | 13 | 12 | 18 | 13 | 15 | 16 | 15 | 16 |
(a) | |||||
---|---|---|---|---|---|
Experimental Indicators | Test Number | A Volume Coefficient | B Penalty Factor | C Mesh Size | D Blank |
Maximum stress | K1 | 812.8 | 731.31 | 775.89 | 776.32 |
K2 | 770.1 | 783.97 | 776.78 | 776.32 | |
K3 | 710.2 | 777.82 | 740.43 | 740.46 | |
k1 | 270.93 | 243.77 | 258.63 | 258.77 | |
k2 | 256.7 | 261.32 | 258.93 | 258.77 | |
k3 | 236.73 | 259.27 | 246.81 | 246.82 | |
Range R | 34.20 | 15.50 | 12.12 | 11.95 | |
Primary and secondary order | A > B > C > D | ||||
Excellent level | A3 | B1 | C3 | D3 | |
Optimal combination | A3B1C3 | ||||
(b) | |||||
Experimental Indicators | Test Number | A Volume Coefficient | B Penalty Factor | C Mesh Size | D Blank |
Iteration steps | K1 | 43 | 52 | 48 | 47 |
K2 | 46 | 41 | 47 | 44 | |
K3 | 47 | 43 | 41 | 45 | |
k1 | 14.33 | 17.33 | 16 | 15.67 | |
k2 | 15.33 | 13.67 | 15.67 | 14.67 | |
k3 | 15.67 | 14.33 | 13.67 | 15 | |
Range R | 1.33 | 3.67 | 2.33 | 1 | |
Primary and secondary order | B > C > A > D | ||||
Excellent level | A3 | B1 | C3 | D3 | |
Optimal combination | A1B2C3 |
Maximum Stress/MPa | Maximum Displacement/mm | Mass/g | |
---|---|---|---|
Reinforced ribs with rectangular cross-section | 160.20 | 0.670 | 37.88 |
Strengthening ribs of the original bow section | 221.72 | 0.105 | 20.43 |
Reinforced rib of processed arched section | 199.51 | 0.084 | 25.45 |
Number | Inertia Moment of Rib Section with Plate/mm4 | Cross-Section Area/mm2 | Rib Width/mm | Rib Height/mm |
---|---|---|---|---|
1 and 6 | 5633.388 | 19.67 | 9.1 | 2.73 |
2 and 5 | 7955.925 | 23.33 | 9.91 | 2.97 |
3 and 4 | 11118.53 | 27.6 | 10.78 | 3.23 |
Name | Number | Unit |
---|---|---|
Shell length | 350 | mm |
Shell thickness | 5 | mm |
Inner diameter of shell | 90 | mm |
Front bulkhead width | 45 | mm |
Rear bulkhead width | 45 | mm |
Rib spacing | 52 | mm |
Number of ribs | 6 | Number |
Design Variable | t/mm | h/mm | b1/mm | b2/mm | b3/mm | L/mm |
---|---|---|---|---|---|---|
Initial value | 15 | 15 | 9.1 | 9.91 | 10.78 | 52 |
Value range | 7.5~17.5 | 10~25 | 5~15 | 5.5~15.5 | 6~16 | 40~58 |
Response Sensitivity | t | b1 | b2 | b3 | L | h |
---|---|---|---|---|---|---|
Stress | 0.6983 | 0.0397 | 0.0937 | 0.0275 | 0.0371 | 0.0837 |
Buckling | 0.7105 | 0.0212 | 0.0813 | 0.1511 | 0.0446 | 0.0827 |
Quality | 0.7168 | 0.0209 | 0.0219 | 0.02293 | 0 | 0.2196 |
Group | Shell Thickness t/mm | Rib Width b1/mm | Rib Width b2/mm | Rib Width b3/mm | Rib Spacing L/mm | End Cover Thickness h/mm | Stress/MPa | Buckling Characteristic Value Q | Quality M/kg |
---|---|---|---|---|---|---|---|---|---|
1 | 7.75 | 6.75 | 12.25 | 10.08 | 45.55 | 22.38 | 935.43 | 1.501 | 5.604 |
2 | 8.08 | 12.25 | 13.75 | 11.92 | 52.15 | 17.13 | 878.71 | 1.537 | 5.634 |
3 | 8.42 | 9.25 | 8.58 | 8.08 | 48.55 | 21.88 | 850.06 | 2.827 | 5.954 |
4 | 8.75 | 14.25 | 10.75 | 13.92 | 49.15 | 24.88 | 871.17 | 2.162 | 5.861 |
5 | 9.08 | 12.08 | 14.25 | 8.25 | 49.45 | 18.88 | 820.57 | 2.121 | 5.859 |
6 | 9.42 | 9.42 | 5.75 | 14.75 | 48.85 | 22.63 | 775.31 | 2.552 | 5.749 |
7 | 9.75 | 7.58 | 6.92 | 10.25 | 46.45 | 10.13 | 795.27 | 2.252 | 5.795 |
8 | 10.08 | 11.42 | 8.25 | 10.42 | 40.15 | 20.38 | 858.23 | 2.315 | 5.696 |
9 | 10.42 | 7.75 | 11.92 | 6.75 | 48.25 | 22.13 | 760.14 | 3.096 | 5.721 |
10 | 10.75 | 13.75 | 11.08 | 11.75 | 43.45 | 12.63 | 704.39 | 3.83 | 6.137 |
11 | 11.08 | 5.08 | 8.75 | 14.25 | 42.85 | 24.13 | 688.07 | 4.352 | 5.983 |
12 | 11.42 | 8.75 | 6.25 | 10.58 | 41.35 | 13.88 | 686.14 | 4.713 | 6.213 |
13 | 11.75 | 10.08 | 14.75 | 7.08 | 50.35 | 23.63 | 690.13 | 4.226 | 6.574 |
14 | 12.08 | 13.92 | 7.92 | 7.75 | 50.65 | 23.38 | 842.72 | 4.147 | 6.565 |
15 | 12.42 | 11.58 | 12.42 | 7.25 | 44.35 | 22.88 | 603.13 | 4.274 | 6.787 |
16 | 12.75 | 6.92 | 11.25 | 15.92 | 56.65 | 18.63 | 650.92 | 4.338 | 7.097 |
17 | 13.08 | 5.25 | 13.58 | 15.25 | 51.55 | 16.38 | 817.61 | 4.84 | 7.210 |
18 | 13.42 | 6.42 | 12.92 | 8.42 | 46.15 | 19.38 | 706.07 | 4.585 | 7.340 |
19 | 13.75 | 11.08 | 9.92 | 12.75 | 44.95 | 14.13 | 604.79 | 5.735 | 6.803 |
20 | 14.08 | 9.08 | 7.42 | 13.58 | 53.05 | 12.38 | 599.77 | 5.392 | 7.528 |
21 | 14.42 | 8.25 | 6.08 | 7.92 | 55.45 | 17.88 | 556.99 | 6.152 | 7.001 |
22 | 14.75 | 6.08 | 14.08 | 10.92 | 41.65 | 11.13 | 571.28 | 5.995 | 7.569 |
23 | 15.08 | 8.92 | 10.08 | 10.75 | 52.75 | 12.88 | 555.68 | 7.101 | 7.579 |
24 | 15.42 | 7.42 | 9.42 | 13.42 | 42.55 | 16.13 | 543.09 | 6.995 | 7.027 |
25 | 15.75 | 12.42 | 9.75 | 6.58 | 46.75 | 17.38 | 556.50 | 7.419 | 7.897 |
26 | 16.08 | 14.75 | 7.25 | 13.08 | 44.05 | 19.88 | 563.36 | 7.652 | 7.791 |
27 | 16.42 | 10.42 | 11.42 | 15.58 | 41.95 | 21.38 | 528.72 | 8.62 | 8.263 |
28 | 16.75 | 14.42 | 7.58 | 15.42 | 47.65 | 24.63 | 523.15 | 8.875 | 8.066 |
29 | 17.08 | 9.92 | 7.08 | 9.75 | 49.75 | 23.13 | 574.69 | 10.159 | 7.962 |
30 | 17.42 | 5.58 | 14.42 | 8.92 | 45.25 | 23.88 | 500.12 | 10.317 | 8.286 |
Evaluating Indicator | Stress | Buckling Eigenvalue | Quality |
---|---|---|---|
Determination coefficient R2 | 0.99657 | 0.99997 | 0.99999 |
Root mean square error | 0.09775 | 0.01427 | 1.232 × 10−10 |
Relative maximum absolute error (%) | 4.7582 | 1.6343 | 0.092175 |
Relative average absolute error (%) | 4.6245 | 0.43933 | 0.0096425 |
Design Variable | Shell Thickness t/mm | Rib Width b1/mm | Rib Width b2/mm | Rib Width b3/mm | Rib Spacing L/mm | End Cover Thickness h/mm |
---|---|---|---|---|---|---|
Initial value | 15 | 9.1 | 9.91 | 10.78 | 52 | 15 |
A | 11.000 | 5.497 | 5.521 | 15.654 | 47.248 | 13.465 |
B | 11.093 | 6.933 | 5.679 | 13.272 | 47.329 | 13.145 |
C | 11.019 | 9.816 | 5.525 | 12.861 | 45.914 | 13.062 |
D | 11.066 | 8.560 | 5.884 | 13.300 | 45.520 | 13.137 |
E | 10.935 | 11.278 | 5.618 | 15.467 | 44.537 | 13.113 |
Responses | Stress | Buckling Eigenvalue | Shell Mass (with End Cap)/kg | ∆M/kg |
---|---|---|---|---|
Original prototype | 549.33 | 5.8562 | 7.237 | — |
A | 644.26 | 4.3677 | 6.0108 | 1.2262 |
B | 646.73 | 4.3464 | 5.9988 | 1.2382 |
C | 649.12 | 4.3051 | 5.9878 | 1.2492 |
D | 647.17 | 4.3477 | 6.0029 | 1.2341 |
E | 645.88 | 4.3968 | 6.0116 | 1.2254 |
Design Variable | Shell Thickness t/mm | Rib Width b1/mm | Rib Width b2/mm | Rib Width b3/mm | Rib Spacing L/mm | End Cover Thickness h/mm |
---|---|---|---|---|---|---|
Numerical value | 11 | 10 | 6 | 13 | 45 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Wang, X.; Liu, Z.; You, Y.; Ma, H. Design of Inner Ribs with Unequal Stiffness for Deep-Sea Highly Pressure-Resistant Cylindrical Shells and Utilizing NSGA-2 for Lightweight Optimization. J. Mar. Sci. Eng. 2024, 12, 1231. https://doi.org/10.3390/jmse12071231
Huang Y, Wang X, Liu Z, You Y, Ma H. Design of Inner Ribs with Unequal Stiffness for Deep-Sea Highly Pressure-Resistant Cylindrical Shells and Utilizing NSGA-2 for Lightweight Optimization. Journal of Marine Science and Engineering. 2024; 12(7):1231. https://doi.org/10.3390/jmse12071231
Chicago/Turabian StyleHuang, Yizhe, Xiao Wang, Zhiqiang Liu, Ying You, and Haoxiang Ma. 2024. "Design of Inner Ribs with Unequal Stiffness for Deep-Sea Highly Pressure-Resistant Cylindrical Shells and Utilizing NSGA-2 for Lightweight Optimization" Journal of Marine Science and Engineering 12, no. 7: 1231. https://doi.org/10.3390/jmse12071231
APA StyleHuang, Y., Wang, X., Liu, Z., You, Y., & Ma, H. (2024). Design of Inner Ribs with Unequal Stiffness for Deep-Sea Highly Pressure-Resistant Cylindrical Shells and Utilizing NSGA-2 for Lightweight Optimization. Journal of Marine Science and Engineering, 12(7), 1231. https://doi.org/10.3390/jmse12071231