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Abstract: For conducting scientific research at depths in the ocean, deep-sea probes are essential pieces
of equipment. The cylindrical shell is the most sensible and rational packaging structure for these
detectors. New technical challenges for enhancing the pressure resistance and lightweight design
of the pressure-resistant cylindrical shell arise from the need to ensure that the detector packaging
structure can withstand the immense water pressure at tens of thousands of meters in the underwater
environment, while simultaneously reducing the detector packaging structure’s self-weight. This
article examines the detection system’s deep-sea pressure-resistant cylindrical shell. To address the
issue of the pressure-resistant shell’s insufficient ability to counteract the overall instability caused by
the inability to form unstable half-waves in the radial direction when the ring rib pressure-resistant
shell experiences it, a design method for the ribs inside the unequal-stiffness pressure-resistant cylin-
drical shell is suggested. The shell’s instability pressure increases by 9.65 MPa following the stiffness
adjustment. Simultaneously, in order to attain even more lightweight optimization, the optimal inner
rib section was obtained by applying the orthogonal topology optimization method, which also
reduced the weight by 106.8 g and effectively improved the compression stability of the high-pressure
cylindrical shell structure. Based on this, key optimization variables were found by performing
sensitivity analysis on the cylindrical shell structure’s parameters. Then, with lightweighting as the
primary objective, the high-pressure-resistant cylindrical shell’s optimal structural parameters were
found using a multi-objective optimization process using the second-generation fast non-dominated
genetic algorithm (NSGA-2). This resulted in a weight reduction of 1.2492 kg, or 17.26% of the original
pressure-resistant shell. This has led to the development of a lightweight, highly pressure-resistant
method for packaging marine exploration equipment structures.

Keywords: highly pressure-resistant cylindrical shells; unequal stiffness; orthogonal topology; sensi-
tivity analysis; the second-generation fast non-dominated genetic algorithm; lightweight optimization

1. Introduction

The ocean is full of resources for human development. However, traditional ocean
observation technologies like ship-based observations, ocean buoys, and ocean satellites
are no longer able to meet the current needs of ocean exploration due to the urgent need
for further in-depth development of underwater resources. For the development of ma-
rine resources, high-pressure marine exploration equipment will, therefore, be essential.
Submersible detectors come in a variety of shapes and sizes, but they are all made up
of three basic parts: a connecting structure, an internal framework platform structure,
and a pressure-resistant structure [1-7]. Considering that it makes up between a quarter
and a half of the submersible’s total weight, the pressure-resistant shell structure is one
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of its most important parts. The primary duty of this structure is to tolerate high water
pressure from the outside. To achieve the best pressure resistance performance and floating
weight ratio, it is crucial to research and optimize the materials and structural forms of
pressure-resistant shells.

Reducing the weight or minimizing the total weight of pressure-resistant shells while
keeping the necessary strength and stability for operation is the major goal of optimization.

MingYang et al. [8] used the theory of thin shells to build a mechanical model of spheri-
cal pressure-resistant shells, which they then used to combine the Penalty Function Method
(PFM) with the Multi-Population Genetic Algorithm (MPGA) to optimize the thickness,
strengthening ribs, width of the strengthening ribs, and intersection angle of spherical
pressure-resistant shells. A. S. Bhanu Prasan et al. [9] also used the PSO algorithm to
optimize the quality of an entire pressure-resistant shell under specified buckling pressure
and frequency constraints. Muhammad Imran et al. [10] optimized the pressure-resistant
shell of a spherical submersible using the genetic algorithm (GA) in ANSYS, and then
performed nonlinear buckling analysis on the pressure-resistant shell using a modified
RIKS program in ABAQUS. In order to reach the maximum operating depth, Elsayed
Fathallah et al. [11] optimized the entire pressure-resistant shell by reducing the elliptical
submersible’s buoyancy coefficient. The design variables that were utilized were the lon-
gitudinal beam size, elliptical radius, and thickness of the pressure-resistant shell, all of
which were subject to the limitations of failure criteria and shell buckling strength. Muham-
mad Imran et al. [12] introduced composite materials into cylindrical pressure-resistant
shells, aiming to minimize buoyancy coefficients and maximize buckling load coefficients
as optimization research objectives, and executed them through a coupled multi-objective
genetic algorithm (MOGA). In order to optimize design variables and obtain the optimal
cylindrical pressure-resistant shell, Cheng Wang et al. [13] proposed a cylindrical pressure-
resistant shell with non-uniform arch ribs. Based on the parameterization model of the
response surface method, they established an approximate model for the output response
of ship mass. Honglei Liu et al. [14] proposed an adaptive morphogenesis algorithm based
on the growth mechanism of leaf veins. They then applied this method to the design of
stiffened plate and shell structures, resulting in a distinct stiffener distribution pattern.
Pawet Fory$ [15] addressed the impact of geometric defects on the form of equilibrium
paths, employed an enhanced particle swarm optimization method (MPSO) for numerical
optimization, and utilized the finite element method (FEM) to model and solve cylindrical
shell structures. Ghasemi et al. [16] investigated the impact of hydrostatic pressure on
cylindrical shells and their preparation by combining a genetic algorithm with geometric,
structural, stress, and buckling constraints. Additionally, they used penalty functions to get
rid of weak models. In the end, they suggested the best model, taking into account the least
amount of weight under pressure. An optimization technique based on a free form was
developed by Masatoshi et al. [17] and is especially useful for shape optimization in the
out-of-plane direction. The buckling coefficient is the optimization’s objective function. The
optimization results show that the buckling coefficient can be greatly increased using this
method. Wu et al. [18] used the Newton-Lapson iteration method to perform a nonlinear
static finite element analysis of axially compressed reinforced cylindrical shell structures
with the goal of determining the ultimate load of structural instability. Mahdi et al. [19]
optimized the shell and rib parameters under weight and frequency constraints using a
genetic algorithm. They also improved the ribs” material composition and shape, and the
outcomes demonstrated that the improved shell had superior vibration characteristics. In
order to optimize underwater pressure-resistant shells, Akl et al. [20] used a max—-min multi-
objective optimization strategy. The optimization objectives included shell vibration, noise,
and quality. Sofiyev AH et al. [21] introduced the stability of non-uniform nanocomposite
cylindrical shells (INCCSs) under hydrostatic pressure in a hot environment. The effective
material properties of non-uniform nanocomposite cylindrical shells were modeled based
on extended mixing rules. Based on the effective performance of the materials, the basic
relationship and stability equation of the thermal environment were derived. The analyt-
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ical expressions for the hydrostatic buckling pressure of INCCSs under the framework
of FSDT and classical shell theory (CST) were obtained through solutions based on the
Galerkin program. Wang M et al. [22] introduced the design and optimization of a pres-
sure cylindrical shell composed of carbon/epoxy resin and glass/epoxy resin composite
materials. A method for analyzing composite-pressure cylindrical shells was proposed,
and the strength and buckling of composite-pressure cylindrical shells with different rib
numbers were analyzed. The effects of thickness and layer angle on critical buckling and
strength failure stress were studied. Yang Z et al. [23] used experimental methods to study
the buckling pressure and failure strength of non-reinforced fiber-reinforced composite
cylindrical shells under external hydrostatic pressure. They collected and discussed strain
and pressure data. The results indicate that the improvement in buckling pressure by the
ring reinforcement structure is more significant than the increase in failure pressure. The
experimental burst pressure of the annular rigid cylindrical shell increased by 23.2%. Zhang
X et al. [24] proposed a pressure shell with a corrugated structure to significantly improve
its compressive performance. Seven pressure shells were prepared, including six inner
corrugated pressure shells and one cylindrical pressure shell, and hydrostatic pressure
tests were conducted. The results indicate that the corrugated structure can significantly
increase the critical buckling load of the shell. Zhang Y et al. [25] proposed a novel bidirec-
tional corrugated sandwich structure to improve the load-bearing capacity of cylindrical
shells. The static and buckling analyses of sandwich shells and unreinforced cylindrical
shells with the same volume-to-weight ratio were studied through numerical simulation.
The results indicate that the proposed sandwich shell can effectively reduce the ratio of
circumferential stress to axial stress from 2 to 1.25, increasing the critical buckling load
by approximately 1.63 times. Numerical simulations show that optimizing and adjusting
structural parameters can significantly improve the advantages of sandwich shells.

The ultra-high deep-water pressure environment that occurs tens of thousands of
meters deep is typically ignored in current research. The standard uniform ribbed method
for cylindrical shells may not be able to form unstable half-waves in the radial direction
when encountering overall instability in the ultra-deep-water static pressure environment.
This could lead to an insufficient ability of the pressure-resistant shell to resist instability.
We suggest a technique to modify the internal rib stiffness in order to enhance the pressure-
resistant shell’s overall anti-instability capabilities in order to address this general instability
scenario. However, in terms of lightweight qualities, conventional, ordinary pressure-
resistant materials like aluminum alloy 6061T6, resin-based carbon fiber T700, silicon
nitride ceramics, etc. cannot be substituted for the titanium alloy TB9 material used to meet
the pressure resistance conditions while minimizing volume at depths of tens of thousands
of meters. An orthogonal topology optimization method is proposed to further reduce
costs by optimizing the inner rib section after adjustment, given the high density and high
cost of titanium alloy TB9 material. By combining the second-generation genetic algorithm,
NSGA-2, for additional lightweight design in order to obtain the ideal pressure-resistant
shell parameters, a multi-objective optimization design of the pressure-resistant shell is
also proposed.

In the context of deep-sea high-pressure cylindrical shell structures, the standard
uniform ribbed method for cylindrical shells may encounter issues with unstable half-
waves in the axial direction when overall instability arises. Additionally, the method is
unable to form unstable half-waves in the radial direction, which leaves the pressure-
resistant shell with insufficient ability to withstand instability. The idea behind this article
is to improve the overall instability resistance of the pressure-resistant shell by adjusting
the uneven stiffness of the ribs inside using a method based on the Liz method. This paper
suggests using the second-generation fast non-dominated genetic algorithm (NSGA-2) for
the multi-objective optimization design of the pressure shell structure in order to obtain the
optimal design parameters for the pressure shell. This will allow for the optimization of the
inner rib section while maintaining good anti-instability ability and lead to a lightweight
design of the entire device.
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2. Pressure-Resistant Cylindrical Shells with Non-Uniform Internal Ribs
Reinforced Structurally

2.1. Design of Pressure-Resistant Shell Structure Scheme with Inner Rib Reinforcement
Material and Basic Shape Selection for Reinforced Pressure-Resistant Shell with
Internal Ribs

The marine environment is harsher and more complex than the terrestrial environment,
and it also has many more unknowns for humans. Consequently, given that the pressure-
resistant shell in this article operates in an environment that is 10,000 m below the surface,
it is part of a strong, high-pressure working environment. The material used to make the
pressure-resistant shell should possess qualities like corrosion resistance, light density, and high
strength. The pressure-resistant housing’s primary material, titanium alloy TB9, was selected
after pertinent processing technology and operating conditions were taken into account. The
parameters of commonly used pressure-resistant materials are shown in Table 1 below.

Table 1. Mechanical parameters of common materials.

Structural Steel Titanium Alloy Aluminum Alloy  Resin-Based Carbon Silicon Nitride

Performance Q345 TB9 6061T6 Fiber T700 Ceramics Glass
Elastic modulus (GPa) 210 100 69 120 300 100
Density (g/cm3) 7.8 45 2.7 1.6 3.2 2.32
Poisson’s ratio 0.28 0.31 0.33 0.3 0.27 0.2
Yield limit (MPa) 345 975 280 600 3820 1450
Specific strength
44 172 104 375 1194 650
(MPa/(g/cmS))
Specific rigidity
27 22 26 75 94 45
(GPa/(g/cms))

Current pressure-resistant shells primarily take the shape of regular shapes like el-
lipsoids, spheres, conics, and cylindrical shapes. Apart from the conventional forms,
there exist novel structural variations of pressure-resistant shells, including the ellipsoidal
cross-section, lotus root, and corrugated tube.

A spherical pressure-resistant shell’s minimal volume-to-weight ratio and membrane
stress are its key benefits, but there are also significant drawbacks. Due to the substantial
difference between the spherical pressure-resistant shell’s shape and its streamline, there
is a high fluid resistance it encounters when operating underwater, which leads to higher
energy consumption. Additionally, the space utilization inside the shell is low and the
effective load is small.

With its high space utilization and easy processing, the cylindrical pressure-resistant
shell is currently the most popular pressure-resistant shell structure in use worldwide.
Based on the dimensions of the sensors needed for this article (as indicated in Figure 1),
a cylindrical structure is chosen because the total length of the sensor is approximately
330 mm and it has a long, square shape.

9
10 45 q10-m2
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Figure 1. Schematic diagram of internal sensor size parameters in the detection system.
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2.2. Stiffness Distribution Design for the Inner Ribs Using Liz Method
2.2.1. A Summary of Inner Rib Rigidity Adjustment Techniques

Currently, pressure-resistant shell reinforced rib sections are primarily designed in
rectangular, L-shaped, T-shaped, and I-shaped configurations. The mass of the reinforced
rib in the rectangular section is lowest when the section’s moment of inertia is equal.
Initially, the shape of the rib section is determined by considering the processing complexity
of various types of reinforced ribs. Initially, a rectangle was chosen.

In the study of pressure-resistant shell stiffening technology, the stiffness of each rib is
usually considered in an identical manner; this is achieved by selecting the same material
and cross-sectional shape for each inner rib. However, there is some logical error in the
inner rib positioning. The main reason for this is that the pressure-resistant shell with ring
ribs can only form an unstable half-wave in the axial direction when it experiences overall
instability; it cannot form an unstable half-wave in the radial direction. This means that the
pressure-resistant shell cannot withstand instability very well.

This paper employs the internal rib stiffness allocation technique to address this
problem. This technique distributes the stiffness of each rib in accordance with relevant
allocation principles, thereby avoiding the instability previously mentioned.

This article’s method for adjusting the stiffness of internal ribs involves modifying
the size of the rib section, redistributing the moment of inertia of each rib section, and
readjusting the stiffness of every internal rib, all the while maintaining the same number of
ribs, rib moments, and total moments of inertia of all the rib sections.

2.2.2. Based on the Internal Rib Stiffness Allocation Using the Ritz Method, a Critical
Instability Pressure Model for Pressure-Resistant Shells

The critical pressure formula for pressure-resistant shells with inner rib stiffness
allocation is derived by applying the Liz method in conjunction with the conventional
critical pressure formula for inner ribs with equal stiffness as a reference.

1. The stress of equal-stiffness stiffened pressure-resistant shells can be calculated using
this formula.

The following is the main formula used to determine the relevant stress when applying
ring ribs to a pressure-resistant shell.
At the midpoint of two ribs and its rib edge, the shell’s normal stress [26] is

01 = (01)— = —F (05 £ e3)
, o M
01 = (01)y—05 = — ¢ (056 T &2)
where
(a) o0p—at the midpoint of two ribs, the shell plate’s axial normal stress;
(b) o{—the normal stress axially at the rib’s edge;
(c) P—the pressure that the pressure-resistant shell can withstand from the outside.
oy = —BR (1 — &4 £ pe3)
0, = —ZR(1—05p)(1—e1) + poy 2)
o) = —LR(1—¢y)

where

a) op,—the normal stress around the circumference of two ribs at their midpoint;
p
b) o}—the normal stress circumferential at the rib’s edge;
2 g
(c) (fg—the circumferential normal stress at the midpoint of two ribs on the shell plate.

w ! ! PR
0= ~E =0 —poy = ——(1-05)(1 — &) 3)
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where (Tf—the axial normal stress of ribs.

In accordance with the “Classification and Construction Specification for Submarine

Systems and Submarines” [27] requirements, the circumferential normal stress o3 on the
middle surface of the shell plate at the midpoint of the two ribs, the axial normal stress
oy representing the ribs, and the axial normal stress o7 at the edge of the ribs must all be
verified. The following is the verification formula [26]:

)

@)
®)

4)

0—3 = —P—tR(l —¢&4) < 0.8505
o) = —PR(0.56 F £5) < 1.150, @)
of = —?(1 — 81)(1 — 05}1) < 0.60;

The Liz method determines the unstable pressure of a pressure-resistant shell and
provides instructions for modifying the internal rib stiffness.

The Liz method’s pertinent steps are generally as follows [28]:

For the internal rib stiffness allocation to the pressure-resistant shell, derive the
expression of the instability displacement correlation function. This function must be
able to satisfy the boundary conditions and determine the displacement of the ribbed
shell deviating from its initial position;

Find the expression for the strain and its displacement in different directions at any
point in the shell;

Determine how the external force work and the shell’s strain energy are related to
each other. Then, utilize this expression to determine the expressions for the shell’s
total potential energy after deviation, its strain energy, and the external force work;
Determine the shell’s stability equation using the principle of minimum potential
energy, and then solve for the minimum critical pressure.

We calculate the theoretical critical pressure for pressure-resistant shells that have an
internal distribution of rib stiffness.

As illustrated in Figure 2, establish a cylindrical coordinate system for the pressure-

resistant shell. The graph’s & angle indicates the angle formed by the research point’s
diameter plane and the reference diameter plane, while the x-axis direction indicates the
pressure-resistant shell’s axial direction.

Figure 2. Schematic diagram of cylindrical shell’s cylindrical coordinate system.

The deformation at the rigid support and both ends of the shell can be considered

continuous when the shell experiences unstable deformation. This continuous deformation
can be broken down into axial, tangential, and radial directions [26].

— 1 mrmnx
u = Asinng cos “}

v = Bsinng cos "= (5)

— 3 mrtx
w = Csinng cos 77
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where

(@) L—the length of the shell;

(b) ~m—the half-wave number of axial instability when the shell is unstable;

(¢) n—the whole-wave number of circumferential instability when the shell is unstable;
(d) u—the axial displacement of the shell;

(e) v—the circumferential displacement of the shell;

(f) w—the radial displacement of the shell; A, B, and C are constants.

With internal rib stiffness allocation, the strain energy of the shell plate for the pressure-
resistant shell can be derived as follows, per “Submarine Strength” [27]:

v o_nlD 2(1 — p)ym?a? + 4(1 — p)ym?a®*nBC
PTRR 4 [(m2a? 4 n? = 1)+ 2(1 - p)ma?| C2

Vo — 7L _Et [mz"‘z +3(1— V)”Z] A%+ (1+ p)mnaAB ©6)
2 — 4R 1—u2 +{n2+%(1—y)m2w2]32+2nBC—0—2ymaAC+C2

V - V1 + V2

where

(a) Vi—shell bending strain energy;
(b) V,—strain energy in the middle surface of the shell,

a = TR/ L.
Work of the external force U [27]:
u, = Rd dx = "L a2pmc2
1= fo pax = IR 1w m
Uy =22 fo xowRdpdx = —{{Tz(nz —1)C? @

u:m+m

In order to determine the internal rib stiffness allocation of pressure-resistant shells,
assume that the pressure-resistant shell has a total of i ribs [26]. Then, the strain energy is
Vai, and the stiffness corresponding to the ribs at x; is I;.

ElL
2R3

MITX;

V3 = (8)

(n —1)2C? sin?
It is possible to calculate the strain energy V3 of the entire pressure-resistant shell rib
by adding up the strain energies of each rib [26]:

1 il 2E Lt o MTTX;
=1

L/
V3= Z Vsi = 1 RZL( 2 _1)c? Zl (I; sin I ) ©9)
1 1=

where L—the total length of the pressure-resistant shell;

[—rib spacing.

The formula for calculating the total potential energy of the pressure-resistant shell
with internal rib stiffness adjustment can be obtained by combining Formulas (7)—(9).
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LD [ 201 — p)ym?a®B? + 4(1 — y)m?a*nBC
M=Vi+Va+Vs—U =" {

4R R2| + [(mza2 +n2—1)°+2(1— y)mzaz} C2

m?a? + %(1 - y)nz] A%+ (1 — y)mnaAB

nL Et (10)
4R 1 — p? 21 22| g2 2
+|n 5(1 — w)ym=a=| B* 4+ 2nBC + 2umaAC + C
nil 2E L/I-1 . 5 MTTX; il tL
i=

By removing the high-order trace from the pressure-resistant shell with the internal
rib stiffness allocation calculation formula, the stability equation under a uniform external
load of the pressure-resistant shell with internal rib stiffness allocation can be obtained by
replacing it with the basic relationship formula of the Liz method [26]:

D Etm*a*
2 2 2 2 ﬁ(n2—1+m2a2)+ n? 4+ m2a?
+2E 2oty (14 sinz@)
R2L =N

Under uniform pressure P, the transverse and longitudinal sections of the pressure-
resistant shell experience initial membrane forces denoted by T; and T in the equation above.
It can be roughly described as follows, generally:

12
T, = PR (12)

T, = 0.5PR }

Formulas (11) and (12) can be combined to obtain the following theoretical critical

pressure calculation formula for the overall instability of pressure-resistant shells with
internal rib stiffness allocation:

D, 6, 5 9\2  Et mtat
, 1 O Rty .y e )
E= 2 _ 2,2 2E L/i-1 ‘
n* —1+0.5m4a 2 2 .o MTTX;
+7R3L(n -1) igl (Ilsm —5 )

where m—the number of half-waves formed upwards when the pressure-resistant shell
buckles;

n—the number of half-waves formed by the circumferential instability of the pressure-
resistant shell.

2.2.3. Examining the Critical Instability Pressure of Cylindrical Shells with Adjustable
Internal Rib Stiffness

The pressure-resistant shell has six evenly spaced ribs and measures L = 350 mm in
total length, D = 90 mm in inner diameter, and ¢ = 5 mm in thickness. The rib width is
5 mm, rib spacing is 50 mm, and rib thickness is 3 mm. The chosen material is titanium
alloy TB9, with associated characteristics including elastic modulus E = 100 GPa, yield limit
65 = 975 MPa, Poisson’s ratio # = 0.31, and an applied load of 10 MPa.

The main calculation process is as follows:

1. Calculate the total moment of inertia of the ribs.

According to the Chinese CCS submersible design specifications, the formula for
calculating the moment of inertia I of the ribs with plates is as follows [26]:

113 t\? ItF
=D+ = LA IV 14
°+12+(YO+2) “T+F (14
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where

(a) Ip—the moment of inertia of each rib section;

(b) F—the rib cross-sectional area;

(¢) yo—the distance from the axis of the rib section to the middle surface of the shell;
(d) t—the thickness of pressure-resistant shell;

(e) I—the rib spacing.

The rib section with plates’ moment of inertia can be computed as I = 7166.91 mm* using
Formula (14). Iz = 43001.46 mm* is the rib section’s total moment of inertia with six plates.

2. Determine the radial displacement ratio at which each unstable rib occurs.

When an instability occurs in a cylindrical shell, the shell plate’s radial displacement
exhibits a trend of progressive decrease on both sides. The formula for radial displacement

is as follows:
mrmx

)

w = Csin(ng) sin( (15)

3. Reassign the stiffness of each rib.

Redistribute each rib section’s moment of inertia after utilizing Formula (15) to de-
termine the radial displacement ratio between each rib. The following formula applies in
this case: i (21

sin L
I; = W(L;szi)ﬂotal (16)

In the formula: I;—the stiffness of each rib.

Each rib’s assigned stiffness can be computed after completing the aforementioned
three steps. Each rib’s parameters are displayed in Table 2, where changing the rib thickness
while keeping the rib width the same allows for the adjustment of each rib section’s moment
of inertia.

Table 2. Distribution of moment of inertia of rib section.

Rib Number land 6 2and 5 3and 4
Inertia of rib section 4902.17 6923.24 9675.33
with plate/mm
Rib height/mm?* 2.643 2.966 3.316

Through the substitution of the rib section’s moment of inertia from Table 1 into
Formula (13), the pressure-resistant shell’s overall instability critical pressure Pg; with inner
rib stiffness allocation is 79.68 MPa, while the pressure-resistant shell’s overall instability
critical pressure Ppy with equal stiffness is 70.24 MPa.

2.2.4. Analyzing Cylindrical Shells through Simulation with Adjustable Internal
Rib Stiffness

The equal-stiffness internal rib shell pressure, Pgy, and the overall instability critical
pressure, Pg1, were obtained in the previous section using the internal rib stiffness adjust-
ment theory’s critical instability pressure calculation formula. ANSYS Workbench 2023
R1 software was used to perform the pertinent simulation calculations discussed in this
section. The grid was set as a hexahedral grid with a grid size of 1 mm. The convergence
process of the grid was automatically determined by the program, with fixed constraints at
the two circular rings on the cylindrical surface. The pressure was set to 10 MPa on both
sides of the cylinder. The accuracy of the theoretical formula was confirmed by comparing
the obtained results with the theoretical values. At the moment, the most popular approach
for researching structural stability is linear buckling analysis. Its primary feature, which is
a finite element analysis, is to treat the entire structure as an elastic structure and ignore the
original defects of the structure itself [29].
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B: buckling eigenvalue

Total Deformation

Type: Total Deformation

Load Multiplier (Linear): 7.2004

Unit: mm

2024/6/28 9:05
1 Max
0.88889
0.77778
0.66667
0.55556
0.44444
0.33333
0.22222
0.11111
0 Min

0.00

A: Equal stiffness static structure
Equivalent(von-Mises)Stress

Type: Equivalent (von-Mises) Stress
Unit: MPa

Time: 1s

2024/6/20 16:02

131.08 Max
118.31
105.55
92.777
80.009
67.241
54473
41.705
28.937
16.169 Min

0.00

Figure 3 displays the characteristic values of the buckling deformation analysis ob-
tained after the internal rib stiffness of the pressure-resistant shell was adjusted through
ANSYS Workbench simulation calculations.

D: buckling eigenvalue

Total Deformation

Type: Total Deformation

Load Multiplier (Linear): 8.165

Unit: mm

2024/6/28 9:00
1 Max
0.88889
0.77778
0.66667
0.55556
0.44444
0.33333
0.22222
0.11111
0 Min

\‘

Y Y

:X/'x A-/'x

50.00 100.00 (mm) 0.00

(b)

Figure 3. Eigenvalue buckling analysis deformation diagram. (a) Instability mode of shell with equal

50.00 100.00 (mm)

25.00 75.00

(a)

75.00

stiffness and inner ribs; (b) instability mode of inner rib stiffness adjustment shell characteristics.

We obtained the Mises stress cloud maps that are pertinent, as illustrated in Figures 4
and 5.

C: Static structure after adjustment
Equivalent(von-Mises)Stress

Type: Equivalent (von-Mises) Stress
Unit: MPa

Time: 1s

2024/6/20 16:12

131.11 Max
118.35
105.58
92.823
80.06
67.298
54.536
41.774
29.012
16.25 Min

1l

)/

50.00  100.00 (mm)

0.00

50.00  100.00 (mm)

25.00 75.00
25.00

(a) (b)

Figure 4. Mises shell stress cloud maps: (a) Mises stress cloud map of the inner rib cage with the

75.00

same degree of rigidity; (b) the inner rib stiffness adjustment shell’s Mises stress cloud map.

From the above results, it is evident that the maximum stress on the ribs is 96.753 MPa
and the maximum stress on the equal-stiffness inner rib pressure-resistant shell is 131.08 MPa.
The critical instability pressure in the first-order instability state is 72 MPa, which is repre-
sented by the buckling characteristic value of 7.2. The inner rib stiffness-adjusted pressure-
resistant shell can withstand stresses up to 131.11 MPa, while the ribs themselves can
withstand stresses up to 96.975 MPa. The first-order instability state has a buckling char-
acteristic value of 8.165, which is equivalent to a critical instability pressure of 81.65 MPa.
This confirms the accuracy of the theoretical formula for critical instability pressure derived
in this article. It can be seen that the critical instability pressure in both simulation results is
essentially consistent with the critical instability pressure calculated using the derivative
theory formula in the previous section.
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A: Equal stiffness static structure
Equivalent(von-Mises)Stress(2)
Type: Equivalent (von-Mises) Stress
Unit: MPa

Time: 1s

2024/6/20 16:04

96.753 Max
94.756
92.759
90.763
88.766
86.769
84.772
82.775
80.779
78.782 Min

C: Static structure after adjustment
Equivalent(von-Mises)Stress2

Type: Equivalent (von-Mises) Stress
Unit: MPa

Time: 1s

2024/6/20 16:13
96.975 Max
94.812
92.649

90.486
88.323

86.159
83.996
81.833
79.67
77.507 Min

v Y

1 =
e
0.00 50.00  100.00 (mm)

0.00 50.00 100.00 (mm)
25.00 75.00

(a) (b)

25.00 75.00

Figure 5. Mises stress cloud maps of ribs: (a) Mises stress cloud map of ribs with equal stiffness;
(b) Mises stress cloud map for rib stiffness adjustment.

In terms of stability, the instability pressure of the inner rib stiffness adjustment method
is 9.65 MPa higher than that of the inner rib with equal stiffness, despite the two stiffening
methods having similar maximum stresses. Increasing the internal rib stiffness can boost
the pressure-resistant shell’s compressive strength and stability, as can be observed.

2.3. Optimization of the Inner Rib Reinforcement Cross-Sectional Orthogonal Topology Using the
Variable Density Approach

2.3.1. Design Strategy for Orthogonal Topology Optimization

With the maximum stress of the optimized strengthening rib as the primary optimiza-
tion objective and the number of iterations needed for topology optimization as the second
evaluation indicator, the goal is to obtain the cross-sectional shape of the strengthening rib
with the strongest compressive strength. The variable density method is used to optimize
the orthogonal topology of the rib’s cross-sectional shape. As a design variable, the range
of relative element material density p in the optimization region is defined as [0, 1]. The
pressure-resistant shell’s minimum weight serves as the objective function, and its max-
imum stress and maximum strain are set as constraint conditions. Formula (17) [30,31]
illustrates how the relative element material density p represents the objective function in
the mathematical model of the variable density method topology optimization.

find(p) = (p1,02---,pn)
minm(p) = [, pdV

E(pi) = p! Eo 17)
st [ypdV < M*(i=1,2---,n)

0< Pmin < Pj <1

where

(a) p—the relative density of the unit materials, one of the design variables;

(b) m(p)—the optimized design area’s quality, represented by the objective function;

(¢) V—the volume occupied by the design area;

(d) E(p;)—the relative density of unit materials, represented by the relative elastic modu-
lus;

(e) P—the penalty factor;

(f)  Ep—the material’s true elastic modulus;

(g) M —the optimized quality’s maximum value;

(h) n—maximize the quantity of limited components within the design domain;

(i)  pmin—the lowest relative density of the material in question.
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Grid size t, penalty factor p, and volume factor f are the primary variables influencing
the outcomes of topology optimization. We should prevent checkerboard phenomena,
porosity, and non-convergence during the topology optimization process and accurately de-
pict the structure’s mechanical characteristics. The selections in this article are 0.3 < f < 0.7,
3<p<5and 0.5 mm <t <1mm.

The volume factor f, penalty factor p, and grid size t are the primary factors influencing
the optimized object’s performance in terms of pressure resistance, as was observed in the
previous step. The three parameters mentioned above are denoted as factors A, B, and
C, respectively. It is presumed that there is no interplay among the three factors [32]. As
indicated in Table 3, the level of factors for orthogonal topology optimization experiments
is established based on the range of values for each factor suggested in the preceding text,
as well as comparable research and design experience.

Table 3. Orthogonal experimental factor level table for three parameters.

Horizontal Volume Coefficient (A) Penalty Factor (B) Grid Size (C)
1 0.4 2.0 0.5
2 0.5 3.0 0.75
3 0.6 4.0 1.0

Based on this, the orthogonal experimental table needed for the experiment is shown
in Table 4 (note that this article only contains three horizontal factors; therefore, a standard
orthogonal table would require the addition of a set of blank factors).

Table 4. Orthogonal topology optimization experimental scheme combination table.

Test Number Volume Coefficient (A) Penalty Factor (B) Grid Size (O) Blank (D)
1 0.4 2.0 0.5 -
2 0.4 3.0 0.75 -
3 0.4 4.0 1 -
4 0.5 2.0 0.75 -
5 0.5 3.0 1 -
6 0.5 4.0 0.5 -
7 0.6 2.0 1 -
8 0.6 3.0 0.5 -
9 0.6 4.0 0.75 -

2.3.2. Test Results and Analysis
Test Result

Table 5 displays the pertinent results of the topology optimization based on the variable
density method that was carried out using ANSYS Workbench on the nine experiments that
were previously mentioned. In topology optimization settings, the mesh is a hexahedral
mesh, and the mesh size was automatically selected based on the parameters in Table 5.
The mesh convergence process was automatically determined by the program, and the
pressure was set to a uniform distribution of 10 MPa on the outer ring of the circular ring.
At the same time, cylindrical support was applied to the outer ring, and free constraints
were given in the radial direction.

Table 5. Comparing cross-sectional topological forms with various combinations of parameters.

Test Number 1 2 3 4 5 6 7 8 9
Coﬁiﬁrion A1BCy A1B,Cs A1BsCs AsBIC, A2B2C3 AsB3Cy AsBiCs AsBGy AsBsC
s§i$§;1 A A A an A S S aa S
igure
Maximum 267.74 285.59 259.47 241.85 259.24 269.01 221.72 239.14 249.34

stress (MPa)
Iteration

18 13 12 18 13 15 16 15 16
steps
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Range Analysis of Experimental Results

The range analysis table for this experiment is displayed in Table 6. In the table,
K;(i = 1,2,3) denotes the average value of the test results corresponding to level i, and k;
represents the sum of the test results corresponding to level i in any column. Making a
relationship graph between various levels and target parameters to aid in comprehension of
how different level factors affect target parameters is also practical, and is shown Figure 6.

Table 6. (a) Range analysis table for maximum stress. (b) Range analysis table for iteration steps.

(a)

Experimental A Volume B Penalty .
Indicators Test Number Coefficient Factor C Mesh Size D Blank
K; 812.8 731.31 775.89 776.32
K, 770.1 783.97 776.78 776.32
K3 710.2 777.82 740.43 740.46
kq 270.93 243.77 258.63 258.77
Maxi ko 256.7 261.32 258.93 258.77
aximum stress ks 236.73 259.27 246.81 246.82
Range R 34.20 15.50 12.12 11.95
Primary and ASB>C>D
secondary order
Excellent level Az B Cs Ds
Optimal
combination AsBiGs
(b)
Experimental A Volume B Penalty .
Indicators Test Number Coefficient Factor C Mesh Size D Blank
Ky 43 52 48 47
Ky 46 41 47 44
K3 47 43 41 45
kq 14.33 17.33 16 15.67
Iteration steps ko 15.33 13.67 15.67 14.67
P ks 15.67 14.33 13.67 15
Range R 1.33 3.67 2.33 1
Primary and B>C>A>D
secondary order
Excellent level Az B Cs Ds
Optimal
combination A1B2Gs
; Volume coefficient [ ] Volume coefficient
== per}alt‘)‘/ factor 20 F [ ] Penalty factor
300+ L__| mesh size ] Mosh size
| | blank | Blank
» ] — © 151 [ =]
3 ) . - =
5200 B
“ =
=] =
g =10}
i 3
< +
E —_
100
5 -
0 0 " ] X
kl k2 k3 k1l k2 k3
level level
(a) (b)

Figure 6. Diagrams of relationships between assessment indicators and various levels. (a) The
relationship between different levels and maximum stress; (b) the relationship between different
levels and iteration steps.
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C: A3B1C3
Equivalent(von-Mises)Stress

Type: Equivalent (von-Mises) Stress (Nodal Averaged Result) Type: Topology Density

Unit: MPa
Result Set: 1
2024/8/28 9:20

221.72 Max
205.01
188.31
171.61
154.91
138.21
121.51
104.81
88.104
71.402 Min

C: A1B2C3
Equivalent(von-Mises)Stress

Type: Equivalent (von-Mises) Stress (Nodal Averaged Result) Type: Topology Density

Unit: MPa
Result Set: 1
2024/6/28 9:23

285.59 Max

E 253.9
222.21
190.52
168.83
127.13
95.441
63.748
32.056
0.36359 Min

0.00

The analysis presented above leads to the conclusion that the volume coefficient has
the greatest influence on the maximum stress evaluation index, whereas the grid size has
the least influence. The number of iteration steps is primarily determined by the penalty
factor, with the volume coefficient having the least significant effect. The combinations
of A3B1C3 and A1B,Cs3, respectively, represent the ideal solutions that correspond to the
two evaluation indicators of maximum stress and iteration steps. With a maximum stress of
221.72 MPa and 16 iteration steps, A3B1Cj3 is present in the aforementioned experiment (as
indicated by the pertinent simulation figure in Figure 7). Nevertheless, additional testing
is required because A1B,C3 was not randomly identified in the orthogonal experiment.
The pertinent findings are displayed in Figure 8. The maximum stress following A;B3Cs
combination optimization is 285.59 MPa, and 12 iteration steps were used.

C: A3B1C3
Topology Density

Iteration Number: 16
2024/6/28 9:31

[l Remove (0.0 to 0.4)
[] Marginal (0.4 to 0.6)
I Keep (0.6 to 1.0)

X

ol

X
25.00 50.00 (mm) . 0.000 4.000 8.000 (mm)
— ] — —
12.50 37.50 2.000 6.000
(a) (b)

Figure 7. Maximum stress cloud and section diagram after optimizing A3zB;C3 combination. (a) Max-
imum stress cloud map; (b) cross-section view.

C: A1B2C3
Topology Density

Iteration Number: 13
2024/6/28 9:25

Il Remove (0.0 to 0.4)
[] Marginal (0.4 to 0.6)
[ Keep (0.6 to 1.0)

X

ol

YX
25.00 50.00 (mm) . 0.000 4.000 8.000 (mm)
— — —
12.50 37.50 2.000 6.000
(a) (b)

Figure 8. Maximum stress cloud and section diagram after optimizing A;B,C3 combination. (a) Max-
imum stress cloud map; (b) cross-section view.

When the maximum stress of the AzB;C3 scheme is compared to the A;B,C3 scheme,
it is 63.87 MPa less. The optimization process requires four more iterations for the A3B;Cs
scheme than for the A1B,C3 scheme. But since achieving high pressure resistance is the
primary goal of this article, it was ultimately determined that A3B;Cz, with a volume
factor of 0.6, a penalty factor of 3, and a grid size of 1 mm, is the best combination for
cross-sectional topology optimization.
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Analysis of Optimization Results

Subsequent manufacturing processes encounter certain challenges because of the
optimized cross-section’s uneven and multiplanar edges. Post-processing procedures are
therefore required to guarantee that the optimized model can be produced and processed
with ease. Figure 9 displays the model’s processed rib section following imitation opti-
mization. The rib section is referred to in this article as having a bow-like shape because of
its shape.

10

V4

@90
|

AN

77722
(a) (b)

Figure 9. Outline drawings of reinforced rib section after processing: (a) 3D schematic diagram of

strengthening ribs; (b) 2D schematic diagram of strengthening ribs.

Table 7 displays the information pertaining to the modeling and simulation analysis
of the optimized bow section.

Table 7. Comparison table of data from different cross-sections.

Maximum Stress/MPa Maximum Displacement/mm Mass/g
Reinforced ribs with rectangular cross-section 160.20 0.670 37.88
Strengthening ribs of the original bow section 221.72 0.105 20.43
Reinforced rib of processed arched section 199.51 0.084 25.45

The stress dropped from 221.72 MP to 199.51 MP, a decrease of 22.21 MPa, even though
the processed section’s mass increased by 5.02 g in comparison to the untreated reinforcing
ribs. A weight reduction of 12.43 g (24.89%) and 106.8 g (the total weight of the six ribs)
over the original rectangular section allowed for some partial fulfillment of the lightweight
requirement.

The internal rib stiffness adjustment method described in the previous section was
applied to the obtained section of the arched rib. Sequentially, we numbered the ribs
from left to right. B1 is the formula for rib 1’s width, and so forth. Ribs 2, 3, 4, 5, and 6
have widths of by, bs, by, bs, and bg, in that order. The different parameters of the rib
cross-section will be defined as follows, as shown in Figure 10, where h=b/10 and c=b/5,
to guarantee that the cross-sectional shape of the ribs does not change.

L I
!

| b

Figure 10. Definition diagram of arched rib parameters.
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A formula was used to determine each rib section’s moment of inertia, and the results
are displayed in Table 8.

Table 8. Related parameters of ribs.

Inertia Moment

Number of Rib Section Cross-Section

Rib Width/mm  Rib Height/mm

2
with Plate/mm* Area/mm
land 6 5633.388 19.67 9.1 2.73
2and 5 7955.925 23.33 991 2.97
3and 4 11118.53 27.6 10.78 3.23

The three-dimensional schematic diagram is shown in Figure 11.

Ist rib 2ndrib  3rdrib 4th rib 5th rib 6th rib

l I I l I l

Figure 11. Cross-section diagram of pressure-resistant shell.

Finally, as indicated in Table 9, the initial parameters of the complete cylindrical
pressure shell structure were obtained.

Table 9. Initial shell-related data.

Name Number Unit
Shell length 350 mm
Shell thickness 5 mm
Inner diameter of shell 90 mm
Front bulkhead width 45 mm
Rear bulkhead width 45 mm
Rib spacing 52 mm
Number of ribs 6 Number

3. NSGA-2-Based Multi-Objective Parameterization Optimization of Cylindrical
Pressure-Resistant Shells

3.1. Sensitivity Analysis of Parameters for Cylindrical Shells with Inner Rib Reinforcement under
High Pressure

The primary design variables in this section are the thickness of the pressure-resistant
shell (t), the rib thickness (b1, by, b3, b4, bs, bg), and the rib spacing, L, which are based
on the internal rib stiffness adjustment method suggested in the previous text. The rib
thickness can be calculated using the internal rib stiffness adjustment method described in
the preceding text, which is by = bg, by = bs, and b3 = by. This article takes the thickness h of
the end caps as an optimization parameter and includes the end caps at both ends of the
pressure-resistant shell in the optimized model, in addition to the parameters mentioned
above. We simultaneously set the Mises stress S, shell mass M, and buckling characteristic
value Q as the output responses.

These are the initial values of the design variables: t = 5 mm, i = 15 mm, b = bg =
9.1 mm, by = b5 =9.91 mm, b3 = by = 10.78 mm, L = 52 mm. Table 10 illustrates the range of
design variables pertaining to pressure-resistant shells.
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Table 10. Design variable range for pressure resistant shell.
Design Variable t/mm h/mm bi/mm by/mm bz/mm L/mm
Initial value 15 15 9.1 9.91 10.78 52
Value range 7.5~17.5 10~25 5~15 5.5~15.5 6~16 40~58

For sensitivity analysis, we employed a global sensitivity analysis method based
on variance. This paper used an optimal Latin sampling experiment to extract samples
consistently and comprehensively. ANSYS Workbench was utilized to conduct simulation
analysis after 60 sample points were uniformly extracted for every design variable. The
experimental setup for sensitivity analysis was as follows: the mesh was set as a hexahedral
mesh with a mesh size of 1 mm. The convergence process of the mesh was automatically
determined by the program, and the fixed constraints were at the circular rings on both
sides of the cylindrical surface. The pressure was set to 10 MPa on both sides of the
cylindrical surface. Figures 12-15 display the obtained sensitivity relationships for each
design variable. The sensitivity of each design variable to the output is shown in Table 11.

o
3
=]

630 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Design variable variation interval

Figure 12. Sensitivity relationship curve between design variables and stress.
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Q
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m
4.0
1 1 1 1

1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Design variable interval

Figure 13. Sensitivity relationship curve between design variables and buckling characteristic values.
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Figure 14. Sensitivity relationship curve between design variables and quality.
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Figure 15. Bar chart showing the sensitivity relationship between design variables and various output
responses.

Table 11. Sensitivity of each design variable to the corresponding output.

Response
Sensitivity t b1 by bs L h
Stress 0.6983 0.0397 0.0937 0.0275 0.0371 0.0837
Buckling 0.7105 0.0212 0.0813 0.1511 0.0446 0.0827
Quality 0.7168 0.0209 0.0219 0.02293 0 0.2196

The images and tables above make it easy to determine that, at 0.6983, 0.7105, and
0.7168, respectively, the shell thickness t has the highest sensitivity to stress, buckling, and
mass. With a stress ratio of 0.0837, the end cap’s thickness h’s sensitivity to quality is a
specific relationship. The most notable rib width is b3, which also explains a portion of the
sensitivity in buckling and stress (0.1511 in buckling and 0.0623 in stress). With 0.0937 in
stress and 0.0813 in buckling, b, also has some effect in these areas.

3.2. Multi-Objective Parameterized Optimization Process

Generally speaking, multi-objective optimization is an optimization technique that
has several optimization goals that, to varying degrees, directly impact the objective
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function. Determining the design variables, constraints, and objective function is the first
step towards creating a mathematical model of the objective function [33].

Using the sensitivity analysis of each parameter from the previous text as a guide, this
article will optimize each parameter by choosing multiple appropriate parameters to be
used as design variables for multi-objective optimization.

Meanwhile, the pressure-resistant shell must also adhere to the pertinent clauses of
the “Classification and Construction Specification for Submarine Systems and Submarines”
and confirm the circumferential normal stress ¢ on the middle surface of the shell plate at
the midpoint of the two ribs, the axial normal stress 0 representing the ribs, the critical
pressure of instability P, and the axial normal stress U{ at the edge of the ribs. Thus, the
following are the constraint conditions:

y=f(x1,x2,...%5), X = (x1,%2,...%5) € cs (18)

o) = —PR(1—¢4) < 0.850;

o] = —LR(0.56 F &) < 1.150%

op = —E8(1—¢1)(1-0.5p) < 0.605
P, > 1.5P

(19)

Here, we integrate the constraints, goal functions, and design variables that were
suggested in the earlier text. For pressure-resistant shells, the following multi-objective
optimization model can be created:

ge(X) —Ip(X) < 0or > 0,k,p € (1,2,3...)
X=[x x x... % xn]T(”SN)(ximmSNSXimax)

FX)=[ AX) AX) B(X) . filX) . fu(X) ]
minF(X) = minf;(X) (i =1,2,3,...m)

(20)

where

(a) X—a set of design variables;

(b)  hy(X)—the function of boundary conditions;
(¢)  gp(X) —the function of constraint conditions;
(d) F(X)—the objective function for optimization.

3.3. Analysis of Optimization Results

Particle swarm optimization, genetic algorithms, ant colony algorithms, and other
optimization algorithms are currently popular multi-objective optimization techniques.
Apart from the commonly used algorithms previously mentioned, another enhanced ver-
sion of genetic algorithms is the second-generation fast non-dominated genetic algorithm
(NSGA-2). NSGA-2 offers several advantages over traditional optimization algorithms,
including quick convergence, quick computation, and good global search performance. For
every optimized data set, the second-generation fast non-dominated genetic algorithm will
be chosen as the optimization algorithm in this article. The NSGA-2 flowchart is displayed
in Figure 16.

A total of thirty sets of sample points were chosen for the experiment through uni-
form sampling within each design variable’s value range using the best Latin hypercube
experiment technique. The 30 sets of sample points were then simulated and examined
using ANSYS Workbench. Table 12 displays the pertinent sample points and output
response values.
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Figure 16. NSGA-2 process diagram.
Table 12. Sample points and output response values.
Shell — pib, Width  RibWidth  Rib Width o End Cover Buckling Quality
Group Thickness by/mm bo/mm be/mm Spacing Thickness  Stresss/MPa  Characteristic M/k
t/mm 1 2 8 L/mm h/mm Value Q &
1 7.75 6.75 12.25 10.08 45.55 22.38 935.43 1.501 5.604
2 8.08 12.25 13.75 11.92 52.15 17.13 878.71 1.537 5.634
3 8.42 9.25 8.58 8.08 48.55 21.88 850.06 2.827 5.954
4 8.75 14.25 10.75 13.92 49.15 24.88 871.17 2.162 5.861
5 9.08 12.08 14.25 8.25 49.45 18.88 820.57 2.121 5.859
6 9.42 9.42 5.75 14.75 48.85 22.63 775.31 2.552 5.749
7 9.75 7.58 6.92 10.25 46.45 10.13 795.27 2.252 5.795
8 10.08 11.42 8.25 10.42 40.15 20.38 858.23 2.315 5.696
9 10.42 7.75 11.92 6.75 48.25 22.13 760.14 3.096 5.721
10 10.75 13.75 11.08 11.75 43.45 12.63 704.39 3.83 6.137
11 11.08 5.08 8.75 14.25 42.85 24.13 688.07 4.352 5.983
12 11.42 8.75 6.25 10.58 41.35 13.88 686.14 4.713 6.213
13 11.75 10.08 14.75 7.08 50.35 23.63 690.13 4.226 6.574
14 12.08 13.92 7.92 7.75 50.65 23.38 842.72 4.147 6.565
15 12.42 11.58 12.42 7.25 44.35 22.88 603.13 4274 6.787
16 12.75 6.92 11.25 15.92 56.65 18.63 650.92 4.338 7.097
17 13.08 5.25 13.58 15.25 51.55 16.38 817.61 4.84 7.210
18 13.42 6.42 12.92 8.42 46.15 19.38 706.07 4.585 7.340
19 13.75 11.08 9.92 12.75 44.95 14.13 604.79 5.735 6.803
20 14.08 9.08 7.42 13.58 53.05 12.38 599.77 5.392 7.528
21 14.42 8.25 6.08 7.92 55.45 17.88 556.99 6.152 7.001
22 14.75 6.08 14.08 10.92 41.65 11.13 571.28 5.995 7.569
23 15.08 8.92 10.08 10.75 52.75 12.88 555.68 7.101 7.579
24 15.42 7.42 9.42 13.42 42.55 16.13 543.09 6.995 7.027
25 15.75 12.42 9.75 6.58 46.75 17.38 556.50 7.419 7.897
26 16.08 14.75 7.25 13.08 44.05 19.88 563.36 7.652 7.791
27 16.42 10.42 11.42 15.58 41.95 21.38 528.72 8.62 8.263




J. Mar. Sci. Eng. 2024, 12,1231

21 of 26
Table 12. Cont.
Shell . . . . . . Rib End Cover Buckling .
Group Thickness RI;J /Wldth Rl; /Wldth Rll]: /Wldth Spacing Thickness  StresssMPa  Characteristic QA"/};/ill(lty
t/mm pmm 2/mm imm L/mm h/mm Value Q &
28 16.75 14.42 7.58 15.42 47.65 24.63 523.15 8.875 8.066
29 17.08 9.92 7.08 9.75 49.75 23.13 574.69 10.159 7.962
30 17.42 5.58 14.42 8.92 45.25 23.88 500.12 10.317 8.286

Currently, multi-objective optimization results are typically assessed using four indica-
tors: relative absolute maximum error, relative average error, root mean square error, and
coefficient of certainty R2. The degree to which variable X in the equation explains variable
Y is indicated by the coefficient of certainty, or R?. The explanatory power increases with
the distance between R? and 1. The prediction accuracy is represented by the relative
absolute maximum error, relative mean error, and root mean square error. The prediction
is more accurate the closer the error value is to 0. The coefficient of certainty R? and the

relationship are as follows:
1

[[Nng
~~
=

\
=
~—

N

R? = — (21)
L (vi—7)’
i=1
where N—the number of test sample points;
yi—the predicted values of the model;
y;i—the mean of the experimental response value;
yi—the response value of the model.
The comparisons between the simulation values and the expected response values for
each output are displayed in Figures 17-19.

8.0

Sample points
— Fit curve
75F

7.0 F

Prediction quality (kg)

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Simulation quality (kg)

Figure 17. Comparison between predicted and simulated stress values for pressure-resistant shells.

A variety of indicators for evaluating the approximate model’s accuracy can be ob-
tained using Workbench (see Table 13).

Table 13. Approximation model accuracy evaluation indicators.

Evaluating Indicator Stress Buckling Eigenvalue Quality

Determination coefficient R? 0.99657 0.99997 0.99999
Root mean square error 0.09775 0.01427 1.232 x 10710

Relative maximum absolute error (%) 4.7582 1.6343 0.092175

Relative average absolute error (%) 4.6245 0.43933 0.0096425
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Figure 18. Comparison between predicted and simulated buckling characteristic values of pressure-
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Figure 19. Comparison between predicted and simulated values of pressure shell quality.

Table 13 shows that the model’s accuracy is good even though the stress values on
the two evaluation indicators—relative maximum absolute error and relative average
absolute error—are slightly higher but still fall within the permitted range of model error.
Stress constraint conditions must be set when optimizing pressure-resistant shells multi-
objectively with ANSYS Workbench. In compliance with “Submarine Strength” regulations,
submarines delving deeper than two thousand meters are required to have a minimum
safety factor greater than 1.5. With a safety factor of # = 1.5, the maximum stress limit
established in this article is [0] = 0s/5 ~ 650 MPa. The target is the maximum buckling
characteristic value and the minimum mass. After obtaining the candidate design points
(A~E), the pertinent parameters were determined, as displayed in Table 14. Simultaneously,
the response values’ trend of changes was also acquired, as Figure 20 illustrates.

Table 15 displays the pertinent findings from the comparison of the five candidate
points mentioned above with the original prototype. The quality difference between each
candidate point and the prototype is indicated by the symbol AM.
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Table 14. Candidate points for optimizing pressure-resistant shells.

Design Shell Rib Width  Rib Width  Rib Width Rib End Cover
. Thickness Spacing Thickness
Variable bi/mm by/mm b3z/mm
t/mm L/mm h/mm
Initial value 15 9.1 9.91 10.78 52 15
A 11.000 5.497 5.521 15.654 47.248 13.465
B 11.093 6.933 5.679 13.272 47.329 13.145
C 11.019 9.816 5.525 12.861 45914 13.062
D 11.066 8.560 5.884 13.300 45.520 13.137
E 10.935 11.278 5.618 15.467 44537 13.113
670
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¥ 655
(]
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b
< 6501
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Figure 20. The trends of changes between different response values: (a) stress-buckling characteristic
value; (b) quality-buckling characteristic value; (c) stress—quality.
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Table 15. Comparison results between each candidate point and the original prototype.
Buckling Shell Mass (with
Responses Stress Eigenvalue End Cap)/kg AM/kg
Original 549.33 5.8562 7.237 —

prototype
A 644.26 4.3677 6.0108 1.2262
B 646.73 4.3464 5.9988 1.2382
C 649.12 4.3051 5.9878 1.2492
D 647.17 4.3477 6.0029 1.2341
E 645.88 4.3968 6.0116 1.2254

It is evident from Table 16. that every design point achieved a weight reduction of
more than 1.2 kg in comparison to the original prototype, with candidate point C reaching
the greatest weight reduction of 1.2492 kg. Regarding maximum stress, each candidate
point’s maximum stress has grown considerably when compared to the original prototype,
but it is still quite near to the predetermined 650 MPa, suggesting that all of the material
has been used. Every potential point is above 4.3 in the characteristic buckling value,
indicating that the stability satisfies the necessary conditions. This article will use candidate
point C as the final design scheme for the pressure-resistant shell parameters, even though
candidate points A through E meet the various performance requirements of the pressure-
resistant shell. Candidate point C achieves the most weight reduction, reaching 1.2492 kg,
accounting for 17.26% of the original pressure-resistant shell.

The final values of the various parameters of the pressure-resistant shell obtained are
shown in Table 16. It is necessary to round off the various parameters of candidate point
C due to the accuracy of the machining. Figure 21 displays the schematic diagram of the
pressure-resistant shell structure.

Table 16. Final parameters of pressure-resistant shell after rounding processing.

Design Shell il Width RibWidth Rib Width Rib End Cover
. Thickness Spacing Thickness
Variable by/mm by/mm bz/mm
t/mm L/mm h/mm
Numerical
11 10 6 13 45 13
value

Figure 21. Schematic diagram of pressure-resistant housing structure.

4. Conclusions

In order to increase the critical instability pressure of pressure-resistant shells in
settings at tens of thousands of meters of water depth, this article suggests combining the
Liz method with an internal rib stiffness adjustment technique. By ensuring that the critical
instability pressure met the working conditions, the shape of the inner ribs was optimized
using the orthogonal topology optimization method in order to further achieve lightweight
design. Based on this, the pressure-resistant shell’s multi-objective optimization design
was ultimately optimized using a second-generation fast non-dominated genetic algorithm.
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The pressure-resistant shell was then further treated to make it lighter. The article’s primary
findings are listed below:

(1) Inorder to optimize deep-sea high-pressure structural layers, this article suggests a
lightweight design approach for pressure-resistant devices in high-pressure deepwater
environments that satisfies the non-unstable requirement.

(2) The determined pressure-resistant shell was subjected to internal rib stiffness adjust-
ment using the proposed internal rib stiffness adjustment method in conjunction
with the Liz method. Through the use of ANSYS 2023 Rlsimulation software, this
process was compared and verified with traditional uniform rib addition. There was
a 9.65 MPa increase in the critical instability pressure following the modification of
the internal rib stiffness and an improvement in the pressure-resistant shell’s overall
anti-instability performance.

(3) Titanium alloy TB9 material is unique in a high-pressure setting. An orthogonal topol-
ogy optimization method was proposed for the inner rib section in order to reduce
material costs. This method yielded the optimal inner rib arch section shape and
resulted in a 106.8 g weight reduction. Based on this, a sensitivity analysis was per-
formed on the pressure-resistant shell, and a second-generation fast non-dominated
genetic algorithm was applied to carry out additional multi-objective optimization.
After determining the pressure-resistant shell’s ideal structural parameters, 1.2492 kg
of weight—or 17.26% of the original pressure-resistant shell—was reduced.

This article generally suggests a lightweight design approach for pressure-resistant
devices in high-pressure water depth environments that satisfy the stability requirement,
as well as an internal rib adjustment method to enhance their anti-instability ability. This
offers a fresh method for optimization for lightweighting and strengthening the stability of
deep-sea high-pressure-resistant structural layers, creating a process method that is both
scientifically and engineeringly significant.
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