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Abstract: With increasing environmental pollution from ship exhaust emissions and increasingly
stringent International Maritime Organization carbon regulations, there is a growing demand for
cleaner and lower-carbon fuels and near-zero-emission marine engines worldwide. Liquefied natural
gas is a low-carbon fuel, and when liquefied natural gas (LNG) is used on ships, dual-fuel methods
are often used. The pre-chamber plays a key role in the working process of dual-fuel engines. In this
paper, an effective three-dimensional simulation model based on the actual operating conditions and
structural characteristics of a marine low-pressure dual-fuel engine is established. In addition, the
effects of changing the Precombustion chamber (PCC) volume ratio and the PCC orifice diameter
ratio on the mixture composition, engine combustion performance, and pollutant generation were
thoroughly investigated. It was found that a small PPC volume ratio resulted in a higher flame
jet velocity, a shorter stagnation period, and an acceleration of the combustion process in the main
combustion chamber. When the PCC volume was large, the Nitrogen oxygen (NOx) ratio emission
was elevated. Moreover, the angle of the PCC orifice affected the flame propagation direction of the
pilot fuel. Optimizing the angle of the PCC orifice can improve combustion efficiency and reduce
the generation of NOx. Furthermore, reasonable arrangement of the PCC structure can improve the
stability of ignition performance and accelerate the flame jet velocity.

Keywords: marine diesel engine; dual-fuel engine; low-pressure injection; performance optimization;
low carbon

1. Introduction

In recent years, with the development of international globalized trade and the ship-
ping industry, the environmental hazards of ship exhaust emissions have become increas-
ingly serious [1,2]. Therefore, in April 2018, the International Maritime Organization (IMO)
adopted a preliminary strategy for greenhouse gas emission reduction from ships, which
aims at reducing the carbon emission intensity of internationally navigated ships by at least
40% by 2030 compared to 2008 and seeks to reduce carbon emissions by 70% by 2050. As
the IMO emission regulations become increasingly stringent, reducing carbon emissions
from ships becomes urgent [3,4]. The MARPOL Convention requires that all ships calculate
their existing attained Energy Efficiency Index (attained EEXI) to measure ship energy
efficiency and begin collecting data to report their annual operational Carbon Intensity
Indicator (CII) from 1 January 2023.

In November 2021, the United Nations Climate Change Conference (COP-26) agreed
on the common goal that in order to limit the rise in global temperatures to 1.5 ◦C above
pre-industrial levels, all countries need to take immediate additional measures [5,6]. On
3–7 July 2023, the 80th marine environment protection committee session (MEPC 80) was
held in London, UK. The meeting adopted the newly revised “Greenhouse Gas Emission
Reduction Strategy for Ships to 2023”, put forward a new target of “reaching net zero
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emissions close to 2050”, and formulated a timetable for medium-term emission reduction
measures to come into effect. Green shipping is the future development trend of the global
shipping industry, and LNG is an internationally recognized low-carbon fuel, which is a
transitional key fuel for achieving the carbon emission reduction target of the shipping
industry [7,8].

The research on low-carbon fuels and near-zero-emission internal combustion en-
gines has attracted more and more attention, which puts forward higher standards and
requirements for ship power plants [9–11]. In recent years, several researchers have stud-
ied the application of engine control strategies in natural gas (NG)–diesel dual-fuel (DF)
mode. Lebedevas et al. [12] investigated the combustion and emission characteristics of an
NG–diesel DF engine through experiments. Under high load conditions, the DF combus-
tion mode at the optimum point of Start of Injection (SOI) reduced NOx and hydrocarbon
(HC) emissions by 15–25% and CO2 emissions by 8–16%, but CO emissions increased
by six times compared to the diesel-only combustion mode. Liu et al. [13] studied the
effects of different lead fuel injection volumes and injection moments on the combustion
and emission characteristics of an NG–diesel DF engine. The results showed that the DF
combustion mode significantly reduced NOx and PM emissions compared to the diesel
combustion mode; however, HC emissions were significantly higher: 90% resulted from
unburned methane. Raihan et al. [14] experimentally investigated the effects of the pilot
fuel injection moment, inlet pressure, and pilot fuel injection pressure on the combustion
and emission characteristics of diesel–methane DF engine. The results showed that NOx
emissions could be effectively reduced when the pilot fuel injection moment was advanced.
The above studies indicate that the diesel–LNG DF engine can reduce carbon emissions,
but methane escape still exists.

Wu et al. [15] numerically investigated the effect of methane value on the combustion
performance of a natural gas–diesel dual-fuel engine, and the results showed that the
diesel ignition mode was more sensitive to changes in methane value. Kokabi et al. [16]
numerically investigated the effect of adding hydrogen and propane on the combustion
and emission characteristics of the engine. The results showed that CO and HC emissions
can be reduced, and peak in-cylinder pressure can be increased by injecting fuel earlier
and adding hydrogen or propane. Kakaee et al. [17] numerically investigated the effect
of two natural gas fractions on engine combustion and emissions. It was found that the
peak pressure and NOx emissions increased while CO and HC emissions decreased as the
Wobbe number increased.

Computational Fluid Dynamics (CFD) technology has been developing rapidly in
recent years, and the use of numerical simulation can effectively reduce the cost and shorten
the research and development cycle [18–20]. Amin Maghbouli et al. [21] simulated the
in-cylinder combustion process of a two-stroke DF engine by using three-dimensional (3D)
CFD coupled with detailed chemical kinetics. They reported that NOx and CO emission
concentrations tended to increase when the increase in the amount of pilot fuel led to
delayed ignition, and when the amount of pilot fuel injected was higher, there was an
increase in the peak in-cylinder pressure.

There is limited research on CFD simulating the ignition characteristics of PCCs for
two-stroke marine engines. In this paper, natural gas, a low-carbon alternative fuel, is
combined with novel combustion system optimization to simultaneously meet carbon
reduction needs by using the CFD software Converge 3.0.

In the current global decarbonization energy context of carbon peaking and carbon
neutrality, the use of low-carbon Fuel LNG for marine low-speed two-stroke engines is a
realistic and feasible option [22,23]. This option can progressively meet the IMO’s target of
40% carbon emission reduction in the marine industry by 2030 [24]. Although natural gas–
diesel DF engines have excellent combustion and emission performance, there are still some
problems in their combustion process control and high load condition expansion [25,26]. In
this paper, an effective 3D model is established using the CFD software Converge based on
the operation conditions and structural characteristics of a marine low-pressure dual-fuel
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(LP-DF) engine to compare and analyze the effects of changing the PPC volume ratio and
PCC orifice diameter ratio on the mixture components, the combustion performance of the
engine, and the generation of pollutants. The research results of this paper can provide a
reference for the optimized design of the PCC of a marine LP-DF engine.

2. CFD Modeling and Validation
2.1. Test Bench

The WinGD RT-flex50DF (made in Guangxi YC Diesel, China) used in the experiments
is a two-stroke, large-bore marine LP-DF engine. The main parameters of the RT-flex50DF
engine are shown in Table 1. The engine is designed with a direct current (DC)-scavenging
design, which allows it to run on heavy fuel oil and has a very long stroke (stroke/bore over
4:1). The engine uses a common rail injection system, an electronically controlled hydraulic
injection system, and a safe and reliable fuel supply system. The RT-flex50DF engine adopts
a single-stage turbocharger, model ABB A165-L (ABB, Swiss, Baden, Switzerland). The air
cooler is a single-stage water-cooled design, model KLQC418 (Made in Jiangsu, China).

Table 1. Dimensions of a WinGD RT-flex50DF-tested diesel engine.

Parameter Value

Bore/Stroke 500/2050 mm
Engine Speed 99–124 r/min

Cylinder Number 5–8
IMEP 17.1 bar (at R1)

Engine Output 5850 kW
Compression Ratio 12
Number of PCCs 2

Pilot Fuel Injection Timing −10.5 ◦CA
Brake-Specific Pilot Fuel Consumption

(BSPC) (GAS Mode at R1) 1.8 g/kWh

Brake-Specific Gas Consumption
(BSGC) (GAS Mode at R1) 142.7 g/kWh

The boundary and initial conditions according to the RT-flex50DF LP-DF engine are
shown in Table 2. The ambient temperature was 32.3 ◦C, the ambient atmospheric pressure
was 101.01 kPa, and the relative humidity was 71.5%.

Table 2. Boundary and initial conditions according to the LP-DF engine.

Parameter Value

Initial cylinder pressure (bar) 1.46
Initial cylinder temperature (K) 350

Initial turbulent kinetic energy (m2/s2) 21.09
Initial turbulence size (m) 0.0125

Cylinder head temperature (K) 560
Piston top (K) 570

Cylinder wall temperature (K) 356

2.2. CFD Model and Validation

The CAD software Catia was used for 3D modeling in this study. Figure 1 shows a 3D
simulation model of a marine LP-DF engine. The two small ellipsoidal structures at the
top of the combustion chamber represent the pre-combustion chambers (PCCs), where the
pilot fuel injectors are located. In addition, two natural gas admission valves (GAVs) are
located in the lower and middle part of the cylinder block, symmetrically distributed above
the scavenge inlet ports. The scavenge box is connected to the engine block by 30 inlet
ports. Moreover, the exhaust valve and the exhaust pipe are located on the top of the
LP-DF engine.
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Figure 1. Three-dimensional model of an LP-DF engine.

To obtain accurate initial conditions and boundary conditions of the RT-Flex50DF
engine simulation, a 1D calculation model was developed for the LP-DF engine using GT-
power software. The 1D simulation model of a 6RT-Flex50DF engine is shown in Figure 2.
The residual exhaust gas in the model cylinder is calibrated based on experimental data.
According to the verified model, the required initial conditions and boundary conditions
for the 3D CFD model calculation were obtained. The simulation calculation interval is
110–470 ◦CA, and one completed work cycle process of an LP-DF engine is calculated. Due
to the joint 1D simulation calculation, only one cycle of the 6RT-Flex50DF engine working
process was simulated.
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To accurately simulate the diesel fuel spray ignition process inside the PCC and main
combustion chamber (MCC), it is necessary to carry out a special treatment for the PCC and
the PCC grid at the spray holes. The CFD simulation software used is Converge. The mesh
was encrypted at the PCC, the exhaust valve seat, the GAV, and the gas scavenge ports. The
model was based on the two-layer adaptive encryption of temperature and pressure. The
maximum value of the total computational cells of the mesh was about 793,720,000, which
ensured that the computational accuracy of the 3D simulation was within the acceptable
error range and improved the efficiency of the simulation. The final simulation model
passed the verification of the irrelevance of the number of meshes.
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The turbulence model used in the CFD simulations is the RNG k-ε model. The RNG
k-ε model is widely used in the combustion simulation process of internal combustion
engines. RNG k-ε uses two equations to calculate turbulent kinetic energy k and dissipation
rate ε, respectively, and their expressions are as follows:
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where µt is the turbulent viscosity, m2/s, and Cε1, Cε2, Cε3, and Cε4 are the empirical constants.
The KH-RT model was used for the injection droplet breakup sub-model in the 3D

simulation of the marine LP-DF engine, and the collision sub-model of the pilot fuel spray
was set as the NTC model. In addition, the standard turbulence model was used. The SAGE
model was used as the combustion sub-model as it can couple the LLNL v3.1, and GRI-
Mech 3.0 reduced chemical reaction kinetics, which decreased the computational step size
in the simulation process and can monitor the process of the dual-fuel engine detonation.
Furthermore, the emission model was the Extended Zeldovich NOx emission model, and
emissions such as CO and HC were calculated according to the detailed chemical reaction
kinetics mechanism.

In order to verify the validity of the 3D CFD model, the cylinder pressure curve and
heat release rate (HRR) of the 5RT-flex50DF LP-DF engine at 75% load were compared
and verified, respectively, with reference to the data of the WinGD GTD database and the
relevant literature. The one-cycle simulation model leads to a fuel injection moment of
−8.5 ◦CA before the top dead center (BTDC) under basic working conditions. From Figure 3,
the simulated mean in-cylinder pressure under 75% load is basically in agreement with the
measured in-cylinder pressure. In addition, the average error with the experimental results
is no more than 2.9%, which meets the requirement of the simulation’s accuracy.
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Figure 3. Comparison of simulated and experimental data of the pressure and HRR under 75% load. 
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3. Simulation Results Analysis
3.1. Effect of PCC Volume on Engine Performance

The LP-DF engine studied in this paper adopted two PCCs arranged in an opposing
manner. The size of the PCC volume affects the air–fuel ratio and the homogeneity of the
mixture inside the PCC, which in turn affect the combustion performance and emission
generation inside the PCC, thus affecting the combustion process inside the MCC. Three dif-
ferent PCC volume schemes of 2.7 × 10−4 m3, 3.3 × 10−4 m3, and 3.95 × 10−4 m3 were



J. Mar. Sci. Eng. 2024, 12, 1232 6 of 17

selected; Figure 4 shows the geometrical local models. After calculation, the MCC volume
was 0.036 m3, while the PCC volume was 0.74%Vtol (total volume of the combustion cham-
ber), 0.9%Vtol, and 1%Vtol of the MCC volume for the three scenarios, respectively. Keeping
the LP-DF engine’s other geometrical and operational parameters unchanged, the effects of
different PCC volume percentages on the combustion process and emission generation in
the PCC and MCC were investigated.
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Figures 5 and 6 show oxygen and methane content inside the PCC under different
PCC volume ratio scenarios. It can be seen that the oxygen and methane contents inside
the PCC gradually increase with the increase in the PCC volume ratio. The gases entering
the PCC help to improve the homogeneity of the mixture inside the PCC, which prepares
for the ignition and combustion of the pilot fuel. When the PCC volume ratio is 1%Vtol, the
oxygen content inside the PCC reaches a peak of 1.552 g at −6.88 ◦CA, and the methane
content also reaches a peak of 0.202 g at that time. This indicates that different PCC volume
ratios will lead to different air–fuel ratios inside the PCC. The bigger the PCC volume,
the more methane and oxygen enter the pre-chamber, forming flame jets with different
combustion characteristics inside the PCC. This will also result in the formation of different
flame jet speeds and penetration degrees inside the MCC, which will ultimately affect the
combustion and emission performance of the MCC.
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Figures 7 and 8 show the variation in pressure and temperature inside the MCC under
different PCC volume ratios. From Figure 6, the MCC’s combustion pressure reaches a
maximum peak of 12.31 MPa at 6.9 ◦CA after the top dead center (ATDC) at a PCC volume
ratio of 1%Vtol, while it has a similar variation trend at 0.74%Vtol and 0.9%Vtol PCC volume
ratios. It can be seen from Figure 8 that the combustion temperature of the MCC is the
highest under a 1%Vtol volume ratio, reaching a peak temperature of 1816.6 K at 8.7 ◦CA
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ATDC. In comparison, the MCC’s combustion temperature increase rate is similar under
the 0.74%Vtol and 0.9%Vtol PCC volume ratios. This indicates that the larger the volume
of the PCC, the better its internal combustion effect is and the easier it is to form higher
ignition energy and improve the engine combustion performance.
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The variation in pressure and heat release rate inside the PCC under different PCC
volume ratios is shown in Figures 9 and 10, respectively. From the figure, it can be seen
that different PPC volume ratios have little impact on the peak pressure inside the PCC
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but significantly impact the peak phase of the pressure inside the PCC. This is because
different PCC volume ratios essentially change the concentration of each component
entering the PCC. That is, different air–fuel ratios inside the PCC will form different flame
jet propagation speeds under the condition that the ignition time remains unchanged. The
greater the flame jet speed, the greater the penetration, and vice versa. This results in
different combustion processes of the combustible mixture in the MCC. Compared with
the base case (0.9%Vtol), the smaller the volume proportion of the PCC, the earlier the
combustion phase in the PCC at the time of ignition, and the peak phase of the HRR is
also advanced accordingly. This is because when the air–fuel ratio is similar, the smaller
the volume of the PCC, the higher the pressure at the time of ignition is, which promotes
the ignition and combustion process of the pilot fuel inside the PCC and leads to the
advancement of the combustion phase.
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Figure 11 illustrates a comparison of the average temperatures of the PCC and the
MCC under different PCC volume ratios. It can be seen from the changing trend in Figure 10
that as the volume of the PCC changes, the average temperature of the MCC chamber
changes slightly. As the volume ratio of the PCC increases, the temperature of the PCC first
increases and then decreases. Compared with the two schemes of 0.74%Vtol and 1%Vtol,
the scheme with a PCC volume ratio of 0.9%Vtol has the highest PCC peak temperature,
reaching 2462 K at 8.1 ◦CA ATDC. This means that the combustion phase is relatively
advanced in the PCC with a 0.9%Vtol, indicating that the combustion condition in the PCC
is better This is because when the PCC volume ratio is 0.9%Vtol, the air–fuel ratio in the
PCC is more conducive to diesel combustion, and the combustion effect is better.
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The 1800 K temperature iso-surface cloud diagram of the MCC under different PCC
volume ratios is shown in Figure 12. It can be seen that different PCC volume ratios have
a greater impact on the combustion process in the MCC. As the volume ratio of the PCC
decreases, the high-temperature and high-pressure flame jet enters the MCC earlier. Under
the three schemes in Figure 11, the flame jet can spread throughout the MCC at around
10 ◦CA ATDC. In contrast, under the 0.74%Vtol scheme, the flame jet spreads the fastest
and the combustion duration is shorter due to the smaller volume of the PCC, and the
combustion reaction process in the MCC is advanced.
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The variation in MCC characteristic parameters under different PCC volume ratios
is shown in Figure 13. As the PCC volume ratio increases, the combustion characteristic
parameters CA10, CA50, and CA90 of the MCC are reduced, but the change trend is slight.
This is because as the volume of the PCC increases, more oxygen and methane are pressed
into it, improving the overall reaction activity in the PCC and leading to earlier ignition
and combustion in the MCC. Figure 14 shows the changes in the heat release rate inside
the MCC under different PCC volume ratios, from which it can be seen that the HRR under
the 0.74%Vtol and 1%Vtol PCC volume ratios is higher than the HRR under the 0.9%Vtol
PCC volume ratio. The HRR of the MCC accelerates with the increase in the volume ratio
of the PCC. The different PCC volume ratios have less influence on the combustion process
of the MCC.
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Figures 15 and 16 show the NOx emissions and engine efficiency under different
PCC volume ratios, respectively. It can be seen from Figure 14 that NOx generation in
the PCC and MCC increases gradually with the increase in PCC volume ratio, but the
combustion efficiency of the engine changes very little. When the volume of the PCC
accounts for 1%Vtol, the NOx emissions are the highest, and the NOx generation in PCC
reaches a peak value of 4.33 × 10−2 g at 10.824 ◦CA ATDC. When the volume of the PCC
accounts for 0.74%Vtol, the NOx generation is the lowest, reaching a value of 4.395 × 10−2 g
corresponding to the crankshaft angle of 4.5 ◦CA ATDC. When the volume of the PCC is
1%Vtol, the methane and oxygen return flow in the PCC is the highest, and the combustion
of methane and diesel fuel together leads to the formation of high ignition energy inside the
PCC, and the rich oxygen also creates favorable conditions for NOx generation. When the
volume of the PCC is small, the combustion process inside the PCC is advanced, leading
to the combustion reaction inside the MCC being advanced. This will also result in an
earlier combustion reaction in the MCC and a shorter combustion duration. Under the
three scenarios, the NOx specific emission increases gradually with the increase in the
volume ratio, and the change in efficiency is not obvious.
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3.2. Effect of PCC Orifice/Diameter Ratio on an LP-DF Engine

The diameter of the PCC orifices has an important influence on the backflow char-
acteristics and the jet flame propagation process in the PCC. In order to quantitatively
investigate the effect of PCC orifice diameter on the performance and emission of the
LP-DF engine, a new variable ωr (orifice diameter/engine cylinder bore ratio) is defined
as the ratio of the PCC orifice diameter to the engine cylinder bore. Only the PCC orifice
diameter is varied, and three scenarios with ωr of 2%, 3.2%, and 4.8% are considered,
respectively. The three geometrical design parameters are shown in Figure 17. Keeping the
other simulation parameters of the engine unchanged, the effect of the PCC orifice diameter
on the performance of the LP-DF engine is investigated.
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3.2.1. Effect of PCC Orifice Diameter Ratio on Flame Propagation

Figure 18a shows the mean air–fuel ratio in PCC under different PCC orifice diameter
ratios (ωr). It can be seen that minimum air–fuel ratio (λmin) inside the PCC under the
ωr = 3.2% is obtained before the pilot fuel is injected. In addition, the operating parame-
ters of the low-pressure dual-fuel engine remain unchanged under the three comparison
schemes. The amount of natural gas mixture flowing back into the PCC is only affected
by the pre-combustion chamber nozzle diameter ratio. Moreover, the lowest air–fuel ratio
in the PCC indicates that the amount of natural gas mixture flowing back into the PCC
is the largest. Figure 18b illustrates λmin in the PCC and the PCC temperature at the SOI
moment under different PCC orifice diameter ratios (ωr). It can be seen that as the PCC
nozzle diameter ratio increases, the minimum air–fuel ratio inside the PCC decreases and
then increases, and the peak compression temperature in PCC decreases. This is because
although the PCC orifice diameter is the largest in the ωr = 4.8% scheme, the probability
of the main combustion chamber mixture backflowing into the pre-combustion chamber
is higher. However, the natural gas mixture in the PCC is also more likely to flow out,
and the amount of fresh mixture that can be retained in the PCC eventually decreases.
Furthermore, when the PCC orifice diameter is larger, the total gas flow in the PCC is larger,
and the natural gas mixture has a better cooling effect on the PCC, so the peak compression
temperature in the PCC is reduced.
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Figure 18. Mean air–fuel ratio and in-cylinder temperature under different PCC orifice diameter 
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Figure 19 shows the 1800 K temperature iso-surface distribution inside the combus-

tion chamber at different moments under different PCC orifice diameter ratios. It can be 

seen that the size of the PCC orifice diameter not only affects the fuel mixing and backflow 

characteristics in the PCC, but also affects the flame propagation inside the MCC. Figure 

18 also shows the 3D distribution of the flame’s front surface, where the flame jet is ejected 

from the PCC before the piston reaches the top-dead-center position. In addition, the 

flame jet is stronger once the orifice diameter ratio is 3.2%, while the flame jet in the PCC 

is stronger and weaker in the other two scenarios. At 5 °CA, the flame under the orifice 

diameter ratio of 3.2% has propagated to most of the combustion chamber with the fastest 

flame propagation. In contrast, the flame in the MCC under the orifice diameter ratio of 

4.8% has the slowest flame propagation. At 10 °CA, the in-cylinder combustion process in 

the case of ωr = 3.2% has basically ended, the in-cylinder combustion in the case of ωr = 

2% is intense, and the combustion response in the case of ωr = 4.8% is still weak, which 

indicates that there is a deterioration of combustion in the case of ωr = 4.8%. This is because 
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Figure 18. Mean air–fuel ratio and in-cylinder temperature under different PCC orifice diameter
ratios (ωr). (a) Mean air–fuel ratio in PCC. (b) Minimum air–fuel ratio and temperature at SOI
moment in PCC.

Figure 19 shows the 1800 K temperature iso-surface distribution inside the combustion
chamber at different moments under different PCC orifice diameter ratios. It can be seen
that the size of the PCC orifice diameter not only affects the fuel mixing and backflow
characteristics in the PCC, but also affects the flame propagation inside the MCC. Figure 18
also shows the 3D distribution of the flame’s front surface, where the flame jet is ejected
from the PCC before the piston reaches the top-dead-center position. In addition, the flame
jet is stronger once the orifice diameter ratio is 3.2%, while the flame jet in the PCC is
stronger and weaker in the other two scenarios. At 5 ◦CA, the flame under the orifice
diameter ratio of 3.2% has propagated to most of the combustion chamber with the fastest
flame propagation. In contrast, the flame in the MCC under the orifice diameter ratio of
4.8% has the slowest flame propagation. At 10 ◦CA, the in-cylinder combustion process
in the case of ωr = 3.2% has basically ended, the in-cylinder combustion in the case of
ωr = 2% is intense, and the combustion response in the case of ωr = 4.8% is still weak,
which indicates that there is a deterioration of combustion in the case of ωr = 4.8%. This is
because the flame jet velocity in the PCC in the case of ωr = 4.8% is low, which is easily
affected by the turbulence of the in-cylinder airflow disturbance, and cannot ignite the lean
in-cylinder mixture in accordance with the PCC’s design angle.
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Figure 20a shows the heat release rate of the PCC under different orifice diameter
ratios. From Figure 20a, the PCC’s peak combustion heat release rate is highest when
ωr = 3.2%. However, when ωr = 4.8%, the peak heat release rate in the PCC is the lowest,
and the ignition delay period is the longest. This is because, in the case of ωr = 3.2%, the
compression temperature in the PCC is higher, the mixture return flow is moderate, and
the air–fuel ratio in the PCC is suitable for combustion. When ωr = 4.8%, the lowest com-
pression temperature in the PCC results in a richer mixture, thus causing a longer ignition
delay period. Figure 20b shows the combustion characteristic parameter distributions in
the MCC under different orifice diameter ratios. Under the condition that only the PCC
geometry is changed and the operating parameters remain unchanged, the combustion
characteristic parameters of CA10, CA50, and CA90 of the main combustion chamber are
all advanced in the case of ωr = 3.2%, and the combustion duration is shorter. Suppose the
pre-chamber orifice diameter ratio is increased or reduced based on the ωr = 3.2% scheme.
In that case, the combustion duration will be delayed, indicating that there is an optimal
value of the PCC orifice diameter ratio within a certain range.

As the jet flame enters the MCC through the PCC orifice after the pilot fuel is com-
pressed and ignited, parameters such as the diameter of the PCC orifice, the angle of the
orifice, and the shape of the orifice directly affect the flame width, the direction of flame
propagation, and the speed of the flame when the flame enters the MCC. When the PCC
orifice diameter ratio ωr is too small, the width of the jet flame from the PCC becomes
narrower, and it takes longer for the flame to ignite the natural gas mixture in the MCC,
thus prolonging the combustion duration.

3.2.2. Effect of PCC Orifice Diameter Ratio on Engine Performance

Figure 21 shows the mean in-cylinder pressure and the HRR of the MCC under
different PCC orifice diameter ratios at 100% load. It can be seen that the highest pressure
peak in the MCC decreases gradually with the increase in the PCC orifice diameter ratio.
In contrast, the phase of the peak in-cylinder pressure that occurs is less affected by the
PCC orifice diameter. This is because when the PCC orifice diameter ratio ωr is too large,
the PCC jet flame width becomes coarser, but the jet flame speed decreases. This means
that the flame needs more time to propagate within the MCC, resulting in a longer MCC
combustion duration. As a result, the peak pressure inside the MCC decreases with the



J. Mar. Sci. Eng. 2024, 12, 1232 14 of 17

increase in the orifice diameter ratio of the PCC. In addition, the peak value of the MCC
heat release rate curve is the highest when ωr = 3.2%, which corresponds to an advanced
phase and an earlier combustion end time. The peak heat release rates corresponding to the
PCC orifice diameter ratios of ωr = 2% and ωr = 3.2% are similar; however, the heat release
rate in the case of ωr = 2% is slightly delayed. When ωr = 4.8%, the peak heat release rate
is the lowest, the combustion duration is delayed by 4.73 ◦CA ATDC compared with that
of ωr = 3.2%, and the in-cylinder combustion volume stability is poor.
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Figure 20. HRR in PCC and combustion characteristic parameters under different PCC ωr. (a) HRR
in PCC. (b) Combustion characteristic parameters of MCC.
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Figure 21. Mean in-cylinder pressure and HRR under different PCC ωr. Figure 21. Mean in-cylinder pressure and HRR under different PCC ωr.

Figure 22 shows the mean in-cylinder temperature under different PCC orifice diame-
ter ratios at 100% load. It can be seen that the maximum combustion temperatures of the
MCC and the PCC gradually decrease as the PCC orifice diameter ratio ωr increases, and
the decrease in the MCC temperature is smaller than the decrease in the PCC temperature.
Under the same fuel injection conditions, the PCC orifice diameter has an important effect
on the in-cylinder mixture flow and the engine fuel combustion process. The peak temper-
ature in the pre-combustion chamber is the highest when ωr = 2% and the lowest when
ωr = 4.8%. This is because when the PCC orifice diameter ratio is 2%, the PCC outlet is
narrow, and the heat resulting from the combustion of the pilot fuel has no time to diffuse
and remains inside the PCC, increasing the pre-combustion chamber heat load. Before
the SOI moment, the average temperature inside the PCC was highest when ωr = 2% and
lowest when ωr = 4.8%, and the temperature distribution pattern is shown in Figure 19.
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Figure 22. Mean in-cylinder temperature under different PCC ωr.

Figure 23a shows the engine indicated thermal efficiency under different PCC orifice
diameter ratios. It can be seen that the highest indicated thermal efficiency is achieved
under the PCC orifice diameter ratio ωr = 2%, while the lowest effective thermal efficiency
is achieved when ωr = 4.8%. This is because when the PCC orifice diameter ratio is higher,
the PCC flame jet is coarser, which results in a relatively slower jet igniting the mixture,
thus leading to a longer combustion duration and a lower combustion efficiency. Figure 23b
shows the HC and NOx emissions of the LPDF engine under different PCC orifice diameter
ratios. It can be seen that NOx emissions are the lowest when ωr = 3.2%, while they increase
slightly in the other two cases (ωr = 2% and 4.8%). This is because the flame propagation
speed is the fastest in the case of ωr = 3.2%. Although the combustion temperature of the
MCC is not the highest among the three cases, the combustion duration is very short, and
the NOx emissions are the lowest. The HC emissions when ωr = 4.8% are higher than the
HC emissions under the other two cases. If the diameter ratio of the PCC orifice is too
high or too low, it will affect the reflow characteristics, the fuel’s heat release time, and the
flame’s propagation speed in the combustion chamber. This is not conducive to the rapid
combustion of the mixture and will lead to the deterioration of low-pressure dual-fuel
engine emissions. The graphic data analysis indicates that a proper PCC orifice diameter
ratio can improve engine performance and reduce emissions.
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Figure 23. Engine efficiency and emissions under different PCC ωr. (a) Engine indicated thermal 

efficiency. (b) NOx and HC emissions. 
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4. Conclusions

The working process of a two-stroke marine LP-DF engine under different PCC struc-
ture schemes based on 3D CFD model simulation calculations has been investigated in this
paper. By changing the PCC volume ratio and the PCC orifice diameter, the changes in the
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mixture composition and air–fuel ratio inside the PCC and the changes in engine combus-
tion and emission performance were studied under different PCC structural schemes. The
main conclusions are as follows:

(1) When the PCC volume was small, the flame jet velocity was higher, the stagnation
period was shortened, and the combustion process in the main combustion chamber was
accelerated. The PCC volume has little effect on the combustion efficiency of the engine.
When the PCC volume was large, more methane and oxygen entered into the PCC, and the
combustion reaction in the MCC was more intense, which ultimately led to the elevation in
the NOx ratio emission.

(2) The diameter of the PCC orifice had an important influence on the reflow char-
acteristics and the jet flame propagation process in PCC. With the increase in PCC orifice
diameter ratio (ωr), the minimum air–fuel ratio in the PCC first decreased and then in-
creased, and the peak compression temperature in the PCC decreased. A smaller PCC
orifice diameter ratio can increase the tendency of knocking, while an appropriate ratio can
improve engine efficiency and reduce the probability of knocking.
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