Influence of Grid Resolution and Assimilation Window Size on Simulating Storm Surge Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Typhoon and Stations
2.2. Numerical Storm Surge Model and Adjoint Assimilation Model
- = wind stress drag coefficient;= air density;= the horizontal eddy viscosity coefficient;= gravitational acceleration;= time;and = velocity in x and y directions, respectively;= bottom friction factor;= unperturbed water depth;and = the surface wind field;= sea water density;= sea surface pressure;and = longitude and latitude;= surface level;= Coriolis parameter.
- = radius of maximum wind speed ;and = migration velocities of the typhoon’s center;and = unit vector in x and y axes;;;= distance from grid center to typhoon center ;.
2.3. Experiment and Model
2.3.1. Experimental Design
2.3.2. Model Setup
3. Results and Discussion
3.1. Influence of the Grid Resolution on Simulating Storm Surge Levels
3.2. Influence of Assimilation Window Size on Simulated Storm Surge Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Montblanc, T.; Vousdoukas, M.I.; Ciavola, P.; Voukouvalas, E.; Mentaschi, L.; Breyiannis, G.; Feyen, L.; Salamon, P. Towards robust pan-European storm surge forecasting. Ocean Modell. 2019, 133, 129–144. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Wang, T.P.; Castrucci, L.; Miller, I. Modeling assessment of storm surge in the Salish Sea. Estuar. Coast. Shelf Sci. 2020, 238, 106552. [Google Scholar] [CrossRef]
- Yin, C.T.; Zhang, W.S.; Xiong, M.J.; Wang, J.H.; Zhou, C.Y.; Dou, X.P.; Zhang, J.S. Storm surge responses to the representative tracks and storm timing in the Yangtze Estuary, China. Ocean Eng. 2021, 233, 109020. [Google Scholar] [CrossRef]
- Familkhalili, R.; Talke, S.A.; Jay, D.A. Tide-Storm Surge Interactions in Highly Altered Estuaries: How Channel Deepening Increases Surge Vulnerability. J. Geophys. Res. Oceans 2020, 125, e2019JC015286. [Google Scholar] [CrossRef]
- Qin, Y.; Su, C.Y.; Chu, D.D.; Zhang, J.C.; Song, J.B. A Review of Application of Machine Learning in Storm Surge Problems. J. Mar. Sci. Eng. 2023, 11, 1729. [Google Scholar] [CrossRef]
- Chen, B.R.; He, J.Y.; He, Z.G.; Li, L.; Chen, Q.; Li, F.X.; Chu, D.D.; Cao, Z.; Yang, X.C. Potential impacts of storm surge-induced flooding based on refined exposure estimation: A case study in Zhoushan island, China. Geomat. Nat. Hazards Risk 2023, 14, 2232080. [Google Scholar] [CrossRef]
- Tan, Y.C.; Zhang, W.; Feng, X.B.; Guo, Y.P.; Hoitink, A.J.F. Storm surge variability and prediction from ENSO and tropical cyclones. Environ. Res. Lett. 2023, 18, 024016. [Google Scholar] [CrossRef]
- Toyoda, M.; Fukui, N.; Miyashita, T.; Shimura, T.; Mori, N. Uncertainty of storm surge forecast using integrated atmospheric and storm surge model: A case study on Typhoon Haishen 2020. Coast. Eng. J. 2022, 64, 135–150. [Google Scholar] [CrossRef]
- Chu, D.D.; Zhang, J.C.; Wu, Y.S.; Jiao, X.H.; Qian, S.H. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea. Estuar. Coast. Shelf Sci. 2019, 231, 106460. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.J.; Hu, P.; Wang, K. Effects of typhoon paths on storm surge and coastal inundation in the Pearl River Estuary, China. Remote Sens. 2020, 12, 1851. [Google Scholar] [CrossRef]
- Guo, Y.X.; Hou, Y.J.; Liu, z.; Du, M. Risk prediction of coastal hazards induced by typhoon: A case study in the coastal region of Shenzhen, China. Remote Sens. 2020, 12, 1731. [Google Scholar] [CrossRef]
- Chen, W.B.; Chen, H.; Hisao, S.C.; Chang, C.H.; Lin, L.Y. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Eng. 2019, 188, 106260. [Google Scholar] [CrossRef]
- Hisao, S.C.; Chen, H.; Wu, H.L.; Chen, W.B.; Chang, C.H.; Guo, W.D.; Chen, Y.M.; Lin, L.Y. Numerical simulation of large wave heights from super Typhoon Neparktak (2016) in the Eastern waters of Taiwan. J. Mar. Sci. Eng. 2020, 8, 217. [Google Scholar] [CrossRef]
- Xu, J.L.; Ma, K.; Nie, Y.L.; Liu, C.Y.; Bi, X.; Shi, W.Q.; Lv, X.Q. Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method. Atmosphere 2022, 14, 38. [Google Scholar] [CrossRef]
- Xu, J.L.; Nie, Y.L.; Ma, K.; Shi, W.Q.; Lv, X.Q. Assimilation research of wind stress drag coefficient based on the linear expression. J. Mar. Sci. Eng. 2021, 9, 1135. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, H.; Zhu, P.; Li, Y.B.; Ye, L.; Jiang, L.F.; Wang, A.T. The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications. Remote Sens. 2023, 15, 3785. [Google Scholar] [CrossRef]
- Kerr, P.C.; Martyc, R.C.; Donahue, A.S.; Hope, M.E.; Westerink, J.J.; Luettich, R.A., Jr.; Kennedy, A.B.; Dietrich, J.C.; Dawson, C.; Westerink, H.J. U.S. IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J. Geophys. Res. Oceans 2013, 118, 4633–4661. [Google Scholar] [CrossRef]
- Moon, I.J.; Kwon, J.I.; Lee, J.C.; Shim, J.S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Modell. 2009, 29, 115–127. [Google Scholar] [CrossRef]
- Dukhovskoy, D.S.; Morey, S.L. Simulation of the Hurricane Dennis storm surge and considerations for vertical resolution. Nat. Hazards 2011, 58, 511–540. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Garcia-Sanchez, G.; Fernandez-Montblanc, T.; Roland, A.; Voukouvalas, E.; Federico, I.; Abdolali, A.; Zhang, Y.J.; Feyen, L. A global unstructured, coupled, high-resolution hindcast of waves and storm surge. Front. Mar. Sci. 2023, 10, 1233679. [Google Scholar] [CrossRef]
- Garzon, J.L.; Ferreira, C.M.; Padilla-Hernandez, R. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay. Ocean Dyn. 2018, 68, 91–107. [Google Scholar] [CrossRef]
- Makris, C.; Androulidakis, Y.; Karambas, T.; Papadimitriou, A.; Metallinos, A.; Kontos, Y.; Baltikas, V.; Chondros, M.; Krestenitis, Y.; Tsoukala, V.; et al. Integrated modelling of sea-state forecasts for safe navigation and operational management in ports: Application in the Mediterranean Sea. Appl. Math. Modell. 2021, 89, 1206–1234. [Google Scholar] [CrossRef]
- Mohanty, S.; Nadimpalli, R.; Mohanty, U.C.; Pattanayak, S. Storm surge prediction improvement using high resolution meso-scale model products over the Bay of Bengal. Nat. Hazard. 2023, 120, 1185–1231. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Greybush, S.J.; Wilson, R.J.; Hoffman, R.N.; Kalnay, E. Impact of assimilation window length on diurnal features in a Mars atmospheric analysis. Tellus A 2015, 67, 26042. [Google Scholar] [CrossRef]
- Wang, M.J.; Xue, M.; Zhao, K. The impact of T-TREC-retrieved wind and radial velocity data assimilation using EnKF and effects of assimilation window on the analysis and prediction of Typhoon Jangmi (2008). J. Geophys. Res. Ocean. 2016, 121, 259–277. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Mayerle, R.; Xing, Q.G.; Jaramillo, J.M.F. Adjoint free four-dimensional variational data assimilation for a storm surge model of the German North Sea. Ocean Dyn. 2016, 66, 1037–1050. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.M.; Kim, J.; Cho, C.H. Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia. Asia-Pac. J. Atmos. Sci. 2018, 54, 1–17. [Google Scholar] [CrossRef]
- Dinápoli, M.G.; Ruiz, J.J.; Simionato, C.G.; Berden, G. Improving the short-range forecast of storm surges in the southwestern Atlantic continental shelf using 4DEnSRF data assimilation. Q. J. R. Meteorol. Soc. 2023, 149, 2333–2347. [Google Scholar] [CrossRef]
- Khan, M.J.U.; Durand, F.; Bertin, X.; Testut, L.; Krien, Y.; Islam, A.K.M.S.; Pezerat, M.; Hossain, S. Towards an efficient storm surge and inundation forecasting system over the Bengal delta:chasing the Supercyclone Amphan. Nat. Hazards Earth Syst. Sci. 2021, 21, 2523–2541. [Google Scholar] [CrossRef]
- Madsen, K.S.; Hoyer, J.L.; Fu, W.W.; Donlon, C. Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J. Geophys. Res. Ocean. 2015, 120, 6405–6418. [Google Scholar] [CrossRef]
- Fan, L.L.; Liu, M.M.; Chen, H.B.; Lv, X.Q. Numerical study on the spatially varying drag coefficient in simulation of storm surgesemploying the adjoint method. J. Oceanol. Limnol. 2011, 29, 702–717. [Google Scholar] [CrossRef]
- Zhang, J.C.; Lu, X.Q.; Wang, P.; Wang, Y.P. Study on linear and nonlinear bottom friction parameterizations for regional tidalmodels using data assimilation. Cont. Shelf Res. 2011, 31, 555–573. [Google Scholar] [CrossRef]
- Li, Y.N.; Peng, S.Q.; Yan, J.; Xie, L.A. On improving storm surge forecasting using an adjoint optimal technique. Ocean Model. 2013, 72, 185–197. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Mayerle, R.; Wang, Y.B.; Zhang, H. Study of the wind drag coefficient during the storm Xaver in the German Bightusing data assimilation. Dynam. Atmos. Ocean. 2018, 83, 64–74. [Google Scholar] [CrossRef]
- Flowerdew, J.; Horsburgh, K.; Wilson, C.; Mylne, K. Development and evaluation of an ensemble forecasting system for coastalstorm surges. R. Meteorol. Soc. 2010, 136, 1444–1456. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhang, Y.H.; Lv, X.Q.; Liu, Q. Inversion of wind stress drag coefficient in simulating storm surges by means ofregularization technique. Int. J. Environ. Res. Public Health 2019, 16, 3591. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Lu, X.Q.; Qiu, Z.F.; Zhao, J.P. Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numericaladjoint model with TOPEX/POSEIDON altimeter data. Cont. Shelf Res. 2004, 24, 1521–1529. [Google Scholar] [CrossRef]
- Jelesnianski, C.P. A numerical calculation of storm tides included by a tropical storm impinging on a continental shelf. Mon. Weather Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Ocean. 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Jeremy, A.; Ingela, P. Quantifying Colocalization by Correlation: The Pearson Correlation Coefficient is Superior to the Mander’s Overlap Coefficient. Cytom. Part A 2010, 77, 733–742. [Google Scholar]
- Feng, Y.; Dimitris, M.; Xue, H.J.; Zhang, H.; Carroll, D.; Du, Y.; Wu, H. Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: Implementation, evaluation, and impacts to coastal plume regions. Geosci. Model Dev. 2021, 14, 1801–1819. [Google Scholar] [CrossRef]
Experiments | Grid Resolution | Assimilation Window |
---|---|---|
E1 | 10′ × 10′ | × |
E2 | 5′ × 5′ | × |
E3 | 10′ × 10′ | 6 h |
E4 | 5′ × 5′ | 6 h |
E5 | 5′ × 5′ | 3 h |
E6 | 5′ × 5′ | 2 h |
E7 | 5′ × 5′ | 1 h |
Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 * | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 14.8 | 11.1 | 14.5 | 18.5 | 18.7 | 49.5 | 52.1 | 38.6 | 30.4 | 30.9 | 28.8 | 21.5 | 27.5 |
E2 | 14.5 | 10.7 | 14.3 | 17.5 | 18.6 | 49.2 | 55.6 | 38.2 | 30.8 | 31.3 | 29.2 | 21.0 | 27.6 |
E3 | 5.9 | 6.0 | 5.7 | 8.5 | 9.7 | 22.8 | 25.3 | 29.5 | 14.3 | 23.3 | 22.5 | 13.1 | 15.6 |
E4 | 5.2 | 5.9 | 4.7 | 6.7 | 6.7 | 18.8 | 19.5 | 18.1 | 10.3 | 15.1 | 16.1 | 12.0 | 11.6 |
Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 * | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 12.4 | 8.5 | 11.1 | 15.6 | 16.0 | 42.6 | 45.0 | 33.2 | 27.0 | 26.7 | 24.1 | 18.1 | 23.3 |
E2 | 12.2 | 8.1 | 11.0 | 14.7 | 15.7 | 41.8 | 49.1 | 33.5 | 27.4 | 26.9 | 24.9 | 17.8 | 23.6 |
E3 | 4.4 | 4.7 | 4.5 | 6.0 | 7.2 | 16.8 | 19.6 | 23.9 | 10.4 | 19.3 | 19.4 | 9.0 | 12.1 |
E4 | 4.1 | 4.7 | 3.6 | 4.7 | 4.7 | 11.5 | 16.3 | 15.3 | 8.0 | 11.9 | 13.0 | 8.8 | 8.9 |
E1 | E2 | E3 | E4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tidal Stations | RMSE | PCC | WSS | RMSE | PCC | WSS | RMSE | PCC | WSS | RMSE | PCC | WSS |
DaLian | 34.6 | 89% | 71% | 33.8 | 88% | 73% | 25.7 | 88% | 87% | 18.4 | 92% | 93% |
YingKou | 32.9 | 85% | 89% | 33.6 | 85% | 89% | 14.9 | 97% | 98% | 10.1 | 98% | 99% |
HuLuDao | 33.9 | 83% | 89% | 34.5 | 82% | 88% | 18.0 | 95% | 97% | 11.9 | 98% | 99% |
QinHuangDao | 29.7 | 84% | 90% | 30.1 | 83% | 90% | 16.4 | 95% | 97% | 11.3 | 98% | 99% |
LongKou | 30.0 | 89% | 89% | 30.3 | 89% | 88% | 15.2 | 96% | 97% | 11.9 | 98% | 98% |
YanTai | 36.9 | 59% | 65% | 36.8 | 59% | 65% | 24.5 | 71% | 82% | 18.6 | 80% | 89% |
RuShan | 25.9 | 58% | 65% | 27.4 | 57% | 64% | 14.1 | 77% | 84% | 10.2 | 85% | 92% |
QingDao | 23.2 | 86% | 84% | 24.4 | 86% | 84% | 16.8 | 85% | 88% | 12.2 | 91% | 94% |
ShiJiuSuo | 23.9 | 89% | 89% | 23.0 | 90% | 90% | 11.6 | 94% | 97% | 9.4 | 96% | 98% |
LianYunGang | 29.5 | 85% | 86% | 31.1 | 85% | 86% | 13.7 | 93% | 96% | 10.4 | 96% | 98% |
Mean | 30.0 | 81% | 82% | 30.5 | 80% | 82% | 17.1 | 89% | 92% | 12.4 | 93% | 96% |
RMSE | AMDE | |||||||
---|---|---|---|---|---|---|---|---|
Stage * | E4 | E5 | E6 | E7 | E4 | E5 | E6 | E7 |
1 | 5.2 | 5.2 | 5.1 | 5.5 | 4.1 | 3.5 | 3.1 | 3.2 |
2 | 5.9 | 4.7 | 5.1 | 5.0 | 4.7 | 3.6 | 3.0 | 3.0 |
3 | 4.7 | 4.2 | 4.5 | 5.3 | 3.6 | 2.8 | 3.1 | 2.7 |
4 | 6.7 | 3.8 | 4.4 | 5.7 | 4.7 | 3.1 | 2.8 | 2.5 |
5 | 6.7 | 4.2 | 3.5 | 5.1 | 4.7 | 2.7 | 2.4 | 2.7 |
6 | 18.8 | 4.9 | 3.7 | 4.7 | 11.5 | 3.2 | 2.9 | 2.4 |
7 | 19.5 | 6.1 | 4.3 | 4.7 | 16.3 | 4.1 | 2.9 | 2.4 |
8 | 18.1 | 5.3 | 4.6 | 4.9 | 15.3 | 4.3 | 3.0 | 2.5 |
9 | 10.3 | 4.6 | 4.9 | 4.0 | 8.0 | 3.7 | 2.9 | 2.5 |
10 | 15.1 | 6.8 | 5.7 | 3.1 | 11.9 | 5.3 | 3.6 | 2.4 |
11 | 16.1 | 17.5 | 5.8 | 3.3 | 13.0 | 11.4 | 4.4 | 2.5 |
12 | 12.0 | 20.4 | 5.7 | 3.4 | 8.8 | 11.1 | 4.2 | 2.5 |
13 | 18.5 | 4.3 | 4.0 | 14.6 | 3.5 | 3.1 | ||
14 | 17.1 | 5.6 | 4.3 | 13.5 | 4.5 | 2.5 | ||
15 | 22.1 | 7.6 | 5.0 | 18.0 | 6.2 | 2.5 | ||
16 | 16.5 | 13.1 | 5.1 | 12.4 | 9.1 | 2.6 | ||
17 | 12.3 | 18.2 | 5.1 | 9.4 | 14.4 | 2.7 | ||
18 | 12.2 | 18.6 | 5.2 | 8.0 | 15.1 | 2.7 | ||
19 | 14.4 | 19.1 | 5.8 | 11.3 | 14.8 | 3.3 | ||
20 | 11.1 | 18.8 | 5.9 | 8.8 | 13.9 | 3.7 | ||
21 | 10.1 | 15.3 | 6.3 | 7.6 | 11.9 | 4.6 | ||
22 | 10.7 | 19.8 | 6.4 | 6.9 | 15.8 | 4.8 | ||
23 | 12.6 | 14.5 | 6.4 | 9.4 | 10.3 | 4.9 | ||
24 | 7.9 | 12.4 | 5.4 | 4.8 | 8.9 | 3.9 | ||
25 | 10.5 | 5.1 | 6.6 | 4.0 | ||||
26 | 11.0 | 3.9 | 7.5 | 2.8 | ||||
27 | 10.8 | 4.8 | 7.8 | 3.7 | ||||
28 | 11.0 | 5.9 | 7.7 | 4.9 | ||||
29 | 9.8 | 7.2 | 6.6 | 6.2 | ||||
30 | 11.0 | 8.1 | 8.6 | 6.3 | ||||
31 | 10.2 | 11.0 | 8.2 | 7.5 | ||||
32 | 9.8 | 16.1 | 6.7 | 10.8 | ||||
33 | 9.7 | 16.4 | 5.5 | 13.3 | ||||
34 | 10.0 | 17.3 | 6.3 | 13.4 | ||||
35 | 8.4 | 16.1 | 6.6 | 13.0 | ||||
36 | 7.6 | 21.6 | 5.3 | 18.2 | ||||
37 | 18.6 | 15.1 | ||||||
38 | 19.6 | 14.4 | ||||||
39 | 19.0 | 12.7 | ||||||
40 | 18.8 | 13.7 | ||||||
41 | 16.5 | 11.8 | ||||||
42 | 14.9 | 11.5 | ||||||
43 | 18.6 | 14.9 | ||||||
44 | 19.1 | 14.9 | ||||||
45 | 15.6 | 11.2 | ||||||
46 | 12.6 | 8.2 | ||||||
47 | 12.9 | 9.2 | ||||||
48 | 11.6 | 8.2 | ||||||
49 | 9.1 | 6.7 | ||||||
50 | 9.7 | 6.6 | ||||||
51 | 9.9 | 6.7 | ||||||
52 | 11.2 | 8.0 | ||||||
53 | 10.0 | 6.5 | ||||||
54 | 9.9 | 5.9 | ||||||
55 | 10.4 | 6.4 | ||||||
56 | 10.2 | 5.7 | ||||||
57 | 9.1 | 5.4 | ||||||
58 | 8.6 | 5.6 | ||||||
59 | 9.6 | 7.2 | ||||||
60 | 9.4 | 7.2 | ||||||
61 | 8.9 | 6.9 | ||||||
62 | 8.6 | 6.5 | ||||||
63 | 8.8 | 6.5 | ||||||
64 | 10.1 | 6.4 | ||||||
65 | 9.4 | 5.4 | ||||||
66 | 10.0 | 5.2 | ||||||
67 | 10.5 | 6.1 | ||||||
68 | 8.5 | 4.8 | ||||||
69 | 9.7 | 6.8 | ||||||
70 | 6.7 | 5.4 | ||||||
71 | 4.4 | 3.6 | ||||||
72 | 7.0 | 4.8 | ||||||
Mean | 11.6 | 10.6 | 9.6 | 9.3 | 8.9 | 7.7 | 6.9 | 6.5 |
E4 | E5 | E6 | E7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tidal Stations | RMSE | PCC | WSS | RMSE | PCC | WSS | RMSE | PCC | WSS | RMSE | PCC | WSS |
DaLian | 18.4 | 92% | 93% | 18.8 | 94% | 93% | 17.9 | 95% | 93% | 18.6 | 96% | 93% |
YingKou | 10.1 | 98% | 99% | 10.4 | 98% | 99% | 6.9 | 99% | 99% | 4.7 | 99% | 99% |
HuLuDao | 11.9 | 98% | 99% | 10.1 | 99% | 99% | 10.8 | 98% | 99% | 10.2 | 99% | 99% |
QinHuangDao | 11.3 | 98% | 99% | 10.4 | 98% | 99% | 11.2 | 98% | 99% | 10.5 | 98% | 99% |
LongKou | 11.9 | 98% | 98% | 6.3 | 99% | 99% | 5.6 | 99% | 99% | 5.0 | 99% | 99% |
YanTai | 18.6 | 80% | 89% | 17.8 | 85% | 91% | 7.2 | 97% | 98% | 9.0 | 95% | 97% |
RuShan | 10.2 | 85% | 92% | 7.7 | 91% | 95% | 6.1 | 94% | 97% | 3.9 | 98% | 99% |
QingDao | 12.2 | 91% | 94% | 11.1 | 94% | 95% | 11.1 | 95% | 96% | 10.3 | 96% | 97% |
ShiJiuSuo | 9.4 | 96% | 98% | 12.4 | 95% | 96% | 14.4 | 95% | 96% | 14.9 | 95% | 95% |
LianYunGang | 10.4 | 96% | 98% | 8.4 | 98% | 99% | 9.9 | 97% | 98% | 8.3 | 98% | 99% |
Mean | 12.4 | 93% | 96% | 11.3 | 95% | 97% | 10.1 | 97% | 98% | 9.5 | 97% | 98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, X.; Shi, W.; Xu, J.; Lv, X. Influence of Grid Resolution and Assimilation Window Size on Simulating Storm Surge Levels. J. Mar. Sci. Eng. 2024, 12, 1233. https://doi.org/10.3390/jmse12071233
Bi X, Shi W, Xu J, Lv X. Influence of Grid Resolution and Assimilation Window Size on Simulating Storm Surge Levels. Journal of Marine Science and Engineering. 2024; 12(7):1233. https://doi.org/10.3390/jmse12071233
Chicago/Turabian StyleBi, Xin, Wenqi Shi, Junli Xu, and Xianqing Lv. 2024. "Influence of Grid Resolution and Assimilation Window Size on Simulating Storm Surge Levels" Journal of Marine Science and Engineering 12, no. 7: 1233. https://doi.org/10.3390/jmse12071233
APA StyleBi, X., Shi, W., Xu, J., & Lv, X. (2024). Influence of Grid Resolution and Assimilation Window Size on Simulating Storm Surge Levels. Journal of Marine Science and Engineering, 12(7), 1233. https://doi.org/10.3390/jmse12071233