A Novel Technical Framework for the Evaluation of Node Significance and Edge Connectivity in Global Shipping Network
Abstract
:1. Introduction
2. Literature Review
2.1. Port Importance Evaluation
2.2. Shipping Network Connectivity
3. Data and Research Methodology
3.1. Data Source and Network Construction
3.2. Degree and Degree Centrality
3.3. Betweenness and Betweenness Centrality
3.4. Laplacian Matrix
4. Design of Evaluation Strategies
4.1. Network Integrity Perspective
4.2. Evaluation Strategy for Node Significance
Algorithm 1: Node significance based on the structure matrix |
Input: The adjacency matrix of a shipping network containing ports Output: Node . |
Update the Laplace matrix , where ; Delete the row and column of the node to be evaluated from the , and obtain a structure matrix ; is calculated from the minimum eigenvalue of the structure matrix . |
4.3. Evaluation Strategy for Edge Connectivity
Algorithm 2: Edge connectivity based on the Laplacian matrix |
Input: The adjacency matrix of a shipping network containing ports Output: Original network connectivity ; Edge connectivity descending set . |
for do if : Update the Laplace matrix , where ; Process of adding edge , ; Calculate and based on ;
|
5. Empirical Analysis and Discussion
5.1. Traditional Ports’ Importance: Centrality
5.2. Node Significance of Port
5.3. Edge Connectivity of Network
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Zhu, Y.; Xu, M.; Deng, W.; Zuo, Y. Vulnerability analysis of the global liner shipping network: From static structure to cascading failure dynamics. Ocean Coast. Manag. 2022, 229, 106325. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2019; United Nations: Geneva, Switzerland, 2019.
- Marcus, E.; Alejandro, T.; Yamir, M.; Efi, F.; Chaouki, K. DomiRank Centrality reveals structural fragility of complex networks via node dominance. Nat. Commun. 2024, 15, 56. [Google Scholar]
- Li, Z.; Li, H.; Zhang, Q.; Qi, X. Data-driven research on the impact of COVID-19 on the global container shipping network. Ocean Coast. Manag. 2024, 248, 106969. [Google Scholar] [CrossRef]
- Qin, Y.F.; Guo, J.K.; Liang, M.X.; Feng, T. Resilience characteristics of port nodes from the perspective of shipping network: Empirical evidence from China. Ocean Coast. Manag. 2023, 237, 106531. [Google Scholar] [CrossRef]
- Guo, S.; Lu, J.; Qin, Y. Analysis of the coupled spatial and temporal development characteristics of global liner shipping connectivity driven by trade. Ocean Coast. Manag. 2024, 251, 107071. [Google Scholar] [CrossRef]
- Pisit, J.; Amar, R.; Jorge, L.B. A connectivity-based approach to evaluating port importance in the global container shipping network. Marit. Econ. Logist. 2022, 25, 602–622. [Google Scholar]
- Zhu, J.; Liu, W.; Yang, Y. A port importance evaluation method based on the projection pursuit model in shipping networks. J. Mar. Sci. Eng. 2023, 11, 724. [Google Scholar] [CrossRef]
- Notteboom, T.; Pallis, T.; Rodrigue, J.P. Disruptions and resilience in global container shipping and ports: The COVID-19 pandemic versus the 2008-2009 financial crisis. Marit. Econ. Logist. 2021, 23, 179–210. [Google Scholar] [CrossRef]
- Guo, J.K.; Guo, S.; Lv, J. Potential spatial effects of opening Artic shipping routes on the shipping network of ports between China and Europe. Mar. Pol. 2022, 136, 104885. [Google Scholar] [CrossRef]
- Deng, Z.; Duan, W.; Zhou, Y.T. Analysis of port transportation function based on the structure of cargo types. Appl. Spat. Anal. Policy 2023, 16, 437–459. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Z.F.; Duan, W. Research on the symbiosis of port and city based on symbiosis theory: Empirical evidence from China’s coastal port groups. Int. J. Shipp. Transp. Logist. 2023, 16, 210–230. [Google Scholar]
- Sui, Z.; Wen, Y.; Huang, Y.; Zhou, C.; Xiao, C. Empirical analysis of complex network for marine traffic situation. Ocean Eng. 2020, 214, 107848. [Google Scholar] [CrossRef]
- Ducruet, C.; Zaidi, F. Maritime constellations: A complex network approach to shipping and ports. Marit. Policy Manag. 2012, 39, 151–168. [Google Scholar] [CrossRef]
- Ducruet, C. Network diversity and maritime flows. J. Transp. Geogr. 2013, 30, 77–88. [Google Scholar] [CrossRef]
- Tovar, B.; Hernández, R.; Rodríguez-Déniz, H. Container port competitiveness and connectivity: The Canary Islands main ports case. Transp. Policy 2015, 38, 40–51. [Google Scholar] [CrossRef]
- Fraser, D.R.; Notteboom, T.; Ducruet, C. Peripherality in the global container shipping network: The case of the Southern African container port system. GeoJournal 2016, 81, 139–151. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wan, C.; Zhang, J.; Zhang, M. Novel Approach for Comprehensive Centrality Assessment of Ports along the Maritime Silk Road. Transp. Res. Record 2019, 2673, 461–470. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, Y.; Zhang, D.; Yip, T.L. Identifying important ports in maritime container shipping networks along the Maritime Silk Road. Ocean Coast. Manag. 2021, 211, 105738. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Xu, X. Identifying Important ports in Maritime Silk Road shipping network from local and global perspective. Transp. Res. Record 2022, 2676, 798–810. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Ke, L.; Ng, A.K.Y. Structure of port connectivity, competition, and shipping networks in Europe. J. Transp. Geogr. 2022, 102, 103360. [Google Scholar] [CrossRef]
- Low, J.M.W.; Tang, L.C. Network effects in the East Asia container ports industry. Marit. Policy Manag. 2012, 39, 369–386. [Google Scholar] [CrossRef]
- Wang, G.W.Y.; Zeng, Q.; Li, K.; Yang, J. Port connectivity in a logistic network: The case of Bohai Bay, China. Transp. Res. Pt. e-Logist. Transp. Rev. 2016, 95, 341–354. [Google Scholar] [CrossRef]
- Xu, M.; Deng, W.; Zhu, Y.; LÜ, L. Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach. Reliab. Eng. Syst. Saf. 2023, 240, 109576. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Y.; Lyu, W. Port resilience in the post-COVID-19 era. Ocean Coast. Manag. 2023, 238, 106565. [Google Scholar] [CrossRef]
- Fan, H.; Gong, X.; Lyu, J. Resilience assessment of strait/canal: A rule-based Bayesian network framework. Transport. Res. Part D-Transport. Environ. 2023, 124, 103960. [Google Scholar] [CrossRef]
- Yang, Y.B.; Liu, W. Resilience Analysis of Maritime Silk Road Shipping Network Structure under Disruption Simulation. J. Mar. Sci. Eng. 2022, 10, 617. [Google Scholar] [CrossRef]
- Zhang, Q.; Pu, S.; Luo, L.; Liu, Z.; Xu, J. Revisiting important ports in container shipping networks: A structural hole-based approach. Transp. Policy 2022, 126, 239–248. [Google Scholar] [CrossRef]
- Low, J.M.W.; Lam, S.W.; Tang, L.C. Assessment of hub status among Asian ports from a network perspective. Transp. Res. Pt. A-Policy Pract. 2009, 43, 593–606. [Google Scholar]
- Rousset, L.; Ducruet, C. Disruptions in Spatial Networks: A comparative study of major shocks affecting ports and shipping patterns. Netw. Spat. Econ. 2020, 20, 423–447. [Google Scholar] [CrossRef]
- Wong, E.Y.C.; Tai, A.H.; So, S. Container drayage modelling with graph theory-based road connectivity assessment for sustainable freight transportation in new development area. Comput. Ind. Eng. 2020, 149, 106810. [Google Scholar] [CrossRef]
- Laxe, F.G.; Seoane, M.J.F.; Montes, C.P. Maritime degree, centrality and vulnerability: Port hierarchies and emerging areas in containerized transport (2008–2010). J. Transp. Geogr. 2012, 24, 33–44. [Google Scholar] [CrossRef]
- Cullinane, K.; Wang, Y.H. The hierarchical configuration of the container port industry: An application of multiple linkage analysis. Marit. Policy Manag. 2012, 39, 169–187. [Google Scholar] [CrossRef]
- Wan, C.; Tao, J.L.; Wu, L.; Zhang, D. An analysis of influences of the COVID-19 on the spatial structure of the China’s global shipping network. J. Transp. Inf. Saf. 2020, 38, 129–135. [Google Scholar]
- Jiang, J.; Lee, H.L.; Chew, E.P.; Gan, C.C. Port connectivity study: An analysis framework from a global container liner shipping network perspective. Transp. Res. Pt. e-Logist. Transp. Rev. 2015, 73, 47–64. [Google Scholar] [CrossRef]
- Wilmsmeier, G.; Hoffmann, J. Liner shipping connectivity and port infrastructure as determinants of freight rates in the Caribbean. Marit. Econ. Logist. 2008, 10, 130–151. [Google Scholar] [CrossRef]
- Wilmsmeier, G.; Martinez-Zarzoso, I. Determinants of maritime transport costs—A panel data analysis for Latin American trade. Transp. Plan. Technol. 2010, 33, 105–121. [Google Scholar] [CrossRef]
- Lei, Q.; Bachmann, C. Assessing the role of port efficiency as a determinant of maritime transport costs: Evidence from Canada. Marit. Econ. Logist. 2019, 22, 562–584. [Google Scholar] [CrossRef]
- Tang, C.L.; Low, W.M.J.; Lam, W.S. Understanding port choice behavior—A network perspective. Netw. Spat. Econ. 2011, 11, 65–82. [Google Scholar] [CrossRef]
- Lam, L.S.J.; Yap, Y.W. Dynamics of liner shipping network and port connectivity in supply chain systems: Analysis on East Asia. J. Transp. Geogr. 2011, 19, 1272–1281. [Google Scholar] [CrossRef]
- Calatayud, A.; Mangan, J.; Palacin, R. Connectivity to international markets: A multi-layered network approach. J. Transp. Geogr. 2017, 61, 61–71. [Google Scholar] [CrossRef]
- Ducruet, C.; Wang, L. China’s global shipping connectivity: Internal and external dynamics in the contemporary Era (1890–2016). Chin. Geogr. Sci. 2018, 282, 202–216. [Google Scholar] [CrossRef]
- Pan, J.; Bell, M.G.H.; Cheung, K.F.; Perera, S.; Yu, H. Connectivity analysis of the global shipping network by eigenvalue decomposition. Marit. Policy Manag. 2019, 8, 957–966. [Google Scholar] [CrossRef]
- Cheung, K.F.; Bell, M.G.H.; Pan, J.; Perera, S. An eigenvector centrality analysis of world container shipping network connectivity. Transp. Res. Pt. e-Logist. Transp. Rev. 2020, 140, 101991. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Y.; Fan, B. Strengthening container shipping network connectivity during COVID-19: A graph theory approach. Ocean Coast. Manag. 2022, 229, 106338. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Xu, B. Optimization of Container Shipping Network Reconfiguration under RCEP. J. Mar. Sci. Eng. 2022, 10, 873. [Google Scholar] [CrossRef]
- Wang, Y.; Cullinane, K. Determinants of port centrality in maritime container transportation. Transp. Res. Pt. e-Logist. Transp. Rev. 2016, 95, 326–340. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J.; Zhuang, C.; Qin, Q.; Shu, Y. Liner shipping alliance management: Overview and future research directions. Ocean Coast. Manag. 2022, 219, 106039. [Google Scholar] [CrossRef]
- Christiansen, M.; Hellsten, E.; Pisinger, D.; Sacramento, D.; Vilhelmsen, C. Liner shipping network design. Eur. J. Oper. Res. 2020, 286, 1–20. [Google Scholar] [CrossRef]
- Saito, T.; Shibasaki, R.; Murakami, S.; Tsubota, K.; Matsuda, T. Global Maritime Container Shipping Networks 1969-1981: Emergence of Container Shipping and Reopening of the Suez Canal. J. Mar. Sci. Eng. 2022, 10, 602. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, M.; Zhang, A.; Hu, Y.; Zeng, X. Multi-Ship Encounter Situation Identification and Analysis Based on AIS Data and Graph Complex Network Theory. J. Mar. Sci. Eng. 2022, 10, 1536. [Google Scholar] [CrossRef]
- Wang, Y.; Cullinane, K. Measuring container port accessibility: An application of the Principal Eigenvector Method (PEM). Marit. Econ. Logist. 2008, 10, 75–89. [Google Scholar] [CrossRef]
- Manjalavil, M.M.; Ramadurai, G. Topological properties of bus transit networks considering demand and service utilization weight measures. Physica A 2020, 555, 124683. [Google Scholar] [CrossRef]
- Sienkiewicz, J.; Holyst, J.A. Statistical analysis of 22 public transport networks in Poland. Phys. Rev. E 2005, 72, 046127. [Google Scholar] [CrossRef]
- Sen, P.; Dasgupta, S.; Chatterjee, A.; Sreeram, P.A.; Mukherjee, G. Small-world properties of the Indian railway network. Phys. Rev. E 2003, 67, 036106. [Google Scholar] [CrossRef]
- Xu, X.; Hu, J.; Liu, F.; Liu, L. Scaling and correlations in three bus-transport networks of China. Physica A 2007, 374, 441–448. [Google Scholar] [CrossRef]
- Yang, L.J.; Wang, J.; Yang, Y.C. Spatial evolution and growth mechanism of urban networks in western China: A multi-scale perspective. J. Geogr. Sci. 2022, 32, 517–536. [Google Scholar] [CrossRef]
- Zhou, Z.P.; Irizarry, J. Integrated framework of modified accident energy release model and network theory to explore the full complexity of the Hangzhou subway construction collapse. J. Manag. Eng. 2016, 32, 05016013. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Lu, J.A.; Chen, G.; Zeng, Z. Optimizing Pinning Control of Complex Dynamical Networks Based on Spectral Properties of Grounded Laplacian Matrices. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 786–796. [Google Scholar] [CrossRef]
- Fiedler, M. Algebraic connectivity of graphs. Czech. Math. J. 1973, 23, 298–305. [Google Scholar] [CrossRef]
- Afshari, B. Algebraic connectivity of the second power of a graph. J. Graph Theory 2023, 104, 275–281. [Google Scholar] [CrossRef]
- Phillips, J.D. Why everything is connected to everything else. Ecol. Complex. 2023, 54–55, 101051. [Google Scholar] [CrossRef]
- Guo, J.; Feng, T.; Wang, S.; Qin, Y.; Yu, X. Shipping network vulnerability assessment integrated with geographical locations. Transport. Res. Part D-Transport. Environ. 2024, 130, 104166. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Kim, H. The effects of the COVID-19 pandemic on connectivity, operational efficiency, and resilience of major container ports in Southeast Asia. J. Transp. Geogr. 2024, 116, 103835. [Google Scholar] [CrossRef]
(Authors, Year) | Measure of Centrality | Data Sources | Space Model |
---|---|---|---|
(Ducruet and Zaidi, 2012) [14] | Degree centrality | Lloyd’s database | L |
(Ducruet, 2013) [15] | Betweenness and degree centrality | Lloyd’s database | L |
(Tovar et al., 2015) [16] | Betweenness and degree centrality | Liner shipping company | L |
(Fraser et al., 2016) [17] | Betweenness centrality | Lloyd’s database | L |
(Wu et al., 2019) [18] | Betweenness, closeness and degree centrality | Liner shipping company | P |
(Wan et al., 2021) [19] | Betweenness, closeness and degree centrality | Liner shipping company | P |
(Yang et al., 2022b) [20] | Betweenness, closeness and degree centrality | Drewry’s container forecaster | L |
(Zhu et al., 2023) [8] | Betweenness, closeness and degree centrality | Drewry’s container forecaster | L |
(Authors, Year) | Indicators | Method | Space Model | Graph Theory |
---|---|---|---|---|
(Lam and Yap, 2011) [40] | Vessel capacity | Statistics | ||
(Jiang et al., 2015) [35] | Transportation time and capacity | Optimization model | L | |
(Wang et al., 2016) [23] | Slot capacity, average path length, and accessibility | Topsis | L | ✓ |
(Calatayud, 2017) [41] | International trade flows, shipping services calling at ports, and so on | A multi-layered network approach | L | ✓ |
(Ducruet and Wang, 2018) [42] | Degree centrality, Gini Coefficient, and Herfindhal index | Statistics | L | ✓ |
(Pan et al., 2019) [43] | Signless Laplacian matrix | Eigenvalue decomposition | L | ✓ |
(Cheung et al., 2020) [44] | Eigenvector centrality | Integer optimization model | L | ✓ |
(Pan et al., 2022) [45] | Algebraic connectivity | Heuristic algorithm | L | ✓ |
(Li et al., 2022) [46] | Eigenvector centrality | Conjugate gradient method | L | ✓ |
(Pisit et al., 2022) [7] | Number of liner services calling, number of liner companies, number of ships, combined capacity of ships in TEUs, and the largest capacity of ships calling | Matrix decomposition | L | ✓ |
a | b | c | d | e | f | g | h | i | |
---|---|---|---|---|---|---|---|---|---|
L-Space | 0.0417 | 0.0570 | 0.0810 | 0.1206 | 0.0992 | 0.0659 | 0.0475 | 0.0361 | 0.0556 |
P-Space | 0.1411 | 0.1411 | 0.1424 | 0.2087 | 0.1559 | 0.1098 | 0.1098 | 0.1098 | 0.0733 |
Edge | Connectivity | Stage 1 | Stage 2 | Stage 3 | Convergence | |
---|---|---|---|---|---|---|
a–b | 0.1420 (1) | - | - | - | 0.1435 (70) | |
b–c | 0.1460 (1) | 0.1500 (9) | - | - | 0.1509 (91) | |
c–d | 0.1585 (1) | 0.1651 (2) | 0.1705 (4) | - | 0.1789 (3137) | |
L-space | c–i | 0.1412 (1) | - | - | - | 0.1419 (51) |
d–e | 0.1610 (1) | 0.1730 (3) | 0.1802 (8) | - | 0.1863 (4993) | |
e–f | 0.1567 (1) | 0.1626 (2) | 0.1703 (6) | - | 0.1750 (611) | |
f–g | 0.1491 (1) | 0.1520 (2) | - | - | 0.1577 (304) | |
g–h | 0.1429 (1) | - | - | - | 0.1451 (58) | |
a–b (f–g, f–h, g–h) | 0.2976 (1) | - | - | - | - | |
a–c | 0.2984 (1) | - | - | - | 0.2999 (133) | |
a–d (b–d, e–f, e–g, e–h) | 0.3068 (1) | 0.3114 (2) | 0.3202 (9) | - | 0.3252 (706) | |
P-space | b–c | 0.2984 (1) | - | - | - | 0.2997 (16) |
c–d | 0.3134 (1) | 0.3216 (2) | 0.3323 (5) | 0.3400 (13) | 0.3467 (1117) | |
c–i | 0.3053 (1) | 0.3100 (7) | - | - | 0.3114 (154) | |
d–e | 0.4274 (1) | 0.5311 (3) | 0.6013 (8) | - | 0.6605 (86,516) |
Degree Centrality | Betweenness Centrality | |||||||
---|---|---|---|---|---|---|---|---|
Rank | L | Port | P | Port | L | Port | P | Port |
1 | 0.1612 | Singapore | 0.4227 | Shanghai | 0.1783 | Singapore | 0.1229 | Shanghai |
2 | 0.1361 | Shanghai | 0.3593 | Singapore | 0.1125 | Shanghai | 0.0769 | Pusan |
3 | 0.1189 | Pusan | 0.3488 | Ningbo-Zhoushan | 0.1113 | Pusan | 0.0642 | Singapore |
4 | 0.0991 | Rotterdam | 0.3474 | Pusan | 0.1086 | Rotterdam | 0.0606 | Hamburg |
5 | 0.0938 | Hongkong | 0.3355 | Shenzhen | 0.0710 | Manzanillo | 0.0574 | Rotterdam |
6 | 0.0925 | Algeciras | 0.2893 | Hongkong | 0.0605 | Algeciras | 0.0559 | Guangzhou |
7 | 0.0925 | Klang | 0.2880 | Antwerpen | 0.0598 | Hamburg | 0.0548 | Jakarta |
8 | 0.0832 | Hamburg | 0.2880 | Rotterdam | 0.0587 | Jabel Ali | 0.0400 | Bremerhaven |
9 | 0.0832 | Kaohsiung | 0.2853 | Qingdao | 0.0572 | Guangzhou | 0.0369 | Antwerpen |
10 | 0.0832 | Shenzhen | 0.2761 | Hamburg | 0.0516 | Klang | 0.0353 | Ningbo-Zhoushan |
11 | 0.0806 | Guangzhou | 0.2642 | Klang | 0.0499 | Piraeus | 0.0350 | Shenzhen |
12 | 0.0793 | Piraeus | 0.2404 | Xiamen | 0.0447 | Tanjung Pelepas | 0.0337 | Jabel Ali |
13 | 0.0766 | Manzanillo | 0.2378 | Kaohsiung | 0.0438 | Jakarta | 0.0306 | Kingston |
14 | 0.0753 | Jabel Ali | 0.2312 | Guangzhou | 0.0417 | Surabaya | 0.0301 | Hongkong |
15 | 0.0753 | Ningbo-Zhoushan | 0.2153 | Algeciras | 0.0380 | Hongkong | 0.0298 | Manzanillo |
16 | 0.0753 | Tanjung Pelepas | 0.2140 | Le Havre | 0.0373 | Kingston | 0.0278 | Qingdao |
17 | 0.0674 | Qingyuan | 0.2127 | Tanjung Pelepas | 0.0347 | Le Havre | 0.0261 | Klang |
18 | 0.0647 | Antwerpen | 0.2061 | Valencia | 0.0344 | Kaohsiung | 0.0256 | Algeciras |
19 | 0.0647 | Valencia | 0.2008 | Tianjin | 0.0311 | Clombo | 0.0246 | Surabaya |
20 | 0.0621 | Tangier | 0.1995 | Jabel Ali | 0.0293 | Shenzhen | 0.0210 | Kaohsiung |
L-Space | P-Space | |||
---|---|---|---|---|
DC | BC | DC | BC | |
Mean | 0.0118 | 0.0032 | 0.0393 | 0.0020 |
Median | 0.0066 | 0.0001 | 0.0185 | 3.5478 × 10−5 |
Mode | 0.0026 | 0.0000 | 0.0040 | 0.0000 |
Min | 0.0013 | 0.0000 | 0.0013 | 0.0000 |
Max | 0.1612 | 0.1783 | 0.4227 | 0.1229 |
SE | 0.0006 | 0.0004 | 0.0020 | 0.0003 |
SD | 0.0168 | 0.0121 | 0.0542 | 0.0083 |
S2 | 0.0003 | 0.0001 | 0.0029 | 0.0001 |
K | 19.5814 | 88.6883 | 11.6459 | 83.9823 |
S | 3.8097 | 8.0900 | 2.9867 | 8.0444 |
L-Space | P-Space | |||
---|---|---|---|---|
Rank | Port | Port | ||
1 | Singapore | 0.1620 | Shanghai | 0.7095 |
2 | Klang | 0.1619 | Shenzhen | 0.7094 |
3 | Shenzhen | 0.1618 | Singapore | 0.7093 |
4 | Hongkong | 0.1618 | Ningbo-Zhoushan | 0.7093 |
5 | Shanghai | 0.1618 | Hongkong | 0.7089 |
6 | Ningbo-Zhoushan | 0.1617 | Pusan | 0.7089 |
7 | Pusan | 0.1616 | Klang | 0.7084 |
8 | Kaohsiung | 0.1616 | Qingdao | 0.7082 |
9 | Qingyuan | 0.1614 | Kaohsiung | 0.7080 |
10 | Tanjung Pelepas | 0.1613 | Xiamen | 0.7075 |
11 | Xiamen | 0.1612 | Rotterdam | 0.7056 |
12 | Ho Chi Minh | 0.1612 | Jabel Ali | 0.7048 |
13 | Clombo | 0.1611 | Guangzhou | 0.7046 |
14 | Laem Chabang | 0.1610 | Clombo | 0.7038 |
15 | Guangzhou | 0.1609 | Antwerpen | 0.7034 |
16 | Jabel Ali | 0.1594 | Laem Chabang | 0.7026 |
17 | Rotterdam | 0.1593 | Tanjung Pelepas | 0.7024 |
18 | Tianjin | 0.1589 | Hamburg | 0.7022 |
19 | Tokyo | 0.1588 | Ho Chi Minh | 0.7018 |
20 | Yokohama | 0.1588 | Yokohama | 0.7011 |
Port –Port | |
---|---|
Longoni–Majunga | 0.2071 (LDLB-LDLB) |
Majunga–Nosy Be | 0.1867 (LDLB-LDLB) |
Longoni–Port Louis | 0.1700 (LDLB-LDLB) |
Antsiranana–Nosy Be | 0.1694 (LDLB-LDLB) |
Longoni–Mogadishu | 0.1680 (LDLB-LDLB) |
Beira–Longoni | 0.1676 (LDLB-LDLB) |
Mutsamudu–Zanzibar | 0.1664 (LDLB-LDLB) |
Dar es salaam–Mogadishu | 0.1635 (LDLB-LDLB) |
Mogadishu–Mombasa | 0.1634 (LDLB-LDLB) |
Longoni–Mutsamudu | 0.1634 (LDLB-LDLB) |
Tanga–Zanzibar | 0.1632 (MDLB-LDLB) |
Jabel Ali–Port Victoria | 0.1632 (HDLB-LDLB) |
Reunion–Tanjung Pelepas | 0.1632 (LDLB-HDMB) |
Port Louis–Singapore | 0.1632 (LDLB-HDHB) |
Port Louis–Sydney | 0.1632 (LDLB-MDHB) |
Port Louis–Tanjung Pelepas | 0.1632 (LDLB-HDMB) |
Clombo–Port Louis | 0.1632 (HDMB-LDLB) |
Jabel Ali–Port Louis | 0.1632 (HDLB-LDLB) |
Kismayu–Salalah | 0.1632 (LDLB-MDLB) |
Jabel Ali–Kismayu | 0.1632 (HDLB-LDLB) |
Gioia Tauro–Port Louis | 0.1632 (MDLB-LDLB) |
Durban–Reunion | 0.1632 (MDLB-LDLB) |
Durban–Port Louis | 0.1632 (MDLB-LDLB) |
Port –Port | Port –Port | ||
---|---|---|---|
Abadan–Assaluyeh | 0.7962 (LDLB-LDMB) | Bandar Abbas–Damietta | 0.7144 (LDLB-MDLB) |
Assaluyeh–Dubai | 0.7962 (LDMB-LDLB) | Bandar Abbas–Dalian | 0.7144 (LDLB-MDLB) |
Assaluyeh–Bushehr | 0.7962 (LDMB-LDLB) | Bandar Abbas–Pusan | 0.7144 (LDLB-HDHB) |
Assaluyeh–Mahshahr | 0.7962 (LDMB-LDLB) | Bandar Abbas–Port Said | 0.7144 (LDLB-MDLB) |
Assaluyeh–Chabahar | 0.7962 (LDMB-LDLB) | Bandar Abbas–Tianjin | 0.7144 (LDLB-HDMB) |
Assaluyeh–Shanghai | 0.7300 (LDMB-HDHB) | Bandar Abbas–Qingdao | 0.7144 (LDLB-HDMB) |
Assaluyeh–Shenzhen | 0.7300 (LDMB-HDMB) | Bandar Abbas–Gwang Yang | 0.7144 (LDLB-MDLB) |
Assaluyeh–Ningbo-Zhoushan | 0.7300 (LDMB-HDMB) | Bandar Abbas–Shanghai | 0.7144 (LDLB-HDHB) |
Assaluyeh–Singapore | 0.7300 (LDMB-HDHB) | Bandar Abbas–Incheon | 0.7144 (LDLB-MDLB) |
Assaluyeh–Kaohsiung | 0.7300 (LDMB-HDMB) | Bandar Abbas–Lianyungang | 0.7144 (LDLB-MDLB) |
Assaluyeh–Klang | 0.7300 (LDMB-HDMB) | Bandar Abbas–Ningbo-Zhoushan | 0.7144 (LDLB-HDMB) |
Assaluyeh–Xiamen | 0.7300 (LDMB-HDMB) | Bandar Abbas–Shenzhen | 0.7144 (LDLB-HDMB) |
Assaluyeh–Clombo | 0.7300 (LDMB-HDLB) | Bandar Abbas–Mundra | 0.7144 (LDLB-MDLB) |
Assaluyeh–Jabel Ali | 0.7300 (LDMB-HDMB) | Bandar Abbas–Nhava Sheva | 0.7144 (LDLB-MDLB) |
Bandar Abbas–Hamburg | 0.7144 (LDLB-HDHB) | Bandar Abbas–Mombasa | 0.7144 (LDLB-MDLB) |
Antwerpen–Bandar Abbas | 0.7144 (HDMB-LDLB) | Bandar Abbas–Karachi | 0.7144 (LDLB-MDLB) |
Bandar Abbas–Istanbul | 0.7144 (LDLB-MDMB) | Bandar Abbas–Kaohsiung | 0.7144 (LDLB-HDMB) |
Bandar Abbas–Genova | 0.7144 (LDLB-MDLB) | Bandar Abbas–Xiamen | 0.7144 (LDLB-HDMB) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, W.; Li, Z.; Zhou, Y.; Deng, Z. A Novel Technical Framework for the Evaluation of Node Significance and Edge Connectivity in Global Shipping Network. J. Mar. Sci. Eng. 2024, 12, 1239. https://doi.org/10.3390/jmse12081239
Duan W, Li Z, Zhou Y, Deng Z. A Novel Technical Framework for the Evaluation of Node Significance and Edge Connectivity in Global Shipping Network. Journal of Marine Science and Engineering. 2024; 12(8):1239. https://doi.org/10.3390/jmse12081239
Chicago/Turabian StyleDuan, Wei, Zhenfu Li, Yutao Zhou, and Zhao Deng. 2024. "A Novel Technical Framework for the Evaluation of Node Significance and Edge Connectivity in Global Shipping Network" Journal of Marine Science and Engineering 12, no. 8: 1239. https://doi.org/10.3390/jmse12081239
APA StyleDuan, W., Li, Z., Zhou, Y., & Deng, Z. (2024). A Novel Technical Framework for the Evaluation of Node Significance and Edge Connectivity in Global Shipping Network. Journal of Marine Science and Engineering, 12(8), 1239. https://doi.org/10.3390/jmse12081239