Experimental Assessment of Ultraviolet Radiation Impact on the Primary Production of Phytoplankton in the East/Japan Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Inorganic Nutrients, Chlorophyll a (chl a), and Primary Production Measurements
2.3. Satellite-Derived Solar Radiation
2.4. Data Analysis
3. Results
3.1. Environmental Conditions
3.2. Specific and Absolute Carbon Uptake Rates
3.3. Carbon Uptake Rates per Unit of Chlorophyll a
3.4. Relationships between UVR and Primary Production
3.5. Effects of Solar UVR on Different Size Fractions of Phytoplankton
4. Discussion
4.1. The Effect of UVR Penetration on Primary Production
4.2. Phytoplankton Size-Differential Response to UVR
4.3. Methodological Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Sandoval, D.C.; Delgado-Huertas, A.; Agustí, S. The 13C method as a robust alternative to 14C-based measurements of primary productivity in the Mediterranean Sea. J. Plankton Res. 2018, 40, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; Blackwell Science: Malden, MA, USA, 1997. [Google Scholar]
- Barnes, M.K.; Tilstone, G.H.; Smyth, T.J.; Suggett, D.J.; Astoreca, R.; Lancelot, C.; Kromkamp, J.C. Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters. Mar. Ecol. Prog. Ser. 2014, 504, 73–89. [Google Scholar] [CrossRef]
- Beardall, J.; Raven, J.A. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 2004, 43, 26–41. [Google Scholar] [CrossRef]
- Häder, D.-P.; Williamson, C.E.; Wangbergm, S.A.; Rautio, M.; Rose, K.C.; Gao, K.S.; Helbling, E.W.; Sinha, R.P.; Worrest, R. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 2015, 14, 108–126. [Google Scholar] [CrossRef]
- Cullen, J.J.; Neale, P.J.; Lesser, M.P. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 1992, 258, 646–650. [Google Scholar] [CrossRef]
- Larkum, A.W.D.; Wood, W.F. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth. Res. 1993, 36, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Banaszak, A.T. Photoprotective physiological and biochemical responses of aquatic organisms to UVR. In UV Effects in Aquatic Organisms and Ecosystems; Helbling, E.W., Zagarese, H.E., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2003; pp. 329–356. [Google Scholar]
- Gao, K.; Li, G.; Helbling, E.W.; Villafañe, V.E. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem. Photobiol. 2007, 83, 802–809. [Google Scholar] [CrossRef]
- Godoy, N.; Canepa, A.; Lasternas, S.; Mayol, E.; Ruíz-Halpern, S.; Agustí, S.; Castilla, J.C.; Duarte, C.M. Experimental assessment of the effect of UVB radiation on plankton community metabolism along the Southeastern Pacific off Chile. Biogeosciences 2012, 9, 1267–1276. [Google Scholar] [CrossRef]
- Häder, D.P.; Kumar, H.D.; Smith, R.C.; Worrest, R.C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 267–285. [Google Scholar] [CrossRef]
- Buma, A.G.J.; Boelen, P.; Jeffrey, W.H. UVR-induced DNA damage in aquatic organisms. In UV Effects in Aquatic Organisms and Ecosystems; Helbling, E.W., Zagarese, H.E., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2003; pp. 291–327. [Google Scholar]
- Häder, D.-P.; Kumar, H.D.; Smith, R.C.; Worrest, R.C. Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2003, 2, 39–50. [Google Scholar] [CrossRef]
- Karentz, D.; Cleaver, J.E.; Mitchell, D.L. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol. 1991, 27, 326–341. [Google Scholar] [CrossRef]
- Helbling, E.W.; Villafane, V.; Ferrario, M.; Holm-Hansen, O. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 1992, 80, 89–100. [Google Scholar] [CrossRef]
- Smith, R.C.; Prezelin, B.B.; Baker, K.S.; Bidigare, R.R.; Boucher, N.P.; Coley, T.; Karentz, D.; MacIntyre, S.; Matlick, H.A.; Menzies, D.; et al. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 1992, 255, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, O.; Helbling, E.W.; Lubin, D. Ultraviolet radiation in Antarctica: Inhibition of primary production. Photochem. Photobiol. 1993, 58, 567–570. [Google Scholar] [CrossRef]
- Gao, K.; Ruan, Z.; Villafañe, V.E.; Gattuso, J.P.; Helbling, E.W. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 2009, 54, 1855–1862. [Google Scholar] [CrossRef]
- Li, G.; Gao, K.S.; Gao, G. Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem. Photobiol. 2011, 87, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, P.; Medina-Sánchez, J.M.; Durán, C.; Herrera, G.; Villafañe, V.E.; Helbling, E.W. Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes. Biogeosciences 2015, 12, 697–712. [Google Scholar] [CrossRef]
- Nilawati, J.; Greenberg, B.M.; Smith, R.E.H. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. J. Phycol. 1997, 33, 215–224. [Google Scholar] [CrossRef]
- Barbieri, E.S.; Villafañe, V.E.; Helbling, E.W. Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes. Limnol. Oceanogr. 2002, 47, 1648–1655. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Karentz, D. The induction and repair of DNA photodamage in the environment. In Environmental UV Photobiology; Young, A.R., Moan, J., Björn, L.O., Nultsch, W., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 345–377. [Google Scholar]
- Helbling, E.W.; Buma, A.G.J.; de Boer, M.K.; Villafañe, V.E. In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar. Ecol. Prog. Ser. 2001, 211, 43–49. [Google Scholar] [CrossRef]
- Medina-Sánchez, J.M.; Villar Argaiz, M.; Carrillo, P. Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: A short-term experimental study. Limnol. Oceanogr. 2006, 51, 913–924. [Google Scholar] [CrossRef]
- Durán, C.; Medina-Sánchez, J.M.; Herrera, G.; Carrillo, P. Changes in the phytoplankton-bacteria coupling triggered by joint action of UVR, nutrients, and warming in Mediterranean high-mountain lakes. Limnol. Oceanogr. 2016, 61, 413–429. [Google Scholar] [CrossRef]
- Harrison, J.W.; Smith, R.E.H. Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities. Photochem. Photobiol. Sci. 2009, 8, 1218–1232. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, C.; Simó, R.; Sommaruga, R.; Gasol, J.M. Away from darkness: A review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front. Microbiol. 2013, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- Medina-Sánchez, J.M.; Villar-Argaiz, M.; Carrillo, P. Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshwat. Biol. 2002, 47, 2191–2204. [Google Scholar] [CrossRef]
- Pausz, C.; Herndl, G.J. Role of nitrogen versus phosphorus availability on the effect of UV radiation on bacterioplankton and their recovery from previous UV stress. Aquat. Microb. Ecol. 2002, 29, 89–95. [Google Scholar] [CrossRef]
- Cabrerizo, M.J.; Medina-Sánchez, J.M.; Dorado-García, I.; Villar-Argaiz, M.; Carrillo, P. Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci. Rep. 2017, 7, 43615. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, K.; Li, G.; Helbling, E.W. Seasonal impacts of solar UV radiation on the photosynthesis of phytoplankton assemblages in the coastal water of the South China Sea. Photochem. Photobiol. 2010, 86, 586–592. [Google Scholar] [CrossRef]
- Li, G.; Gao, K.S. Cell size-dependent effects of solar UV on primary production in coastal waters of the South China Sea. Estuaries Coasts 2013, 36, 728–736. [Google Scholar] [CrossRef]
- Helbling, E.W.; Gao, K.S.; Gonçalves, R.J.; Wu, H.; Villafañe, V.E. Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Mar. Ecol. Prog. Ser. 2003, 259, 59–66. [Google Scholar] [CrossRef]
- Garcia-Pichel, F. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreen. Limnol. Oceanogr. 1994, 39, 1704–1717. [Google Scholar] [CrossRef]
- Laurion, I.; Vincent, W.F. Cell size versus taxonomic composition as determinants of UV-sensitivity in natural phytoplankton communities. Limnol. Oceanogr. 1998, 43, 1774–1779. [Google Scholar] [CrossRef]
- Liao, J.; Xu, J.; Yuan, X.; Liang, Y.; Guo, Y.; Zhou, W.; Huang, H.; Liu, S.; Long, A. Interactive Effects of Ultraviolet Radiation and Dissolved Organic Carbon on Phytoplankton Growth and Photosynthesis in Sanya Bay, Northern South China Sea. Ocean Sci. J. 2019, 54, 581–593. [Google Scholar] [CrossRef]
- Bharathi, P.L.; Krishnakumari, L.; Bhattathiri, P.; Chandramohan, D. UV Radiation and Primary Production in the Antarctic Waters; Thirteenth Indian Expedition to Antarctica, Scientific Report; Department of Ocean Development: New Delhi, India, 1997; Available online: https://drs.nio.org/drs/handle/2264/1990 (accessed on 2 April 2020).
- Neale, P.J.; Davis, R.F.; Cullen, J.J. Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 1998, 392, 585–589. [Google Scholar] [CrossRef]
- Fuentes-Lema, A.; Sobrino, C.; González, N.; Estrada, M.; Neale, P.J. Effect of solar UVR on the production of particulate and dissolved organic carbon from phytoplankton assemblages in the Indian Ocean. Mar. Ecol. Prog. Ser. 2015, 535, 47–61. [Google Scholar] [CrossRef]
- Erga, S.R.; Aursland, K.; Frette, Ø.; Hamre, B.; Lotsberg, J.K.; Stamnes, J.J.; Aure, J.; Rey, F.E.; Stamnes, K. UV transmission in Norwegian marine waters: Controlling factors and possible effects on primary production and vertical distribution of phytoplankton. Mar. Ecol. Prog. Ser. 2005, 305, 79–100. [Google Scholar] [CrossRef]
- Kwak, J.H.; Lee, S.H.; Park, H.J.; Choy, E.J.; Jeong, H.D.; Kim, K.R.; Kang, C.K. Monthly measured primary and new productivities in the Ulleung Basin as a biological” hot spot” in the East/Japan Sea. Biogeosciences 2013, 10, 4405–4417. [Google Scholar] [CrossRef]
- Joo, H.; Park, J.W.; Son, S.; Noh, J.H.; Jeong, J.Y.; Kwak, J.H.; Saux-Picart, S.; Choi, J.H.; Kang, C.-K.; Lee, S.H. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. J. Geophys. Res. Oceans 2014, 119, 3002–3011. [Google Scholar] [CrossRef]
- Chiba, S.; Batten, S.; Sasaoka, K.; Sasai, Y.; Sugisaki, H. Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific. Geophys. Res. Lett. 2012, 39, L15603. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, H.; Lee, J.H.; Lee, J.H.; Kang, J.J.; Lee, H.W.; Lee, D.; Kang, C.K. Seasonal carbon uptake rates of phytoplankton in the northern East/Japan Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 143, 45–53. [Google Scholar] [CrossRef]
- Sugawara, T.; Hamasaki, K.; Toda, T.; Kikuchi, T.; Taguchi, S. Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan. Hydrobiologia 2003, 493, 17–26. [Google Scholar] [CrossRef]
- Taguchi, S.; Yamao, K.I.; Yamada, Y.; Hagimoto, J.I.; Takeuchi, A.; Chiba, K.; Katayama, T.; Motokawa, S.; Murata, A.; Taira, H. Seasonal cycles in phytoplankton mycosporine-like amino acids and the attenuation of ultraviolet radiation in coastal surface waters in Sagami Bay. Plankton Benthos Res. 2016, 11, 120–130. [Google Scholar] [CrossRef]
- Day, T.A.; Neale, P.J. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu. Rev. Ecol. Syst. 2002, 33, 371–396. [Google Scholar] [CrossRef]
- Helbling, E.W.; Villafañe, V.E.; Holm-Hansen, O. Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects; Weiler, C.S., Penhale, P.A., Eds.; American Geophysical Union: Washington, DC, USA, 1994; pp. 207–227. [Google Scholar]
- Lee, S.H.; Whitledge, T.E. Primary and new production in the deep Canada Basin during summer 2002. Polar Biol. 2005, 28, 190–197. [Google Scholar] [CrossRef]
- Yun, M.S.; Chung, K.H.; Zimmermann, S.; Zhao, J.; Joo, H.M.; Lee, S.H. Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biol. 2012, 35, 257–268. [Google Scholar] [CrossRef]
- Yun, M.S.; Kim, B.K.; Joo, H.T.; Yang, E.J.; Nishino, S.; Chung, K.H.; Kang, S.-H.; Lee, S.H. Regional productivity of phytoplankton in the western Arctic Ocean during early summer in 2010. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 120, 61–71. [Google Scholar] [CrossRef]
- Yun, M.S.; Whitledge, T.E.; Stockwell, D.; Son, S.H.; Lee, J.H.; Park, J.W.; Lee, D.B.; Park, J.; Lee, S.H. Primary production in the Chukchi Sea with potential effects of freshwater content. Biogeosciences 2016, 13, 737–749. [Google Scholar] [CrossRef]
- Yun, M.S.; Kim, Y.; Jeong, Y.; Joo, H.T.; Jo, Y.-H.; Lee, C.H.; Bae, H.; Lee, D.; Bhavya, P.S.; Kim, D.; et al. Weak response of biological productivity and community structure of phytoplankton to mesoscale eddies in the oligotrophic Philippine Sea. J. Geophys. Res. Oceans 2020, 125, e2020JC016436. [Google Scholar] [CrossRef]
- Llabre’s, M.; Agusti, S. Picophytoplankton cell death induced by UV radiation: Evidence for oceanic Atlantic communities. Limnol. Oceanogr. 2006, 51, 21–29. [Google Scholar] [CrossRef]
- Garcia-Corral, L.S.; Martinez-Ayala, J.; Duarte, C.M.; Agusti, S. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism. Front. Mar. Sci. 2015, 2, 483–490. [Google Scholar] [CrossRef]
- Raven, J.A. The twelfth Tansley Lecture: Small is beautiful: The picophytoplankton. Funct. Ecol. 1998, 12, 503–513. [Google Scholar] [CrossRef]
- Agawin, N.S.R.; Duarte, C.M.; Agusti, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 2000, 45, 591–600. [Google Scholar] [CrossRef]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: New York, NY, USA, 1984. [Google Scholar]
- Chen, Y.L.; Chen, H.-Y. Nitrate-based new production and its relationship to primary production and chemical hydrography in spring and fall in the East China Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 1249–1264. [Google Scholar] [CrossRef]
- Chen, Y.L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 319–340. [Google Scholar] [CrossRef]
- Lee, S.H.; Whitledge, T.E.; Kang, S.H. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont. Shelf Res. 2007, 27, 2231–2249. [Google Scholar] [CrossRef]
- Yun, M.S.; Whitledge, T.E.; Gong, M.; Lee, S.H. Low primary production in the Chukchi Sea shelf, 2009. Cont. Shelf Res. 2014, 76, 1–11. [Google Scholar] [CrossRef]
- Hama, T.; Miyazaki, T.; Ogawa, Y.; Iwakuma, T.; Takahashi, M.; Otsuki, A.; Ichimura, S. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C Isotope. Mar. Biol. 1983, 73, 31–36. [Google Scholar] [CrossRef]
- Arola, A.; Kalliskota, S.; den Outer, P.N.; Edvardsen, K.; Hansen, G.; Koskela, T.; Martin, T.J.; Matthijsen, J.; Meerkoetter, R.; Peeters, P.; et al. Assessment of four methods to estimate surface UV radiation using satellite data, by comparison with ground measurements from four stations in Europe. J. Geophys. Res. Atmos. 2002, 107, 4310. [Google Scholar] [CrossRef]
- Cullen, J.J.; Neale, P.J. Ultraviolet radiation, ozone depletion and marine photosynthesis. Photosynth Res. 1994, 39, 303–320. [Google Scholar] [CrossRef]
- Gao, K.; Wu, Y.; Li, G.; Wu, H.; Villafañe, V.E.; Helbling, E.W. Solar UV-radiation drives CO2-fixation in marine phytoplankton: A double-edged sword. Plant Physiol. 2007, 144, 54–59. [Google Scholar] [CrossRef]
- Gao, G.; Liu, W.; Zhao, X.; Gao, K. Ultraviolet Radiation Stimulates Activity of CO2 Concentrating Mechanisms in a Bloom-Forming Diatom Under Reduced CO2 Availability. Front. Microbiol. 2021, 12, 651567. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gao, K.S. Variation in UV irradiance related to stratospheric ozone levels affects photosynthetic carbon fixation of winter phytoplankton assemblages from surface coastal water of the South China Sea. Mar. Biol. Res. 2012, 8, 670–676. [Google Scholar] [CrossRef]
- Park, K.A.; Kang, C.K.; Kim, K.R.; Park, J.E. Role of sea ice on satellite-observed chlorophyll-a concentration variations during spring bloom in the East/Japan sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 83, 34–44. [Google Scholar] [CrossRef]
- Lesser, M.P.; Cullen, J.J.; Neale, P.J. Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: Relative importance of damage and repair. J. Phycol. 1994, 30, 183–192. [Google Scholar] [CrossRef]
- Litchman, E.; Neale, P.J.; Banaszak, A.T. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repair. Limnol. Oceanogr. 2002, 47, 86–94. [Google Scholar] [CrossRef]
- Shelly, K.; Roberts, S.; Heraud, P.; Beardall, J. Interactions between UV-B exposure and phosphorus nutrition. I. Effects, on growth, phosphate uptake, and chlorophyll fluorescence. J. Phycol. 2005, 41, 1204–1211. [Google Scholar] [CrossRef]
- Marcoval, M.A.; Villafañe, V.E.; Helbling, E.W. Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. J. Photochem. Photobiol. 2007, 89, 78–87. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, H.-C.; Son, Y.-B.; Park, M.-O.; Shin, W.-C.; Rho, T.-K. Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea. Korean J. Remote Sens. 2012, 28, 421–434. [Google Scholar] [CrossRef]
- Mizubayashi, K.; Kuwahara, V.S.; Segaran, T.C.; Zaleha, K.; Effendy, A.W.M.; Kushairi, M.R.M.; Toda, T. Monsoon variability of ultraviolet radiation (the UVR) attenuation and bio-optical factors in the Asian tropical coral-reef waters. Estuar. Coast. Shelf Sci. 2013, 126, 34–43. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; Li, G.; He, X.; Chen, C.-T.A.; Gao, K.; Liu, D. Effects of ultraviolet radiation on marine primary production with reference to satellite remote sensing. Front. Earth Sci. 2015, 9, 237–247. [Google Scholar] [CrossRef]
- Fujiki, T.; Taguchi, S. Variability in chlorophyll a specific absorption coeffcient in marine phytoplankton as a function of cell size and irradiance. J. Plankton Res. 2002, 24, 859–874. [Google Scholar] [CrossRef]
- Häder, D.P. Does enhanced solar UV-B radiation affect marine primary producers in their natural habitats? Photochem. Photobiol. 2011, 87, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A. Responses of photosynthetic organisms to increased solar UV-B. J. Photochem. Photobiol. 1991, B 9, 239–244. [Google Scholar] [CrossRef]
- Buma, A.G.J.; Wright, S.W.; van den Enden, R.; van de Poll, W.H.; Davidson, A.T. PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalgae. Mar. Ecol. Prog. Ser. 2006, 315, 33–42. [Google Scholar] [CrossRef]
- Wrona, F.J.; Prowse, T.D.; Reist, J.D.; Hobbie, J.; Lévesque, L.; Macdonald, R.; Vincent, W.F. Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio 2006, 35, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Pálffy, K.; Vörös, L. Effect of ultraviolet radiation on phytoplankton primary production in Lake Balaton. Hydrobiologia 2003, 506, 289–296. [Google Scholar] [CrossRef]
- Joint, I.; Jordan, M.B. Effect of short-term exposure to UVA and UVB on potential phytoplankton production in UK coastal waters. J. Plankton Res. 2008, 30, 199–210. [Google Scholar] [CrossRef]
- Kaczmarska, I.; Clair, T.A.; Ehrman, J.M.; MacDonald, S.L.; Lean, D.; Day, K.E. The effect of UV radiation on phytoplankton populations in clear and brown temperate Canadian lakes. Limnol. Oceanogr. 2000, 45, 651–663. [Google Scholar] [CrossRef]
- Cullen, J.J. Primary production methods. In Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 2277–2284. [Google Scholar]
- Li, Y.; Gao, K.; Villafañe, V.E.; Helbling, E.W. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosciences 2012, 9, 3931–3942. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Häder, D.P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 2018, 30, 743–759. [Google Scholar] [CrossRef]
Station | Date (dd/mm/yy) | Temperature (°C) | DIN (mmol m−2) | SiO2 (mmol m−2) | PO4 (mmol m−2) | Surface chl a (mg chl a m−3) | I-chl a (mg chl a m−2) | PAR (W m−2) | UVA (W m−2) | UVB (W m−2) |
---|---|---|---|---|---|---|---|---|---|---|
TED4 | 15 March 2012 | 26.14 | 205.0 | 330.6 | 13.9 | 0.48 | 20.1 | 86.88 | 20.66 | 0.46 |
TEC3 | 16 March 2012 | 25.72 | 262.5 | 391.2 | 18.3 | 0.42 | 20.0 | 184.46 | 25.21 | 0.57 |
TEB5-1 | 17 March 2012 | 26.10 | 268.0 | 437.8 | 19.1 | 0.82 | 26.0 | 70.61 | 13.30 | 0.32 |
TEA6 | 20 March 2012 | 26.32 | 249.4 | 382.1 | 18.8 | 0.95 | 55.6 | 218.42 | 39.86 | 0.78 |
TEB6 | 21 March 2012 | 26.57 | 237.1 | 388.8 | 16.3 | 0.92 | 63.2 | 244.17 | 38.13 | 0.66 |
Station | PC Bottles (PAR) | Quartz Bottles (PAR+UVR) | ||||
---|---|---|---|---|---|---|
Specific Carbon Uptake Rates (h−1) | Specific Carbon Uptake Rates (h−1) | |||||
100% | 30% | 1% | 100% | 30% | 1% | |
TED4 | 0.009 (0.001) | 0.006 (0.000) | 0.006 (0.001) | 0.007 (0.000) | 0.008 (0.001) | 0.002 (0.001) |
TEC3 | 0.008 (0.002) | 0.007 (0.000) | 0.000 (0.000) | 0.012 (0.005) | 0.015 (0.003) | 0.008 (0.004) |
TEB5-1 | 0.013 (0.000) | 0.003 (0.000) | 0.000 (0.000) | 0.016 (0.000) | 0.007 (0.001) | 0.000 (0.000) |
TEA6 | 0.009 (0.002) | 0.012 (0.004) | 0.001 (0.001) | 0.009 (0.001) | 0.023 (0.008) | 0.012 (0.004) |
TEB6 | 0.018 (0.002) | 0.020 (0.005) | 0.002 (0.000) | 0.006 (0.000) | 0.024 (0.000) | 0.006 (0.000) |
PAR | PAR+UVR | |||
---|---|---|---|---|
Small (<2 μm) | Large (>2 μm) | Small (<2 μm) | Large (>2 μm) | |
IPP (mg C m−2 h−1) | 14.9 (9.0) | 16.7 (13.2) | 19.1 (11.2) | 30.6 (16.7) |
Contribution (%) | 49.0 (7.6) | 51.0 (7.6) | 37.9 (8.2) | 62.1 (8.2) |
P/B ratio | 4.6 (2.7) | 11.6 (11.0) | 5.8 (3.6) | 21.1 (17.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, M.; Kang, J.-J.; Jeong, Y.; Jo, Y.-H.; Sun, J.; Lee, S.-H. Experimental Assessment of Ultraviolet Radiation Impact on the Primary Production of Phytoplankton in the East/Japan Sea. J. Mar. Sci. Eng. 2024, 12, 1258. https://doi.org/10.3390/jmse12081258
Yun M, Kang J-J, Jeong Y, Jo Y-H, Sun J, Lee S-H. Experimental Assessment of Ultraviolet Radiation Impact on the Primary Production of Phytoplankton in the East/Japan Sea. Journal of Marine Science and Engineering. 2024; 12(8):1258. https://doi.org/10.3390/jmse12081258
Chicago/Turabian StyleYun, Misun, Jae-Joong Kang, Yubeen Jeong, Young-Heon Jo, Jun Sun, and Sang-Heon Lee. 2024. "Experimental Assessment of Ultraviolet Radiation Impact on the Primary Production of Phytoplankton in the East/Japan Sea" Journal of Marine Science and Engineering 12, no. 8: 1258. https://doi.org/10.3390/jmse12081258
APA StyleYun, M., Kang, J. -J., Jeong, Y., Jo, Y. -H., Sun, J., & Lee, S. -H. (2024). Experimental Assessment of Ultraviolet Radiation Impact on the Primary Production of Phytoplankton in the East/Japan Sea. Journal of Marine Science and Engineering, 12(8), 1258. https://doi.org/10.3390/jmse12081258