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Abstract: Ship trajectory prediction is a complex time series forecasting problem that necessitates
models capable of accurately capturing both long-term trends and short-term fluctuations in vessel
movements. While existing deep learning models excel in short-term predictions, they struggle with
long-sequence time series forecasting (LSTF) due to difficulties in capturing long-term dependencies,
resulting in significant prediction errors. This paper proposes the Informer-TP method, leveraging
Automatic Identification System (AIS) data and based on the Informer model, to enhance the ability
to capture long-term dependencies, thereby improving the accuracy of long-term ship trajectory
predictions. Firstly, AIS data are preprocessed and divided into trajectory segments. Secondly,
the time series is separated from the trajectory data in each segment and input into the model.
The Informer model is utilized to improve long-term ship trajectory prediction ability, and the
output mechanism is adjusted to enable predictions for each segment. Finally, the proposed model’s
effectiveness is validated through comparisons with baseline models, and the influence of various
sequence lengths Ltoken on the Informer-TP model is explored. Experimental results show that
compared with other models, the proposed model exhibits the lowest Mean Squared Error, Mean
Absolute Error, and Haversine distance in long-term forecasting, demonstrating that the model can
effectively capture long-term dependencies in the trajectories, thereby improving the accuracy of
long-term vessel trajectory predictions. This provides an effective and feasible method for ensuring
ship navigation safety and advancing intelligent shipping.

Keywords: Informer; trajectory prediction; long-sequence forecasting; trajectory planning

1. Introduction

With the rapid development of the global shipping industry, the number of ships is
steadily increasing, and maritime traffic has become more complex. The risk of maritime
traffic accidents is rising, posing significant threats to human life and causing severe
environmental damage. Thus, implementing effective measures to enhance maritime traffic
safety is imperative. The Vessel Traffic Service (VTS) is a system designed to monitor
and manage maritime traffic, tracking ship movements and providing navigation safety
guidance within a limited range [1]. This system effectively enhances maritime safety and
efficiency, reduces the incidence of accidents, and aids in marine environmental protection.
Moreover, it offers navigation assistance, providing critical data support and real-time
monitoring for ship trajectory prediction, thereby greatly improving prediction accuracy
and reliability. However, in congested port areas, high traffic volume and frequently
changing conditions still lead to various traffic accidents. To meet these challenges, it
is essential to develop more robust trajectory prediction capabilities for ship navigation
systems and trajectory planning, thereby improving the safety of ships in complex and
dynamic environments.

The development of the AIS [2] has significantly advanced maritime vessel identifica-
tion and navigation technologies, providing crucial support for ship trajectory prediction
and collision warning systems. AIS-based ship trajectory prediction enables the planning
of safer and more efficient navigation routes. However, during daily operations, various
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external factors can introduce noise into the AIS data, such as measurement errors and
sensor malfunctions. This noise often leads to issues like duplicate data, discontinuities,
and errors, which severely impact prediction accuracy [3]. Consequently, preprocessing the
collected data to remove noise and enhance data quality is a common practice. Research
on AIS data involves statistical analysis with large datasets [4,5], the application of linear
regression models [6], and probabilistic models [7], addressing the redundancy, sparsity,
and anomalies in AIS data to achieve more accurate trajectory predictions.

Numerous scholars have researched ship trajectory prediction, primarily using ma-
chine learning and deep learning approaches. Xue et al. [8] introduced a model using
Gaussian processes and moment-matching methods, achieving high accuracy by address-
ing prediction uncertainty. Zhang et al. [9] developed a model based on random forests
to predict destinations by comparing current and historical trajectories. Liu et al. [10]
presented a Support Vector Regression (SVR) model optimized with the Adaptive Chaotic
Differential Evolution algorithm (ACDE), enhancing convergence speed and prediction
accuracy. Zhou et al. [11] proposed a method using AIS data and BP neural networks,
excelling in short-term predictions but limited in medium- and long-term scenarios.

Advancements in deep neural networks have enhanced ship trajectory prediction
methods, improving the ability to learn navigation patterns and capture trajectory changes.
Most models in this field are studied based on Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs). Zhang et al. [12] combined LSTM with Gen-
erative Adversarial Networks (GANs) to handle AIS data with varying time intervals,
bypassing the need for uniform preprocessing. Park et al. [13] used DBSCAN to remove
outliers from ship trajectories and employed Bi-LSTM for higher accuracy compared to
LSTM. Fu et al. [14] applied XGBoost to ConvLSTM to extract both temporal and spatial
features. Han et al. [15] developed a GRU-based method for high accuracy in short-term
predictions. Additionally, incorporating attention mechanisms into neural networks has
further improved prediction performance [16–18].

At the same time, combining various base models for trajectory sequence prediction
has also shown high accuracy. Wu et al. [19] integrated ConvLSTM with Seq2Seq to capture
spatiotemporal features, improving accuracy for both turning and linear trajectories. Simi-
larly, combining LSTM with Seq2Seq [20] and incorporating attention mechanisms [21] has
also yielded good results. Lin et al. [22] introduced a hybrid model, TTCN-Attention-GRU
(TTAG), by combining Temporal Convolutional Networks (TCNs), attention mechanisms,
and GRU networks, achieving high accuracy. Chen et al. [23] developed a method using
forward GRU and backward BiGRU networks, employing bidirectional scaling to enhance
trajectory fitting accuracy.

In summary, in the current field of ship trajectory sequence prediction, RNNs are
effective in considering the dependencies between adjacent data points over time, while
CNNs can capture similarities at different positions. These capabilities are well suited for
trajectory prediction tasks. However, existing deep learning models have the following
issues: (1) Most deep learning methods focus on short-term ship trajectory prediction, with
limited research on long-term predictions. Long-term ship trajectory prediction can provide
crucial information for navigation path planning, aiding in the development of safer and
more efficient routes, thus holding significant application value. (2) When handling long-
sequence time predictions, models tend to have larger parameter sizes, longer training
times, and reduced operational efficiency.

The Transformer model [24] differs from traditional RNN and CNN models, achieving
significant breakthroughs in natural language processing (NLP) [25] and offering new
approaches and methods for other machine learning tasks [26]. In the realm of time se-
ries prediction, the traditional Transformer model has limitations [27], prompting many
scholars to enhance the Transformer model to better address time series prediction chal-
lenges. For instance, Informer [28] improves time efficiency and storage efficiency in long-
sequence prediction through an innovative self-attention mechanism and Decoder design.
Autoformer [29] introduces a self-correlation mechanism based on sequence periodicity,
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which enhances prediction accuracy and efficiency. FEDformer [30] combines seasonal-
trend decomposition with Transformers and incorporates frequency domain analysis to
significantly improve long-term time series prediction performance. Pyraformer [31] intro-
duces the pyramidal attention module (PAM), which can effectively describe short-term
and long-term temporal dependencies with low time and space complexity. PatchTST [32]
significantly surpasses existing Transformer-based models in long-term prediction accuracy
by segmenting the time series data and ensuring channel independence.

In the task of ship trajectory sequence prediction, many scholars have made various
improvements to the Transformer model to enhance accuracy in both short-term and
long-term predictions. Dong et al. [33] proposed an attention mechanism model based
on position encoding that extracts temporal correlations in trajectories by quantifying
ship movements, achieving high accuracy in long-sequence predictions. Jiang et al. [34]
incorporated the LSTM structure into the Transformer framework and proposed a trajectory
time window shifting and smoothing filtering method to handle outliers in trajectory data,
ensuring the continuity and integrity of trajectory points and thus improving prediction
accuracy. Zhao et al. [35] proposed an improved DLinear model that identifies temporal
and spatial dependencies and patterns in sequence data using a retrospective window,
leading to enhanced training efficiency and improved short-term and long-term prediction
accuracy. Nguyen et al. [36] introduced a new discrete, high-dimensional representation
of AIS data and the improved Transformer network TrAISformer, which can extract long-
term correlations in AIS trajectories to predict ship positions in the upcoming hours.
Qiang et al. [37] proposed MSTFormer, a model that significantly enhances long-term
trajectory prediction accuracy by integrating dynamic knowledge and spatial-temporal
features, particularly when dealing with complex situations such as ship turns.

Inspired by the success of Informer in LSTF, this study investigates the application
of the Informer model to ship trajectory prediction and proposes the Informer-TP model
for this purpose. This paper presents a method for denoising AIS data and dividing them
into trajectory segments to predict future trajectories. Leveraging the Informer architecture,
this method effectively predicts long-term trajectories, with notable advantages in learning
long-term dependencies and handling data efficiently. The contributions of this paper are
as follows: (1) Denoising, clustering, and interpolating trajectory data to obtain highly
correlated trajectories, which are then segmented into independent trajectory segments
based on input and output steps. (2) Developing the Informer-TP model using these
trajectory segments to predict ship trajectories accurately. (3) Examining the effect of
different sequence lengths on the Informer-TP model. This study aims to aid trajectory
planning, enhance ship trajectory prediction accuracy, prevent collisions, and improve
maritime traffic safety and navigation efficiency.

The structure of the remaining sections is as follows: Section 2 details the prediction
methods. Section 3 describes the data preprocessing and compares the performance of
different models to analyze the effect of various sequence lengths on the model. Section 4
discusses the results of the proposed model. Section 5 concludes the study.

2. Methodology

In this section, we introduce the method of using the Informer-TP model to predict
ship trajectories. The main framework of the proposed method is shown in Figure 1. First,
we filter the AIS data to remove anomalies. Then, we separate and cluster the trajectory
data to eliminate outliers. Next, we interpolate the trajectory, divide it into segments,
resample, and normalize it to obtain the training data. Finally, we input the data into the
model’s Encoder. The encoding layer transforms it into the input representation, which
the Encoder then processes. We feed a segment of real data and the masked data to be
predicted into the Decoder for encoding. The Decoder concatenates this with the Encoder’s
output and computes the prediction results.
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Figure 1. Flowchart of the proposed method.

2.1. Trajectory Prediction

Predicting ship trajectories using AIS data typically involves leveraging a series of
historical AIS data to forecast the ship’s future trajectory. In this study, we denote all ship
time series trajectories as T, which can be represented as follows:{

T = {Traj1, . . . , Traji, . . . , TrajN}
Traji =

[
(t0, Lat0, Lon0, Sog0, Cog0), . . . ,

(
tj, Latj, Lonj, Sogj, Cogj

)] (1)

where i = 1, . . . , N, with N being the total number of ship trajectories, and Traji repre-
senting the i-th trajectory segment. tj, Latj, Lonj, Sogj, Cogj(j = 1, . . . , n) denote the time,
latitude, longitude, speed over ground, and course over ground, respectively, of the j-th
trajectory point, with n representing the total number of trajectory points in a segment. AIS
data comprise numerous trajectory segments, and thus, AIS data containing N segments
can be expressed as T = {Traji}N

i=1, where Traji corresponds to the trajectory segment as
defined in Equation (1). In this study, each segment is fed to the model for training, and
based on m consecutive trajectory points {x1, x2, . . . , xm} in a segment, the model predicts
the next k consecutive trajectory points {ym+1, ym+2, . . . , ym+k}.

2.2. Informer-TP

Informer-TP, based on the Informer model, uses AIS data to predict future ship tra-
jectories. The model extracts historical trajectory features to generate future trajectories.
Trajectory prediction is a specific type of time series prediction task. While general time
series prediction tasks forecast values within a specific future time frame, trajectory predic-
tion requires forecasting the trajectories of numerous ships at different times. Therefore, we
modify the Informer model to handle data structures that predict multiple ship trajecto-
ries simultaneously. We divide the trajectory data into independent segments, ignoring
interactions between ships to ensure continuity within segments and independence be-
tween segments. Each segment’s time series is separated and then combined with the
corresponding trajectory segment as a whole. All trajectory segments are then fed into the
model. The model’s computation structure is modified to adapt to this input structure,
enabling the simultaneous prediction of different ship trajectories. The structure of the
Informer model is illustrated in Figure 2. We can see that it is mainly composed of Encoder
and Decoder, where embedding is responsible for encoding the input data to obtain the
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input representation of the model, and ProbSparse Self-Attention is the unique attention
mechanism of Informer. A detailed introduction will be given below.
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Figure 2. Structure of the Informer model.

2.2.1. Input Representation of Informer

Inputting trajectory segments into Informer, each trajectory segment represents several
sequences of trajectories with a length of m, {x1, x2, . . . , xm} where x represents a trajectory
point within the trajectory sequence. Initially, scalar projection, local timestamps, and
global timestamps are used to transform the input information. The input representation
of Informer is illustrated in Figure 3. In this representation, the local timestamp PE embeds
contextual information by a fixed position embedding, as shown in Equation (2).

PE(pos,2j) = sin
(

pos/(2Lx)
2j/dmodel

)
PE(pos,2j+1) = cos

(
pos/(2Lx)

2j/dmodel
) , (2)

where pos represents the positional index, j ∈
{

1, . . . , dmodel
2

}
denotes the dimension of

embedding, Lx is the length of the trajectory sequence, and dmodel is the dimension of
the model. Subsequently, a learnable global timestamp SE is used to capture the global
context. In this study, the time interval between each trajectory point is 5 min; thus,
the global timestamp is precise to minute granularity. Five time granularities, including
minute, hour, week, month, and year, are used to map the corresponding time features
of trajectory points to the interval [−0.5, 0.5]. To align dimensions, a one-dimensional
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convolutional filter projects scalar contexts to dmodel dimensional vectors, resulting in ut
i .

Finally, the local timestamp, scalar projection, and global timestamp are combined to form
the ultimate input representation. Assuming there are t trajectory sequences Xt and p types
of global timestamps SE, the calculation of the input representation vector X t

feed[i] for the
t-th trajectory sequence is illustrated in Equation (3).

X t
feed[i] = αut

i + PE(Lx×(t−1)+i,) + ∑
p
[SE(Lx×(t−1)+i)]p (3)

where i ∈ {1, . . . , Lx}, α is a factor used to balance scalar projection, local timestamps,
and global timestamps, ut

i represents scalar projection, PE denotes local timestamps, and
SE indicates global timestamps. []p represents the p-th type of SE. Consequently, the
trajectory segment is modified to be represented by scalar projection, local timestamps, and
global timestamps.

Scalar

Projection u0 u1 u2 u3 u4 u5 u6 u7

Local Time Stamp
Position

Embeddings
PE0 PE1 PE2 PE3 PE4 PE5 PE6

Global Time Stamp

Month

Embeddings
ME0 ME1
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Embeddings
YE0

Week

Embeddings

Hour

Embeddings

Minute

Embeddings

WE0 WE1 WE2

HE0 HE1

ME4 ME5 ME6ME0 ME1 ME2 ME3

HE2 HE3HE2 HE3

Figure 3. Input Representation of Informer.

2.2.2. ProbSparse Self-Attention

After the trajectory segment undergoes the input representation in Informer, it first
enters the ProbSparse Self-Attention layer of the Encoder, where linear transformations are
applied to X feed to obtain three vectors: Q, K, and V. Here, Q represents the query vector,
K represents the key vector, and V represents the value vector. Based on the Q vector, a
weight distribution is computed by calculating the similarity between the Q vector and
all K vectors, which is then used to perform a weighted sum of associated V vectors. The
calculation formula is depicted in Equation (4).

Q = XfeedWQ

K = XfeedWK

V = XfeedWV
(4)

where X feed represents the encoded trajectory sequence, WQ, WK and WV are three train-
able parameter matrices. Linear transformations are performed by multiplying X feed with
these matrices individually.
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The ProbSparse Self-Attention samples are based on the probability of queries ob-
tained through linear transformation (Q, K, V) vectors, enabling the model to focus more
on important queries. This prioritizes trajectory points that have a significant impact on
subsequent trajectories, assigning them higher weights. To measure the sparsity of queries,
a measurement method based on KL (Kullback–Leibler) divergence is introduced to assess
the similarity between the attention probability distribution of queries and a uniform distri-
bution. This measurement identifies queries that dominate the self-attention distribution.
The sparsity evaluation of the i-th query is expressed as shown in Equation (5).

M(qi, K) = ln
LK

∑
j=1

e
qik⊤j√

d − 1
LK

LK

∑
j=1

qik⊤
j√

d
(5)

where qi is the i-th row of Q, kj is the j-th row of K, LK is the number of keys, and d is a
constant. To simplify the calculation of the sparsity measure M(qi, K), an approximation
method based on the difference between the maximum and mean values is employed, as
shown in Equation (6).

M(qi, K) = max
j

{
qik⊤

j√
d

}
− 1

LK

LK

∑
j=1

qik⊤
j√

d
(6)

where maxj represents taking the maximum value of all kj, and ∑ j represents summing
all kj. By randomly sampling u = LK ln LQ dot products, then selecting the top u queries
from these sampled dot products, these queries have the highest sparsity measure values
M(qi, K). Based on this sparsity measure method, ProbSparse Self-Attention attends to the
u most significant queries for each key, as shown in Equation (7).

A(Q, K, V) = Softmax

(
Q K⊤
√

d

)
V (7)

where Q is a sparse matrix containing only the top u queries selected based on the sparsity
measure M(qi, K). For the remaining queries, the average value of the V vectors is used
instead. This enables the model to better focus on trajectory points with significant turns or
changes in velocity, while accurately predicting trajectory points with straight-line uniform
motion as well.

2.2.3. Encoder

Multiple ProbSparse Self-Attention layers form an attention block, and Informer’s
Encoder consists of multiple attention blocks and distillation layers. After encoding, the
trajectory sequence is inputted into the attention block to calculate the (Q, K, V) vectors.
Then, dimension reduction is achieved through max-pooling and one-dimensional con-
volution to halve the input dimensions, thus implementing the Distilling operation. The
Distilling operation from layer j to layer j + 1 is illustrated in Equation (8).

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

([
Xt

j

]
AB

)))
(8)

where Xt
j represents the input feature map of the j-th layer, []AB denotes the attention block,

Conv1d is a one-dimensional convolution operation, ELU is the exponential linear unit
activation function, and MaxPool represents the max-pooling operation. After multiple
Distilling operations in the Encoder, the feature map of the trajectory sequence is obtained.
It stores important features of past data in the trajectory sequence. By stacking multiple
Encoders, reducing input length and decreasing attention blocks between each Encoder,
and then concatenating the feature maps of all Encoders, the final output of the Encoder is
obtained, completing the encoding operation on the trajectory sequence.
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2.2.4. Decoder

The Decoder of Informer consists of multiple DecoderLayers stacked with LayerNorm
and Linear Layer. Each DecoderLayer is composed of a stack of Multi-head Attention
and Masked Multi-head ProbSparse Self-Attention. The input of the Decoder consists of
two parts: the first input is the output of the Encoder, and the second input is a trajectory
sequence, where half of the Encoder’s output is concatenated with another trajectory
sequence of the same shape as the prediction target, but with values set to 0. The input of
the Decoder is represented as shown in Equation (9).

Xt
de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dmodel (9)

where Xt
token ∈ R(Ltoken×dmodel) is the start token sequence, Xt

0 ∈ RLy×dmodel is the sequence to
be predicted, which is set to 0, Ltoken is the size of the start token sequence, and Ly is the size
of the predicted sequence. The length of the Decoder’s output is consistent with the length
of the second input part. The entire model aims to predict the masked part of the Decoder’s
output. The output of the first DecoderLayer serves as the query, while the output of the
Encoder serves as the key and value. Through subsequent DecoderLayers, vectors for
each position to be predicted are obtained. After decoding through layers of the Decoder,
the true trajectory sequence {x1, x2, . . . , xm} is concatenated with the predicted trajectory
sequence {ym+1, ym+2, . . . , ym+k} and outputted together. Here, k represents the number of
predicted trajectory points. This enables the model to directly predict all outputs through
a forward process, avoiding accumulation errors in stepwise inference. Additionally, the
input between each DecoderLayer is halved, increasing prediction efficiency.

2.2.5. Loss Function

The error between the actual sequence yt and the predicted sequence yp is calculated
using the loss function (10). By minimizing the loss value, weight parameters are adjusted
to improve the prediction accuracy. The loss function is expressed as follows:

Loss =
∑n

i=1

(
yt

i −yp
i

)2

n
(10)

where n represents the length of the training set, yt
i denotes the true value, and yp

i denotes
the predicted value.

3. Experiment and Results
3.1. Data Processing

In this study, data from coastal areas were selected for analysis. The data were
sourced from the publicly available vessel trajectory data website, U.S. Coast Guard (https:
//marinecadastre.gov/ais/) (accessed on 27 July 2024), and covered the period from
1 June 2022 to 31 August 2022. The latitude and longitude ranges were (84°–77° W) and
(23°–27° N), respectively. AIS data of cargo ships with a normal navigation status were
used for training, validation, and testing. Table 1 shows the raw AIS data, and Table 2
provides the data description.

Table 1. Raw AIS data.

MMSI BaseDateTime
LAT
(°)

LON
(°)

SOG
(kn)

COG
(°) VesselType Status

377908000 2022-06-01T00:00:06 25.64317 −80.02941 11.1 181.3 70.0 0.0
377908000 2022-06-01T00:02:37 25.63539 −80.02976 11.2 184.6 70.0 0.0

https://marinecadastre.gov/ais/
https://marinecadastre.gov/ais/
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Table 2. Description of AIS Data.

Name Description

MMSI Maritime Mobile Service Identity value
BaseDataTime Full UTC date and time

LAT Latitude
LON Longitude
SOG Speed over ground
COG Course over ground

VesselType Vessel type
Status Navigation status

Due to various physical factors such as signal loss and equipment failure, AIS data
often suffer from issues like data loss and duplication. Additionally, adverse weather
conditions and rough seas can significantly disrupt ship navigation, leading to abnormal
AIS data. Therefore, it is essential to clean the AIS data. To address these abnormalities, this
paper presents a comprehensive data processing method to effectively improve data quality:

(1) The ship is considered stationary if the LON and LAT of two or more consecutive
trajectory points are equal or the SOG is less than 1. At this time, the AIS data are duplicate
data or abnormal data with minor changes. Therefore, it is necessary to remove duplicate
data and set thresholds for SOG and COG to eliminate abnormal data. The minimum
SOG threshold is 1. Since the maximum speed of cargo ships generally does not exceed 30,
the maximum value is set to 30. The COG threshold ranges from 0 to 360. Data outside
these ranges are removed. Finally, trajectories are separated based on MMSI to obtain the
independent trajectories for each ship.

(2) For each ship’s trajectory, if the time interval between two consecutive points is
less than 60 min, it is considered a single trajectory segment; otherwise, it is divided into
new segments. In our study, we only observe ships with continuous sailing times longer
than 4 h; therefore, we remove trajectory segments with fewer than 240 data points or a
duration of less than 4 h.

(3) Detect abnormal ship trajectories using DBSCAN. First, use the K-distance algo-
rithm to determine suitable parameters for DBSCAN clustering, then apply DBSCAN to
achieve optimal clustering. Remove outlier segments identified in the clustering results.

(4) Cubic spline interpolation generates smooth curves between discrete data points.
Since the ship’s LON and LAT change frequently, we use cubic spline interpolation between
consecutive points in each trajectory segment to interpolate missing LAT and LON values
and maintain time intervals of less than 1 min. For SOG and COG that change relatively
smoothly, we average the SOG and COG from adjacent points. Segments with an average
SOG of less than 2 are considered abnormal and removed.

(5) Resample trajectory points at 5 min intervals by averaging multiple AIS data points
within each interval to maintain consistent spacing. This interval can be adjusted based
on the desired precision of the final results to capture finer trajectory details. Smaller time
intervals result in higher trajectory accuracy.

(6) Use the min–max normalization method for normalization. The normalization
formula is as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(11)

where X is the original data, Xmin is the minimum value of the original data, Xmax is
the maximum value of the original data, and Xnorm is the normalized data, ranging
between [0, 1].

(7) For the Informer-TP method, each trajectory segment is divided into new segments
based on the sum of historical trajectory length, Ltoken length, and prediction length, with
time features separately extracted and input into the Informer-TP along with the trajectory
segments. Other models are trained by dividing trajectory segments according to input
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and output lengths, where the input length corresponds to Ltoken length in Informer-TP
and the output length is the prediction length.

After preprocessing, the total number of ships is 1108, the total number of ship
trajectories is 3898, and the total number of trajectory points is 441,125. The dataset
is divided into training, validation, and test sets in an 8:1:1 ratio. The training set contains
882 ships and 3118 trajectories with a total of 300,143 trajectory points, the validation set
contains 119 ships and 390 trajectories with a total of 65,662 trajectory points, and the test
set contains 107 ships and 390 trajectories with a total of 75,320 trajectory points.

3.2. Evaluation Metrics

The Haversine (HAV) distance is a spherical geometry-based method for calculating
the shortest distance between two points on the Earth’s surface. In ship trajectory prediction
tasks, it can calculate the actual distance between two latitude and longitude points, pro-
viding an intuitive evaluation of prediction accuracy. Therefore, this paper primarily uses
HAV as the metric for assessing model prediction accuracy. The Mean Squared Error (MSE)
measures the average squared difference between the predicted and actual trajectory points,
calculating the average of the squares of these differences. The Mean Absolute Error (MAE)
measures the average distance between predicted and actual trajectory points, reflecting
the average error size. These three metrics—HAV, MSE, and MAE—offer a comprehensive,
accurate, and intuitive assessment of model performance, aiding in model improvement
and optimization. Lower values indicate higher model accuracy. The formulas are shown
in Equations (12)–(14).

HAV = 2Rarcsin
(√

sin2(ϕ̄) + cos(ϕ1)cos(ϕ2)sin2
(
λ̄
))

(12)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (14)

In these formulas, R is the Earth’s radius, ϕ̄ = |ϕ2 − ϕ1|/2,λ̄ = |λ2 − λ1|/2, where ϕ2
is the actual longitude, ϕ1 is the predicted longitude, λ2 is the actual latitude, and λ1 is
the predicted latitude. n denotes the number of samples, yi is the actual value of the i-th
sample, and ŷi is the predicted value of the i-th sample.

3.3. Experimental Environment and Parameter Settings

This study was conducted on a Windows 10 operating system using Pycharm as the
programming software and Torch 2.1.1 as the deep learning framework, with Python 3.9.
All experiments were performed on a 3.5GHz AMD Ryzen 5 5600 CPU and an NVIDIA
RTX 4060 GPU (16GB RAM) (Made in the Santa Clara, CA, USA by AMD and NVIDIA).

In Informer-TP, the Encoder and Decoder modules have 2 and 1 layers, respectively.
The number of attention heads is set to 8, the model size is 512, the fully connected layer
size is 2048, and the Probsparse attention coefficient is 3. The model uses Mean Squared
Error (MSE) as the loss function, with the Adam optimizer. The initial learning rate is set to
5 × 10−6 and will adaptively decay during training. An early stopping mechanism halts
training if the MSE does not decrease for 5 consecutive epochs. The number of epochs is
set to 100, and the batch size is 32.

For the baseline models, the Transformer model’s parameters largely align with those
of the Informer-TP model. For other baseline models, the maximum number of epochs is
set to 200, the batch size to 240, and the early stopping mechanism is consistent with that
of Informer-TP. We found optimal performance for the LSTM layer with a hidden size of
64 and a 2-layer Decoder and Encoder. The ConvLSTM-Seq2Seq model performed best
with a kernel size of 3, and the LSTM-Seq2Seq-Attention model with 4 attention layers.
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After determining the optimal parameters for these three baseline models, experiments
with different activation functions revealed that LSTM-Seq2Seq, LSTM-Seq2Seq-Attention,
and ConvLSTM-Seq2Seq models performed best with Tanh, SoftPlus, and ELU activation
functions, respectively. All models are configured with these optimal parameters, as
detailed in Tabel 3.

Table 3. Experimental parameter settings for the 5 models.

Model Parameter Name Parameter Size

LSTM-Seq2Seq
Hidden size 64

Layer number 2
Activation function Tanh

LSTM-Seq2Seq-Attention

Hidden size 64
Layer number 2

Activation function Softplus
Attention layers 4

ConvLSTM-Seq2Seq

Hidden size 64
Layer number 2

Activation function ELU
Kernel size (1,2,3)

Transformer

Model dimension 512
Head number 8

Activation function Gelu
Attention type Self-attention

Informer-TP

Model dimension 512
Head number 8

Activation function Gelu
Attention type ProbSparse-Attention

3.4. Results
3.4.1. Model Comparison

To verify the effectiveness of Informer-TP, we compare the proposed methods with
LSTM-Seq2Seq, LSTM-Seq2Seq-Attention, ConvLSTM-Seq2Seq, and Transformer models.
The dataset processing is consistent with the description in Section 3.1, and the experimental
parameters match those in Section 3.3. For each method, the input lengths are fixed at 36,
42, and 24, while the output lengths are set to 24, 18, and 12, respectively.

(1) LSTM-Seq2Seq [20]: This model uses LSTM units to capture long-term dependen-
cies in sequence data, enabling it to leverage past information for future predictions. Its
recursive mechanism enhances the understanding of the structure and patterns within the
sequence data.

(2) LSTM-Seq2Seq-Attention [21]: The addition of the attention mechanism improves
the LSTM-Seq2Seq model by dynamically focusing on relevant parts of the input sequence
during output generation, enhancing both encoding and decoding capabilities.

(3) ConvLSTM-Seq2Seq [19]: This model combines convolution operations to extract
spatial features with LSTM units to retain long-term dependencies. It effectively captures
local structures and patterns, providing strong representation and prediction capabilities
for time series data.

(4) Transformer [36]: Utilizing a self-attention mechanism, the Transformer model
dynamically focuses on different parts of the input sequence while generating the output.
It effectively captures long-range dependencies without being constrained by sequence
length, using positional encoding to maintain the order of positions in the sequence.

Table 4 shows the prediction results of the five models under different input-output
conditions. Informer-TP consistently performs best across all settings, followed by the
Transformer model. For predicting 12 points, the errors of the Transformer and Informer-TP
models are very close, whereas ConvLSTM-Seq2Seq performs the worst. As prediction
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length increases, errors for all models increase, but Informer-TP shows a smaller error
increase compared to the Transformer, indicating better long-term prediction effectiveness.
ConvLSTM-Seq2Seq has the smallest overall error increase, but it shows the largest error
increase when predicting 18 points and the smallest when predicting 24 points. Similarly,
LSTM-Seq2Seq-Attention has a smaller error increase when predicting 24 points than when
predicting 18 points. This may be because more input points are required for predicting
18 points than for 24 points, and these models are more sensitive to longer input sequences,
leading to greater error due to interference. Despite this, the overall error increase for
ConvLSTM-Seq2Seq and LSTM-Seq2Seq-Attention is still smaller than that for LSTM-
Seq2Seq, making them more effective for longer predictions. ConvLSTM-Seq2Seq, in
particular, shows a smaller overall error increase compared to LSTM-Seq2Seq-Attention,
making it better for longer sequence predictions.

Table 4. Prediction results of the 5 models on the test set for different input and output points.

Number of Forecast Points Model MSE (10−4) MAE (10−2) HAV (km)

p = 24, q = 12

LSTM-Seq2Seq 1.2023 0.6024 0.9948
LSTM-Seq2Seq-Attention 2.0374 0.7101 1.1768

ConvLSTM-Seq2Seq 3.1505 0.8427 1.3890
Transformer 0.8154 0.4201 0.7332
Informer-TP 0.8272 0.4176 0.7288

p = 42, q = 18

LSTM-Seq2Seq 2.7829 0.8612 1.4204
LSTM-Seq2Seq-Attention 4.2680 1.0219 1.6850

ConvLSTM-Seq2Seq 7.0358 1.1840 1.9660
Transformer 2.7212 0.7467 1.2560
Informer-TP 2.5064 0.7008 1.1883

p = 36, q = 24

LSTM-Seq2Seq 8.3109 1.6781 1.9069
LSTM-Seq2Seq-Attention 10.2782 1.7757 1.9892

ConvLSTM-Seq2Seq 7.2701 1.3528 2.0011
Transformer 6.2514 1.1352 1.8776
Informer-TP 5.4873 1.0711 1.7829

To further evaluate the performance of different models in predicting trajectories of
varying lengths in different scenarios, this paper selects linear and turning trajectories in
four different scenarios to predict new trajectories and records the maximum, minimum,
and average values of the three metrics in each scenario. The prediction results are shown
in Tables 5–7, and the visualization results are shown in Figures 4–6.

From Tables 5–7, it can be observed that when predicting 12 points, the Transformer
performs better than the Informer-TP. However, as the prediction length increases, Informer-
TP’s performance surpasses all other models. When using 42 input points to predict
18 points, the errors for the three Seq2Seq models increase significantly. Conversely, when
using 36 input points to predict 24 points, the prediction errors decrease, sometimes even
outperforming the Transformer. This indicates that these three models are highly sensitive
to the input length. Overall, Informer-TP demonstrates the best performance and has a
distinct advantage in long-sequence predictions.

Table 5. Prediction results of the 5 models for the next 12 points.

Model Statistics MSE (10−4) MAE (10−2) HAV (km)

LSTM-Seq2Seq
Max 0.6344 0.6483 1.2278
Min 0.0705 0.2312 0.3709

Average 0.3279 0.4710 0.7901
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Table 5. Cont.

Model Statistics MSE (10−4) MAE (10−2) HAV (km)

LSTM-Seq2Seq-Attention
Max 0.7646 0.7742 1.3353
Min 0.0760 0.2230 0.3786

Average 0.4489 0.5444 0.9202

ConvLSTM-Seq2Seq
Max 2.6075 1.4190 2.2840
Min 0.0507 0.1762 0.2945

Average 0.8587 0.6470 1.0595

Transformer
Max 0.3178 0.4301 0.7383
Min 0.0099 0.0695 0.1843

Average 0.0934 0.1777 0.3460

Informer-TP
Max 0.3360 0.4522 0.7584
Min 0.0141 0.0862 0.1973

Average 0.1213 0.2306 0.4230

Table 6. Prediction results of the 5 models for the next 18 points.

Model Statistics MSE (10−4) MAE (10−2) HAV (km)

LSTM-Seq2Seq
Max 5.2781 2.1135 3.2104
Min 0.1151 0.2688 0.4594

Average 1.4683 0.8132 1.2835

LSTM-Seq2Seq-Attention
Max 4.9573 1.8517 2.9739
Min 0.1455 0.3423 0.5690

Average 1.6515 0.8801 1.4802

ConvLSTM-Seq2Seq
Max 4.0741 1.3873 2.5666
Min 0.0586 0.2048 0.3201

Average 1.1498 0.5992 1.0659

Transformer
Max 0.6558 0.5102 0.9139
Min 0.1267 0.3025 0.5245

Average 0.3738 0.4239 0.7361

Informer-TP
Max 0.1626 0.3043 0.5163
Min 0.0331 0.1091 0.2538

Average 0.1183 0.2372 0.4252

Table 7. Prediction results of the 5 models for the next 24 points.

Model Statistics MSE (10−4) MAE (10−2) HAV (km)

LSTM-Seq2Seq
Max 3.4489 1.3835 2.4952
Min 0.1239 0.2687 0.4542

Average 1.0370 0.6073 1.0589

LSTM-Seq2Seq-Attention
Max 0.7626 0.6816 1.1077
Min 0.2097 0.3857 0.6449

Average 0.5092 0.5773 0.9424

ConvLSTM-Seq2Seq
Max 2.7302 1.3659 2.1866
Min 0.1444 0.2720 0.5292

Average 1.1275 0.7266 1.2244

Transformer
Max 1.8381 1.0266 1.5882
Min 0.8385 0.5860 1.0264

Average 1.1311 0.7809 1.2748



J. Mar. Sci. Eng. 2024, 12, 1269 14 of 24

Table 7. Cont.

Model Statistics MSE (10−4) MAE (10−2) HAV (km)

Informer-TP
Max 0.9524 0.6545 1.0622
Min 0.1907 0.2845 0.5275

Average 0.5151 0.4649 0.7919

Figure 4. Prediction results of the 5 models for 12 points in different scenarios. (a) Predicted trajectory
of the next 12 points for a ship navigating towards the lower left; (b) Predicted trajectory of the next
12 points for a ship navigating towards the upper right; (c) Predicted trajectory of the next 12 points
for a ship curving towards the lower left; (d) Predicted trajectory of the next 12 points for a ship
navigating towards the lower right.

In Figure 4a, all models demonstrate relatively stable performance, with Informer-TP,
Transformer, and ConvLSTM-Seq2Seq showing good fitting to the real trajectories. In
Figure 4b, Informer-TP and Transformer effectively fit the early trajectories, while the other
three models perform better in fitting the later trajectories. In Figure 4c, all models exhibit
some degree of deviation, with LSTM-Seq2Seq and ConvLSTM-Seq2Seq showing larger
initial position biases. In Figure 4d, all three Seq2Seq models show unstable trajectories,
particularly ConvLSTM-Seq2Seq, which exhibits more fluctuation in trajectory trends.
Overall, only Informer-TP and Transformer maintain stable trajectories across various
scenarios, while the other three models fail to fit all scenarios well.

In Figure 5a, only the trajectory length of Informer-TP closely matches the length of
the real trajectory, while trajectories of other models are longer than the real trajectory.
In Figure 5b, all models can fit the real trajectory well. In Figure 5c, none of the models
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capture the initial turning trend, and only Informer-TP shows a trajectory length more like
the real one. In Figure 5d, trajectories of Informer-TP and Transformer remain stable, while
trajectories of other models exhibit significant deviations, with LSTM-Seq2Seq-Attention
showing the largest deviation. Overall, Informer-TP demonstrates increasing advantages;
even as the prediction length increases, it can still fit the real trajectory well.

Figure 5. Prediction results of the 5 models for 18 points in different scenarios. (a) Predicted trajectory
of the next 18 points for a ship navigating towards the lower left; (b) Predicted trajectory of the next
18 points for a ship navigating towards the upper right; (c) Predicted trajectory of the next 18 points
for a ship curving towards the lower left; (d) Predicted trajectory of the next 18 points for a ship
navigating towards the lower right.

In Figure 6a, Informer-TP exhibits deviation in the latter half, while LSTM-Seq2Seq
shows the best fitting, almost overlapping with the real trajectory. In Figure 6b, Informer-
TP also shows a deviation in the latter half, while LSTM-Seq2Seq overall fits better. In
Figure 6c, although Informer-TP captures the trend, there is still some deviation overall,
with ConvLSTM-Seq2Seq showing the best fitting. In Figure 6d, only Informer-TP fits
the real trajectory well, while all other models exhibit deviations. In summary, when
predicting long sequences, all models perform well in some scenarios, but only Informer-
TP consistently maintains stable trajectories across all scenarios. Other models tend to
exhibit some degree of deviation, indicating that Informer-TP still outperforms them.
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Figure 6. Prediction results of the 5 models for 24 points in different scenarios. (a) Predicted trajectory
of the next 24 points for a ship navigating towards the lower left; (b) Predicted trajectory of the next
24 points for a ship navigating towards the upper right; (c) Predicted trajectory of the next 24 points
for a ship curving towards the lower left; (d) Predicted trajectory of the next 24 points for a ship
navigating towards the lower right.

3.4.2. Trajectory Prediction with Different Input and Output Lengths

To evaluate the influence of the Ltoken and output length on the performance of the
Informer-TP model, we fix the output length at q = 12, 18, and 24, and set the Ltoken length
to p = 18, 24, 30, 36, 42, and 48, respectively. Each output length is tested with four different
Ltoken lengths to assess their impact on the model. Other parameters of the model remain
consistent apart from the Ltoken and output length.

To assess the overall performance, we validate different Ltoken and output lengths on
the test set, recording the average evaluation metrics for each Ltoken and output length
combination. The average prediction results for different output points with varying Ltoken
sizes on the test set are presented in Table 8.

In Table 8, for an output length of q = 12, the model with Ltoken length p = 24 exhibits
the lowest average MAE, and HAV values. For an output length of q = 18, the model
with Ltoken length p = 42, and for an output length of q = 24, the model with Ltoken length
p = 36 demonstrates the smallest average MSE, MAE, and HAV values. When the output
length q = 12, p = 36 has the largest MSE, MAE, and HAV, where the HAV of 0.7935 is
8.87% higher than the HAV of 0.7288 for p=24. When the output length q = 18, p = 24 has
the largest MSE, MAE, and HAV, where the HAV of 1.4211 is 19.59% higher than the
HAV of 1.1883 for p = 42. When the output length q = 24, p = 30 has the largest HAV
and MAE, where the HAV of 2.0678 is 15.98% higher than the HAV of 1.7829 when
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p = 36. It can be observed that the performance of the model is influenced by differ-
ent Ltoken lengths. Among the different Ltoken lengths for the three output lengths, we
compare the best-performing results. For q = 12, compared to q = 18, HAV increases by
63.05%, and for q = 24, it increases by 144.63%.

Table 8. Average prediction results for different output points with varying Ltoken sizes on the test set.

Number of
Forecast Points

Number of
Start Token Points MSE (10−4) MAE (10−2) HAV (km)

q = 12

p = 36 0.9084 0.4557 0.7935
p = 30 0.8605 0.4421 0.7680
p = 24 0.8272 0.4176 0.7288
p = 18 0.8206 0.4422 0.7686

q = 18

p = 42 2.5064 0.7008 1.1883
p = 36 2.6451 0.7450 1.2666
p = 30 2.5647 0.7368 1.2575
p = 24 2.9189 0.8371 1.4211

q = 24

p = 48 5.8946 1.0983 1.8320
p = 42 6.4256 1.2132 2.0267
p = 36 5.4873 1.0711 1.7829
p = 30 6.3803 1.2270 2.0678

To further investigate the impact of the Ltoken and output length of the model, we
conducted experiments on trajectories from four different scenarios. We recorded the
maximum, minimum, and average values of each evaluation metric for each experiment
group. The prediction results for different Ltoken sizes and output sizes are shown in
Tables 9–11, and the predicted results are illustrated in Figures 7–9.

From Tables 9–11, it can be observed that across different scenarios, p = 24 for pre-
dicting 12 points, p = 42 for predicting 18 points, and p=36 for predicting 24 points have
the smallest maximum and average values among the three metrics. On the other hand,
p = 30 for predicting 12, 18, and 24 points has the smallest minimum values among the
three metrics. In summary, the model performs best when Ltoken is set to 24, 42, and 36 for
predicting 12, 18, and 24 points, respectively.

Table 9. Prediction results for 12 points in different scenarios with varying Ltoken sizes.

Number of Start
Token Points Statistics MSE (10−4) MAE (10−2) HAV (km)

p = 36
Max 0.5891 0.5784 0.9976
Min 0.0641 0.2063 0.3583

Average 0.2665 0.3520 0.6258

p = 30
Max 0.3998 0.5167 0.8418
Min 0.0130 0.0887 0.1998

Average 0.1832 0.2824 0.4926

p = 24
Max 0.3422 0.4691 0.7745
Min 0.0269 0.1448 0.2633

Average 0.1542 0.2676 0.4871

p = 18
Max 0.4051 0.5239 0.8589
Min 0.0747 0.2060 0.3674

Average 0.2067 0.3336 0.5856
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Table 10. Prediction Results for 18 Points in Different Scenarios with Varying Ltoken Sizes.

Number of Start
Token Points Statistics MSE (10−4) MAE (10−2) HAV (km)

p = 42
Max 0.7440 0.6309 1.0927
Min 0.0461 0.1598 0.3144

Average 0.3651 0.3871 0.6669

p = 36
Max 0.8680 0.7205 1.1763
Min 0.0759 0.2072 0.3757

Average 0.3737 0.4168 0.7127

p = 30
Max 1.0501 0.8249 1.3120
Min 0.0266 0.1311 0.2637

Average 0.4559 0.4501 0.7719

p = 24
Max 1.7421 0.9906 1.5976
Min 0.0529 0.1770 0.3147

Average 0.7285 0.5439 0.8942

Table 11. Prediction results for 24 points in different scenarios with varying Ltoken sizes.

Number of Start
Token Points Statistics MSE (10−4) MAE (10−2) HAV (km)

p = 48
Max 1.8091 0.9716 1.6747
Min 0.0919 0.1935 0.3501

Average 0.6866 0.5152 0.8934

p = 42
Max 3.4964 1.3182 2.0660
Min 0.2065 0.3371 0.5483

Average 1.3686 0.7584 1.2297

p = 36
Max 1.1638 0.7365 1.3757
Min 0.0754 0.2247 0.3887

Average 0.4720 0.4298 0.7752

p = 30
Max 4.7201 1.6097 2.5657
Min 0.0440 0.1619 0.3065

Average 1.7028 0.7801 1.2526

In Figure 7a, we can observe that all predicted trajectories exhibit some degree of
deviation from the real trajectory. In Figure 7b, the trajectory with p = 24 is closest to the
real trajectory, while in Figure 7c, p = 30 is closest to the real trajectory. In Figure 7d, only
p = 24 is closest to the real trajectory. When there is a significant turning trend, trajectories
predicted with p = 36 and p = 30 exhibit larger deviations. Although p = 18 has slightly less
deviation, there is still some distance from the real trajectory. Overall, trajectories predicted
with p = 24 are the most similar to the real trajectory.

In Figure 8a, trajectories with p = 42 and p = 30 are relatively close to the real trajectory.
In Figure 8b, p = 24 aligns more closely with the real trajectory. In Figure 8c, p = 24 matches
the front portion of the real trajectory but fails to capture the turning trend. In Figure 8d,
only p = 42 closely resembles the real trajectory, with a similar trajectory length. It can be
observed that the trajectory lengths of all trajectories are relatively consistent, but there
is some deviation in capturing the turning trends. Overall, trajectories predicted with
p = 42 are the most similar to the real trajectory.



J. Mar. Sci. Eng. 2024, 12, 1269 19 of 24

Figure 7. Results of predicting 12 points in different scenarios with varying Ltoken sizes. (a,b) Predicted
trajectory of the next 12 points for a ship navigating towards the lower left; (c,d) Predicted trajectory
of the next 12 points for a ship curving towards the lower right.

Figure 8. Results of predicting 18 points in different scenarios with varying Ltoken sizes. (a,b) Predicted
trajectory of the next 18 points for a ship navigating towards the lower left; (c,d) Predicted trajectory
of the next 18 points for a ship curving towards the lower right.
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Figure 9. Results of predicting 24 points in different scenarios with varying Ltoken sizes. (a,b) Predicted
trajectory of the next 24 points for a ship navigating towards the lower left; (c,d) Predicted trajectory
of the next 24 points for a ship curving towards the lower right.

In Figure 9a, the trajectory with p = 36 closely resembles the real trajectory, with a
similar trajectory length and spacing between trajectory points. In Figure 9b, the trajectory
with p = 36 is almost identical to the real trajectory, with the two trajectories overlapping
closely. In Figure 9c, the trajectory with p = 30 closely follows the real trajectory, with
a similar trajectory length. In Figure 9d, only the trajectory with p = 36 aligns with the
direction of the real trajectory, while the directions of the other three trajectories deviate.
However, the trajectory with p = 36 has a slightly longer trajectory length. It can be observed
that trajectories with p = 48 are consistently longer in all scenarios and fail to capture the
turning trend effectively. Trajectories with p = 42 and p = 30 show relatively similar trends
to the real trajectory, but still exhibit some deviation. Overall, trajectories predicted with
p = 36 are the most similar to the real trajectory.

4. Discussion

This paper proposes a time series prediction model, Informer-TP, which is based on
historical AIS data of ships. Built upon the Informer model, this model enhances the ability
to effectively predict future ship trajectories. Comparative analysis with other models
demonstrates the effectiveness of Informer-TP in predicting ship trajectories.

Through a series of comparative experiments, we observed that the Informer-TP
model demonstrates lower errors and higher accuracy in vessel trajectory prediction tasks.
Specifically, when predicting 12, 18, and 24 points, the Informer-TP model reduced the
HAV error by 26.74%, 16.34%, and 6.5%, respectively, compared to the LSTM-Seq2Seq
model. Relative to the LSTM-Seq2Seq-Attention model, the HAV error reductions were
38.07%, 29.48%, and 10.37%, respectively. In comparison to the ConvLSTM-Seq2Seq model,
the HAV error reductions were 47.53%, 39.56%, and 10.9%, respectively. Furthermore, the
Informer-TP model outperformed the Transformer model, with HAV error reductions of
0.6%, 5.39%, and 5.04% for the respective prediction points. These results indicate that the
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Informer-TP model is superior to the LSTM-Seq2Seq, LSTM-Seq2Seq-Attention, ConvLSTM-
Seq2Seq, and Transformer models in terms of predictive accuracy. Moreover, we found
that the length of Ltoken influences the prediction performance of the Informer-TP model.
For a prediction length of 12, an Ltoken length of 24 yields the optimal performance. For a
prediction length of 18, an Ltoken length of 42 is optimal, and for a prediction length of 24,
an Ltoken length of 36 is most effective. However, other Seq2Seq models do not necessarily
exhibit improved predictive performance with increased input length. Therefore, by
increasing the input step length, the Informer-TP model can reduce prediction errors when
forecasting trajectories of varying lengths. This adjustment also highlights the model’s
capability in long-sequence predictions.

The superior performance of the Informer-TP model can be attributed to its unique
attention mechanism, which effectively extracts temporal features from trajectory data,
thereby reducing prediction errors. Compared to several other models, it significantly
enhances prediction accuracy. The prediction capability of the Transformer model is
second only to the Informer-TP, possibly due to its powerful self-attention mechanism,
but it is not as effective as the Informer-TP model in long-sequence prediction. The
LSTM-Seq2Seq model excels in short-term predictions but shows a substantial increase
in error for long-sequence predictions. On the other hand, the LSTM-Seq2Seq-Attention
and ConvLSTM-Seq2Seq models demonstrate smaller error increases, indicating greater
stability in long-sequence predictions, although they exhibit larger errors in short-term
predictions. When the input step length is set to 42, these three models experience a
sharp rise in errors, indicating their sensitivity to this parameter, which can adversely
affect their prediction capabilities. The Informer-TP model, with its attention distillation
mechanism, achieves higher prediction efficiency. To validate the prediction efficiency of
the Informer-TP model, we used the test set to predict the vessel trajectory for the next
24 points and recorded the time required by each model. The results, as shown in Table 12,
demonstrate that the Informer-TP model exhibits the lowest computation time, while the
LSTM-Seq2Seq-Attention model takes the longest time.

Table 12. Computation time of different models when predicting 24 points.

Method Prediction Time (s)

LSTM-Seq2Seq 9.0110
LSTM-Seq2Seq-Attention 35.2782

ConvLSTM-Seq2Seq 7.6746
Transformer 4.8682
Informer-TP 4.7496

In summary, by comparing with other baseline models and analyzing the impact
of different Ltoken lengths on the model, it has been demonstrated that the Informer-TP
model can effectively predict long-term ship trajectories. Furthermore, by comparing
the prediction times of various models on the test set, it is shown that the Informer-TP
model has a higher prediction efficiency. These experiments indicate that the Informer-TP
model can efficiently and accurately predict long-term ship trajectories, consistent with the
proposed conclusions. Compared to previous studies, this research provides a new method
for long-term ship trajectory prediction. It significantly contributes to the development of
maritime safety and intelligence.

5. Conclusions

For the long-term trajectory prediction of ships, this study proposes the method of
Informer-TP for ship trajectory sequence prediction. To mitigate the impact of AIS data on
prediction accuracy, this paper preprocesses AIS data using methods such as data cleaning,
DBSCAN clustering, and cubic spline interpolation and divides trajectories into segments.
Informer-TP is then used to predict ship trajectories, and compared with LSTM-Seq2Seq,
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LSTM-Seq2Seq-Attention, ConvLSTM-Seq2Seq, and Transformer models. The performance
of the models with various output lengths is also explored.

Experimental results demonstrate that Informer-TP performs well in various scenarios,
and with increasing prediction length, it exhibits the lowest prediction errors. Therefore,
Informer-TP has the best overall performance. Compared with existing methods, the
proposed Informer-TP method for ship trajectory prediction provides a new approach for
ship trajectory planning, autonomous navigation, and risk avoidance, contributing to the
safety and efficiency of ship navigation in complex marine environments.

5.1. Limitations

Although the prediction accuracy of the Informer-TP model used in this study is higher
than that of the baseline model, the effectiveness of trajectory prediction for trajectories
with frequently changing or significantly varying COG is still limited. Additionally, the
model does not account for external factors such as weather conditions and interactions
between ships.

5.2. Future Research

Future work should incorporate environmental information into the features to im-
prove the accuracy of trajectory prediction. Additionally, we should explore models that
account for interactions between ships to enhance the prediction accuracy for trajectories
with frequently changing or significantly varying COG. These efforts aim to develop a
more practical method for ship trajectory prediction.

Author Contributions: Conceptualization, C.X. and H.S.; methodology, C.X. and H.S.; software, H.S.;
validation, C.X. and J.L.; investigation, C.X. and H.S.; data curation, C.X. and H.S.; writing—original
draft, H.S.; writing—review and editing, C.X., X.W. and R.G.; visualization, H.S.; supervision, C.X
and H.S.; project administration, C.X. and X.W.; funding acquisition, C.X. and X.W. All authors have
read and agreed to the published version of the manuscript.

Funding: The research was supported by the National Natural Science Foundation of China (Grant
Nos. 62002105 and 62201203), the Science and Technology Program of Hubei Province (Grant No.
2021BLB171), and the Chunhui Plan Collaborative Research Project, Ministry of Education, China
(Grant No. HZKY20220350).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Praetorius, G.; Lützhöft, M. Decision support for vessel traffic service (VTS): User needs for dynamic risk management in the

VTS. Work 2012, 41, 4866–4872. [CrossRef]
2. Liu, H.; Jurdana, I.; Lopac, N.; Wakabayashi, N. BlueNavi: A microservices architecture-styled platform providing maritime

information. Sustainability 2022, 14, 2173. [CrossRef]
3. Huai, S.; Zhang, S.; Wang, X.; Zhang, J. A Novel Adaptive Noise Resistance Method Used for AIS Real-Time Signal Detection.

Chin. J. Electron. 2020, 29, 327–336. [CrossRef]
4. Vodas, M.; Pelekis, N.; Theodoridis, Y.; Ray, C.; Karkaletsis, V.; Petridis, S.; Miliou, A. Efficient ais data processing for

environmentally safe shipping. SPOUDAI J. Econ. Bus. 2013, 63, 181–190.
5. Zhao, L.; Shi, G.; Yang, J. Ship trajectories pre-processing based on AIS data. J. Navig. 2018, 71, 1210–1230. [CrossRef]
6. Mou, J.M.; Van der Tak, C.; Ligteringen, H. Study on collision avoidance in busy waterways by using AIS data. Ocean. Eng. 2010,

37, 483–490. [CrossRef]
7. Rong, H.; Teixeira, A.; Soares, C.G. Data mining approach to shipping route characterization and anomaly detection based on

AIS data. Ocean. Eng. 2020, 198, 106936. [CrossRef]
8. Xue, Y.; Liu, Y.; Xue, G.; Chen, G. Identification and prediction of ship maneuvering motion based on a Gaussian process with

uncertainty propagation. J. Mar. Sci. Eng. 2021, 9, 804. [CrossRef]

http://doi.org/10.3233/WOR-2012-0779-4866
http://dx.doi.org/10.3390/su14042173
http://dx.doi.org/10.1049/cje.2020.01.011
http://dx.doi.org/10.1017/S0373463318000188
http://dx.doi.org/10.1016/j.oceaneng.2010.01.012
http://dx.doi.org/10.1016/j.oceaneng.2020.106936
http://dx.doi.org/10.3390/jmse9080804


J. Mar. Sci. Eng. 2024, 12, 1269 23 of 24

9. Zhang, C.; Bin, J.; Wang, W.; Peng, X.; Wang, R.; Halldearn, R.; Liu, Z. AIS data driven general vessel destination prediction: A
random forest based approach. Transp. Res. Part C Emerg. Technol. 2020, 118, 102729. [CrossRef]

10. Liu, J.; Shi, G.; Zhu, K. Vessel trajectory prediction model based on AIS sensor data and adaptive chaos differential evolution
support vector regression (ACDE-SVR). Appl. Sci. 2019, 9, 2983. [CrossRef]

11. Zhou, H.; Chen, Y.; Zhang, S. Ship trajectory prediction based on BP neural network. J. Artif. Intell. 2019, 1, 29. [CrossRef]
12. Zhang, J.; Wang, H.; Cui, F.; Liu, Y.; Liu, Z.; Dong, J. Research into ship trajectory prediction based on an improved LSTM network.

J. Mar. Sci. Eng. 2023, 11, 1268. [CrossRef]
13. Park, J.; Jeong, J.; Park, Y. Ship trajectory prediction based on bi-LSTM using spectral-clustered AIS data. J. Mar. Sci. Eng. 2021,

9, 1037. [CrossRef]
14. Fu, H.; Gu, Z.; Wang, H.; Wang, Y. Ship motion prediction based on ConvLSTM and XGBoost variable weight combination model.

In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.
15. Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings

of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–8.

16. Jia, H.; Yang, Y.; An, J.; Fu, R. A ship trajectory prediction model based on attention-BILSTM optimized by the whale optimization
algorithm. Appl. Sci. 2023, 13, 4907. [CrossRef]

17. Li, W.; Ren, J. Ship Roll Motion Prediction Using ConvLSTM with Attention Mechanism. In Proceedings of the 2022 41st Chinese
Control Conference (CCC), Hefei, China, 25–27 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 5616–5620.

18. Bao, K.; Bi, J.; Gao, M.; Sun, Y.; Zhang, X.; Zhang, W. An improved ship trajectory prediction based on AIS data using MHA-BiGRU.
J. Mar. Sci. Eng. 2022, 10, 804. [CrossRef]

19. Wu, W.; Chen, P.; Chen, L.; Mou, J. Ship Trajectory Prediction: An Integrated Approach Using ConvLSTM-Based Sequence-to-
Sequence Model. J. Mar. Sci. Eng. 2023, 11, 1484. [CrossRef]

20. Billah, M.M.; Zhang, J.; Zhang, T. A Method for Vessel’s Trajectory Prediction Based on Encoder Decoder Architecture. J. Mar. Sci.
Eng. 2022, 10, 1529. [CrossRef]

21. Jiang, F.; Wang, H.; Li, Y. VesNet: A Vessel Network for Jointly Learning Route Pattern and Future Trajectory. ACM Trans. Intell.
Syst. Technol. 2024, 34, 1–25. [CrossRef]

22. Lin, Z.; Yue, W.; Huang, J.; Wan, J. Ship trajectory prediction based on the TTCN-attention-GRU model. Electronics 2023, 12, 2556.
[CrossRef]

23. Chen, J.; Chen, H.; Zhao, Y.; Li, X. FB-BiGRU: A Deep Learning model for AIS-based vessel trajectory curve fitting and analysis.
Ocean. Eng. 2022, 266, 112898. [CrossRef]

24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.

25. Kenton, J.D.M.W.C.; Toutanova, L.K. Bert: Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, p. 2.

26. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

27. Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI
Conference on Artificial Intelligence 2023, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [CrossRef]

28. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence 2021, Virtual, 2–9 February 2021;
Volume 35, pp. 11106–11115.

29. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting.
Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430.

30. Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term
series forecasting. In Proceedings of the International Conference on Machine Learning PMLR, 2022, Baltimore, MD, USA,
17–23 July 2022; pp. 27268–27286.

31. Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-Complexity Pyramidal Attention for Long-Range
Time Series Modeling and Forecasting. In Proceedings of the International Conference on Learning Representations 2022, Virtual,
25 April 2022.

32. Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers.
arXiv 2023, arXiv:2211.14730.

33. Dong, L.; Wang, H.; Lou, J. An attention mechanism model based on positional encoding for the prediction of ship maneuvering
motion in real sea state. J. Mar. Sci. Technol. 2024, 29, 136–152. [CrossRef]

34. Jiang, D.; Shi, G.; Li, N.; Ma, L.; Li, W.; Shi, J. TRFM-ls: Transformer-based deep learning method for vessel trajectory prediction.
J. Mar. Sci. Eng. 2023, 11, 880. [CrossRef]

35. Zhao, W.; Wang, D.; Gao, K.; Wu, J.; Cheng, X. Large-Scale Long-Term Prediction of Ship AIS Tracks via Linear Networks with a
Look-Back Window Decomposition Scheme of Time Features. J. Mar. Sci. Eng. 2023, 11, 2132. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2020.102729
http://dx.doi.org/10.3390/app9152983
http://dx.doi.org/10.32604/jai.2019.05939
http://dx.doi.org/10.3390/jmse11071268
http://dx.doi.org/10.3390/jmse9091037
http://dx.doi.org/10.3390/app13084907
http://dx.doi.org/10.3390/jmse10060804
http://dx.doi.org/10.3390/jmse11081484
http://dx.doi.org/10.3390/jmse10101529
http://dx.doi.org/10.1145/3639370
http://dx.doi.org/10.3390/electronics12122556
http://dx.doi.org/10.1016/j.oceaneng.2022.112898
http://dx.doi.org/10.1609/aaai.v37i9.26317
http://dx.doi.org/10.1007/s00773-023-00978-x
http://dx.doi.org/10.3390/jmse11040880
http://dx.doi.org/10.3390/jmse11112132


J. Mar. Sci. Eng. 2024, 12, 1269 24 of 24

36. Nguyen, D.; Fablet, R. A Transformer Network with Sparse Augmented Data Representation and Cross Entropy Loss for
AIS-based Vessel Trajectory Prediction. IEEE Access 2024, 12, 21596–21609. [CrossRef]

37. Qiang, H.; Guo, Z.; Xie, S.; Peng, X. MSTFormer: Motion Inspired Spatial-temporal Transformer with Dynamic-aware Attention
for long-term Vessel Trajectory Prediction. arXiv 2023, arXiv:2303.11540.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2024.3349957

	Introduction
	Methodology
	Trajectory Prediction
	Informer-TP
	Input Representation of Informer
	ProbSparse Self-Attention
	Encoder
	Decoder
	Loss Function


	Experiment and Results
	Data Processing
	Evaluation Metrics
	Experimental Environment and Parameter Settings
	Results
	Model Comparison
	Trajectory Prediction with Different Input and Output Lengths


	Discussion
	Conclusions
	Limitations
	Future Research

	References

