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Abstract: Fatigue load modeling is crucial for optimizing and assessing the lifespan of floating wind
turbines. This study addresses the complex characteristics of fatigue loads on floating wind turbines
under the combined effects of wind and waves. We propose a fatigue load modeling approach
based on Vine copula theory and machine learning. Firstly, we establish an optimal joint probability
distribution model using Vine copula theory for the four-dimensional random variables (wind speed,
wave height, wave period, and wind direction), with model fit assessed using the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE). Secondly,
representative wind and wave load conditions are determined using Monte Carlo sampling based on
the established joint probability distribution model. Thirdly, fatigue load simulations are performed
using the high-fidelity simulator OpenFAST to compute Damage Equivalent Load (DEL) values for
critical components (blade root and tower base). Finally, utilizing measured wind and wave data
from the Lianyungang Ocean Observatory in the East China Sea, simulation tests are conducted.
We apply five commonly used machine learning models (Kriging, MLP, SVR, BNN, and RF) to
develop DEL models for blade root and tower base. The results indicate that the RF model exhibits
the smallest prediction error, not exceeding 3.9%, and demonstrates high accuracy, particularly in
predicting flapwise fatigue loads at the blade root, achieving prediction accuracies of up to 99.97%.
These findings underscore the effectiveness of our approach in accurately predicting fatigue loads
under real-world conditions, which is essential for enhancing the reliability and efficiency of floating
wind turbines.

Keywords: fatigue load; floating wind turbines; machine learning; vine copula

1. Introduction

With the increasing global demand for renewable energy, offshore wind power has
emerged as a highly promising energy development method. In 2022, the newly installed
offshore wind power capacity was 8.8 GW, bringing the global capacity to 64.3 GW and
continuing to grow [1]. According to GWEC market intelligence, China is projected to add
160 GW of offshore wind power capacity from 2025 to 2035, further solidifying its leading
position in this field [2]. Offshore renewable energy, especially wind power, is seen as a key
driver for decarbonizing the energy system and achieving net-zero emissions [3].

Compared to onshore wind technology, the primary advantage of offshore wind power
lies in its abundant wind and wave resources [4]. There are various types of foundations

J. Mar. Sci. Eng. 2024, 12, 1275. https://doi.org/10.3390/jmse12081275 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12081275
https://doi.org/10.3390/jmse12081275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-3982-8388
https://orcid.org/0000-0002-4694-0490
https://orcid.org/0000-0002-4662-1916
https://doi.org/10.3390/jmse12081275
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12081275?type=check_update&version=3


J. Mar. Sci. Eng. 2024, 12, 1275 2 of 26

for offshore wind turbines, including monopile, jacket, tripod, and floating foundations.
Each type has its own advantages and application scenarios, depending on the water depth
and seabed conditions [5,6]. Floating wind turbines have broad application prospects
in deep-sea environments but currently suffer from high levelized costs of electricity [7].
Optimizing the design and operation of floating wind turbines requires modeling the
fatigue loads on key components under complex wind and wave conditions to accurately
assess their performance. Elzbieta et al. [8] found that modeling marine environmental
characteristics plays a core role in evaluating the loads and responses of marine structures.
Their findings indicate that more information on low-level atmospheric wind profiles and
the non-stationarity and heterogeneity of the wind-wave environment is needed when
designing and analyzing marine structures.

To model fatigue loads accurately, it is essential to analyze the sea state of specific
regions in detail to sample representative environmental conditions as inputs for the fatigue
load models. Researchers have proposed various methods to model the joint probability
distribution of environmental variables, with copula-based methods, particularly Vine cop-
ula [9], gaining attention for their unique advantage in describing multivariate dependence
structures. Li et al. [10] studied wind-wave correlations along the southern coast of Alaska
using C-Vine copula theory, while Zhao et al. [11] conducted a multivariate probability
analysis of wind-wave interactions on offshore wind turbines using Vine copula. How-
ever, most studies focus on two- and three-dimensional marine environmental parameters,
which are insufficient for accurately simulating complex marine environments. Accurately
predicting fatigue loads of floating offshore wind turbines (FOWTs) requires considering
the environmental load conditions over their entire lifecycle, including mean wind speed,
significant wave height, peak wave period, and wind direction [12], and establishing
joint probability distributions of these variables based on long-term meteorological and
oceanographic data from the site.

In wind turbine load performance research and engineering applications, researchers
typically use rainflow counting [13] and the Palmgren–Miner [14] rule to calculate damage
equivalent loads (DEL) as fatigue load evaluation metrics. In fatigue load modeling, on-
shore wind turbines have been extensively studied. Yang et al. [15] proposed a data-driven
fatigue load modeling method for large wind turbines under active power regulation, using
arbitrary polynomial chaos expansion and support vector regression (SVR) to model DEL
data. He et al. [16] proposed an SVR-based method for yaw control fatigue load and power
prediction to estimate DEL and power accurately. Woo et al. [17] developed a machine
learning method based on long short-term memory (LSTM) models to predict wind turbine
loads using wind data directly. Yao et al. [18] proposed a deep neural network (DNN)-based
data-driven modeling method for wind turbine DEL, establishing relationships between
easily measurable parameters such as wind speed and power and DEL. These studies
demonstrate the effectiveness of machine learning methods in onshore wind turbine fatigue
load modeling, but research on offshore wind turbines, especially floating wind turbines,
remains in its infancy. Sun et al. [19] used polynomial regression to establish a compre-
hensive database of DEL for floating wind turbine towers and blades based on aeroelastic
simulation results, providing quantitative fatigue load assessment. Although polynomial
regression simplifies calculations and offers effective fatigue load assessment, traditional
data-driven methods struggle to capture nonlinear and high-dimensional characteristics in
complex marine environments, limiting their modeling accuracy.

In recent years, artificial neural networks (ANNs) have gained widespread attention
as a powerful tool capable of handling complex nonlinear relationships and learning from
large datasets [20,21]. ANNs show significant potential in fatigue load estimation, pre-
dicting fatigue loads by learning historical data on environmental variables and turbine
responses [22]. Their flexibility and robustness make them an attractive choice for renew-
able energy modeling, with demonstrated effectiveness in various applications [23–25].
However, applying computational fluid dynamics (CFD) techniques to simulate both fixed
and floating wind turbines has become common, providing detailed aerodynamic and
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hydrodynamic data to understand the impact of complex climate conditions on turbine
performance. Yang et al. [26,27] simulated a semi-submersible floating turbine using CFD,
comparing it with medium-fidelity simulation tools to verify accuracy. Despite the chal-
lenges of high-performance computing requirements, long simulation times, and high costs,
CFD remains a crucial tool.

To address research gaps, this paper proposes a fatigue load modeling method for
floating wind turbines based on Vine copula theory and machine learning. The main
contributions are as follows:

(1) Establishing a joint probability distribution model of wind and wave elements
based on Vine copula theory: Using long-term meteorological and oceanographic data
from marine sites, selecting appropriate wind and wave elements as variables, and
constructing a long-term joint probability distribution model using the C-Vine copula
model to capture dependencies among multivariate wind and wave environments;

(2) Developing a data-driven load model using machine learning: Using five machine
learning algorithms (Kriging, MLP, SVR, BNN, and RF) to build data-driven models.
Input variables include easily measurable data such as wind and wave environment
variables (wind speed, wave height, wave period, wind direction) and wind turbine
motion state variables (yaw, rotor speed, pitch angle), selected through correlation
analysis. Output variables are DEL for two key components of the wind turbine:
blade root and tower base;

(3) Validating the proposed method with real marine site data: Using measured wind
and wave data from the Lianyungang marine observation station in the East China
Sea, conducting OpenFAST simulation experiments and actual data verification to
evaluate the performance and accuracy of the proposed method.

2. Methodologies

The fatigue load modeling method proposed in this study mainly includes three parts:
(1) Establishing a four-dimensional joint probability distribution model of wind and wave
variables based on Vine copula theory. (2) Determining representative wind and wave
load conditions using the Monte Carlo sampling method. (3) Establishing a data-driven
fatigue load model for floating wind turbines based on machine learning models. The
schematic diagram of the methodology in this paper is shown in Figure 1. The abbreviated
terms involved in the principle of the method proposed in this paper are listed in the
Abbreviations section in the back matter.
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Figure 1. The schematic diagram of the methodology. Figure 1. The schematic diagram of the methodology.

2.1. Joint Probability Distribution Model of Wind and Wave Elements

To consider the long-term combined effects of wind and waves on FOWTs, this paper
uses the C-Vine copula to construct the joint probability density function (PDF) of wind
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and wave variables. For clarity, a four-dimensional random variable is considered, and
its probability density function can be expressed using the C-Vine copula structure as
follows [28]:

f (x1, x2, x3, x4) = c12(F1, F2)c13(F1, F3)c14(F1, F4)c23|1(F2|1, F3|1)c24|1(F2|1, F4|1)×c34|12(F3|12, F4|12) f1 f2 f3 f4 (1)

Parameters involved in the calculation of C-Vine copula are shown in Table 1.

Table 1. Parameters involved in the calculation of C-Vine copula and their descriptions.

Parameter Description

f (x1, x2, x3, x4)
the joint probability density function, xi is the
random variable, i indicates the number
of variables

c1i(·, ·), i = 2, 3, 4, c2i|1(·, ·), i = 3, 4, c34|12(·, ·) the bivariate copula density functions

Fi
the marginal cumulative distribution function
of the random variable xi(i = 1, 2, 3, 4)

Fi|1, i = 2, 3, 4, Fi|12, i = 3, 4 the conditional marginal distributions
fi the corresponding PDF of the random variable xi

According to Equation (1), the joint probability density function is expressed as the
product of the marginal probability density functions, marginal cumulative distribution
functions, conditional marginal distributions, and a series of bivariate copula density
functions. By establishing the marginal distribution models of the wind and wave variables,
the marginal probability density functions, marginal cumulative distribution functions,
and conditional marginal distributions can be obtained. Then, the optimal bivariate copula
models are selected from the candidates to obtain their corresponding density functions,
and the joint distribution of the wind and wave variables is established using the C-Vine
structure. This paper models the marginal distribution and joint distribution separately.

2.1.1. Marginal Distribution Modeling

In marginal distribution modeling, common unimodal distribution models include
the Weibull [29], Generalized Extreme Value (GEV) [30], and t-distribution with scale
and location parameters [31]. Common multimodal distributions are often fitted using
mixture models, such as the mixture Gamma distribution [32] and mixture Gaussian
distribution [33].

When fitting these probability distribution models to the wind and wave variables,
this paper employs maximum likelihood estimation for parameter estimation. To evaluate
the goodness of fit of different probability distribution models, criteria such as AIC, BIC,
and RMSE are used:

AIC = −2∑n
i=1ln f (xi) + 2k (2)

BIC = −2∑n
i=1ln f (xi) + klnn (3)

Parameters involved in the calculation of AIC and BIC are shown in Table 2.

Table 2. Parameters involved in the calculation of AIC and BIC and their descriptions.

Parameter Description

xi the sample value
n the sample size
f (xi) the density function of the candidate marginal distribution function

k the number of distribution parameters in the candidate marginal distribution
function

RMSE =

√
1
n ∑n

i=1[Pc(i)− P0(i)]
2 (4)
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Parameters involved in the calculation of RMSE are shown in Table 3. A smaller RMSE
value indicates a better fit.

Table 3. Parameters involved in the calculation of RMSE and their descriptions.

Parameter Description

n the sample size
Pc the theoretical frequency value of the multidimensional copula joint distribution
P0 the actual frequency value of the multidimensional copula joint distribution

k the number of distribution parameters in the candidate marginal distribution
function

2.1.2. Joint Distribution Modeling

In the C-Vine copula method, establishing the joint distribution of multivariate vari-
ables involves three key steps: (1) determining the C-Vine copula structure configuration;
(2) estimating parameters of the copula candidates; (3) conducting goodness-of-fit tests and
selecting the optimal copula.

The structure configuration of the C-Vine copula adopts a tree-like structure, focusing
on determining the order of root nodes and other nodes. The root node of the C-Vine
copula is typically chosen based on its strongest correlation with other variables. This
paper uses the sequential estimation method proposed by Aas et al. [28] to determine this.
An example of the C-Vine copula tree structure for a four-dimensional random vector is
shown in Figure 2. This configuration consists of three levels of trees, each with a main
node. The main nodes are connected to other nodes through bivariate copulas, forming
edges. These edges then serve as main nodes in the subsequent trees, continuing until all
nodes connecting the trees are connected.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 26 
 

 

𝑓(𝑥୧) the density function of the candidate marginal distribution function 𝑘 the number of distribution parameters in the candidate marginal distribution 
function 

 RMSE = ටଵ௡ ∑ [𝑃௖(𝑖) − 𝑃଴(𝑖)ሿଶ௡௜ୀଵ   (4)

Parameters involved in the calculation of RMSE are shown in Table 3. A smaller 
RMSE value indicates a better fit. 

Table 3. Parameters involved in the calculation of RMSE and their descriptions. 

Parameter Description 𝑛 the sample size 𝑃௖ the theoretical frequency value of the multidimensional copula joint distribu-
tion 𝑃଴ the actual frequency value of the multidimensional copula joint distribution 𝑘 the number of distribution parameters in the candidate marginal distribution 
function 

2.1.2. Joint Distribution Modeling 
In the C-Vine copula method, establishing the joint distribution of multivariate vari-

ables involves three key steps: (1) determining the C-Vine copula structure configuration; 
(2) estimating parameters of the copula candidates; (3) conducting goodness-of-fit tests 
and selecting the optimal copula. 

The structure configuration of the C-Vine copula adopts a tree-like structure, focus-
ing on determining the order of root nodes and other nodes. The root node of the C-Vine 
copula is typically chosen based on its strongest correlation with other variables. This pa-
per uses the sequential estimation method proposed by Aas et al. [28] to determine this. 
An example of the C-Vine copula tree structure for a four-dimensional random vector is 
shown in Figure 2. This configuration consists of three levels of trees, each with a main 
node. The main nodes are connected to other nodes through bivariate copulas, forming 
edges. These edges then serve as main nodes in the subsequent trees, continuing until all 
nodes connecting the trees are connected. 

 
Figure 2. Four-dimensional C-Vine Decomposition Structure. 

From Figure 2, after establishing the structure configuration of the C-Vine copula, it 
is necessary to determine the optimal bivariate copula corresponding to each edge in the 

Figure 2. Four-dimensional C-Vine Decomposition Structure.

From Figure 2, after establishing the structure configuration of the C-Vine copula, it
is necessary to determine the optimal bivariate copula corresponding to each edge in the
structure. Various types of bivariate copulas are proposed in the literature [34], including
Clayton copula, Frank copula, Gumbel copula, Gaussian copula, and Student’s t copula.
Additionally, the BB8 copula [35], as a mixture copula combining characteristics of Clayton
and Gumbel copulas, is designed to capture more complex dependency structures. The
expression for the BB8 copula is as follows:

C(u, υ; θ, δ) = exp
{
−
[
(−logu)δ + (−logν)δ

]θ/δ
}

(5)

Parameters involved in the calculation of BB8 copula are shown in Table 4.
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Table 4. Parameters involved in the calculation of BB8 copula and their descriptions.

Parameter Description

u = FX(x), υ = FY(y)
the cumulative distribution functions of random variables X and Y,
respectively

θ
a parameter controlling tail dependence, typically ranging
within (0,+∞)

δ
a parameter controlling overall dependence strength, typically
ranging within [1,+∞)

This paper considers Clayton copula, Frank copula, Gumbel copula, Gaussian cop-
ula, Student’s t copula, and BB8 copula functions as candidates for modeling the copula
between pairwise variables in the C-Vine copula structure. Additionally, the Bayesian
framework [36] and Gaussian likelihood based on residuals [37] are employed for parame-
ter estimation.

To evaluate the goodness of fit of the selected copula functions, the root mean square
error (e) is used as the criterion to assess the model’s performance, calculated by the
formula below:

e =

√
1
n ∑n

i=1
∣∣T̂E[(u1)i, (u2)i]− T[(u1)i, (u2)i]

∣∣2 (6)

T̂E(u1, u2) =
1
n ∑n

i=1 I(u1i ≤ u1, u2i ≤ u2) (7)

Parameters involved in the calculation of e are shown in Table 5. A smaller e indi-
cates a better fit of the copula model to the empirical copula, reflecting closer agreement
between them.

Table 5. Parameters involved in the calculation of e and their descriptions.

Parameter Description

T the theoretical values calculated by the established model
T̂E the empirical values of the copula

n the sample size, and for each 1 ≤ i ≤ n, I(u1i ≤ u1, u2i ≤ u2) = 1 when
u1i ≤ u1, u2i ≤ u2

2.2. Monte Carlo Sampling Method

Previous studies often used grid-based methods to determine representative wind
and wave conditions for fatigue load modeling [38]. The number of representative load
conditions obtained by this method exponentially increases with the dimensionality of
environmental variables, significantly increasing the computational burden. Therefore,
this study employs a probability-based Monte Carlo sampling method to efficiently obtain
representative wind and wave conditions in specific marine areas, which demonstrates
significant advantages in terms of efficiency and convergence compared to grid-based
methods [39].

Monte Carlo sampling is a numerical method that approximates complex probability
distributions through extensive random sampling. In this study, Monte Carlo sampling
is used to generate wind and wave condition samples that conform to the joint proba-
bility distribution model. In this process, all conditional samples have equal occurrence
probabilities, i.e., p(qi) = 1/Nq(i = 1, ..., Nq). The specific sampling process is as follows:

Step 1: Input the joint probability distribution model. Assume the joint probability
density function is fUV(u, ν), where U, V are standardized marginal distribution variables
of environmental factors such as wind speed, wave height, wave period, and wind direction;

Step 2: Random number generation. Generate two independent and uniformly dis-
tributed random numbers ui and νi, where i = 1, 2, · · · , N, and N is the number of samples;

Step 3: Use the inverse transform method to convert uniform random numbers into
samples with specified marginal distributions. First, compute the cumulative distribution
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functions FU(u) and FV(ν) of the marginal distributions. Then, use the inverse functions
F−1

U and F−1
V to transform the uniform random numbers ui and νi into marginal distribution

variables Ui and Vi:
Ui = F−1

U (ui); Vi = F−1
V (υi) (8)

Step 4: Generate samples from the joint distribution. Use the copula function C(u, υ)
from the Vine copula model to transform the marginal distribution samples Ui and Vi into
samples from the joint distribution:

C(u, υ) = C(FU(u), FV(ν)) (9)

Convert the generated samples (Ui, Vi) into physical quantities (such as wind speed,
wave height, etc.).

After generating a large number of samples using Monte Carlo sampling, statistical
analysis is applied to ensure the representativeness of these samples, covering all possible
wind and wave conditions.

2.3. FAST Simulation and Fatigue Load Estimation Method

Given the complex fluid-structure-soil coupling system of floating offshore wind tur-
bines, OpenFAST provides a high-fidelity offshore wind turbine model. Therefore, this
paper uses OpenFAST to model a semi-submersible offshore wind turbine and conducts a
high-fidelity analysis of its fatigue loads. Section 2.3.1 introduces the methods for perform-
ing aeroelastic simulations using the OpenFAST simulation environment, and Section 2.3.2
introduces the fatigue load assessment methods.

2.3.1. OpenFAST Simulation Method

OpenFAST [40] is an open-source, high-fidelity, multiphysics (including aerodynamics,
offshore hydrodynamics, control, and structural dynamics) aeroelastic simulation environ-
ment used to assess the coupled dynamic response of various wind turbine configurations,
including onshore, bottom-fixed, or floating offshore topologies. Figure 3 provides an
overview of the various components considered in the OpenFAST simulation. OpenFAST
v3.1.0 and its earlier versions have been widely used in the literature for the simulation
and analysis of onshore and offshore horizontal-axis wind turbines, offering high levels of
detail and acceptability [41].
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In this study, external environmental conditions are set using the InflowWind and
HydroDyn modules. The generated wind and wave loads are coupled with the selected
wind turbine using the ServoDyn, ElastoDyn, and MoorDyn modules for aeroelastic
simulation, resulting in time series data of the bending moments of key components.

2.3.2. Fatigue Load Assessment Method

By post-processing the OpenFAST simulation results using the software tool
MLife_v1.01 [42], the fatigue mechanical damage of key wind turbine components can be
estimated. This tool has been applied in the literature to calculate fatigue mechanical loads
related to active control strategies in HAWTs [43] or to determine the short-term mechanical
impacts of sea waves on FOWT towers [44].

MLife weights the fatigue damage equivalent loads (DEL) for each moment unit based
on statistical terms given by the Weibull distribution and its characteristic parameters, scale,
and shape, which determine the occurrence frequency of each wind speed interval [45]. For
onshore wind turbines, the probability of wind occurrence might be sufficient to calculate
long-term fatigue damage. However, for offshore wind turbines, the statistical distribution
of sea states must also be considered to obtain reliable results.

The steps to calculate damage equivalent loads are as follows: First, the rainflow
counting method is used to decompose fluctuating loads into individual hysteresis cycles
by matching local peaks and valleys. Then, based on the number of fatigue cycles and the
Palmgren-Miner rule, the damage equivalent loads are calculated, representing constant
amplitude fatigue loads generated at fixed load means and frequencies. The calculation
formula is as follows:

DELST
j =

∑i (nji(LR
ji )

m
)

nSTeq
j

 1
m

(10)

nSTeq
j = f eqTj (11)

Parameters involved in the calculation of DEL are shown in Table 6. Specifically, for
the tower, LSS, and mooring cables, m takes values of 3, 4, and 5, respectively, while for
the blades, m assumes values of 8, 10, and 12 [19]. Additionally, DELST

j stands for the
short-term DEL for time series j with a fixed mean.

Table 6. Parameters involved in the calculation of DEL and their descriptions.

Parameter Description

f eq the frequency of the DEL
Tj the time elapsed for time series j
nSTeq

j
the total equivalent fatigue counts for time series j

nji the damage count for load cycle i in time series j
LR

ji the range of load cycle i in time series j
m a Wöhler exponent

2.4. Machine Learning-Based Fatigue Load Modeling Method

This study selects five machine learning models—Kriging, MLP, SVR, BNN, and
RF—to establish a fatigue load model for FOWTs. The choice of these models is based on
their successful applications in similar tasks and their respective theoretical advantages.

Kriging is a non-parametric model suitable for handling spatial correlations in small-
sample data, capable of providing predictions and estimating prediction uncertainties [46].
MLP utilizes nonlinear activation functions in its hidden layers to capture nonlinear re-
lationships in data, offering strong approximation capabilities and flexibility [47]. SVR
minimizes generalization error by maximizing the margin and uses kernel techniques to
handle complex nonlinear relationships, demonstrating robustness against outliers and
noise [48]. BNN combines Bayesian inference with neural networks, applying Bayesian
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methods for regularization to prevent overfitting [49]. RF, through ensemble learning of
multiple decision trees, effectively reduces overfitting risks and generally provides excellent
prediction accuracy across various tasks, with a high tolerance for data noise and missing
values [50].

Through comprehensive evaluation of these models, the optimal model for the current
task of fatigue load modeling for floating wind turbines can be selected. The algorithm
pseudocode for evaluating and selecting the best model among the five is provided in
Algorithm 1, outlining a complete framework from data preprocessing and correlation
analysis to training and evaluation of machine learning models. Initially, compute corre-
lations between wind and wave environmental variables, turbine operational states, and
equivalent damage loads. Next, select the four variables most correlated with equivalent
damage loads as inputs for machine learning models. Then, initialize and train the five
different machine learning models (Kriging, MLP, SVR, BNN, and RF) using the selected
input variables to predict equivalent damage loads. Finally, assess each model’s perfor-
mance using appropriate metrics such as Mean Squared Error (MSE), outputting predicted
equivalent damage loads and evaluation metrics for comparison and analysis.

Algorithm 1 Damage Equivalent Load (DEL) Prediction and Model Selection
Input:

Environment variables: wind_speed, wave_height, wave_period, wind_direction
Turbine state variables: yaw_angle, rotor_speed, blade_pitch
DEL: RootMxb1, RootMyb1, RootMzb1, TwrBsMxt, TwrBsMyt, TwrBsMzt

Output:
Best model among Kriging, MLP, SVR, BNN, RF based on overall error

1. Correlation Analysis:
Compute correlation coefficients between:

- wind_speed, wave_height, wave_period, wind_direction
- yaw_angle, rotor_speed, blade_pitch

and
- RootMxb1, RootMyb1, RootMzb1, TwrBsMxt, TwrBsMyt, TwrBsMzt

2. Select Input Variables:
Select top four variables with highest absolute correlation coefficients with DEL:

- selected_input_variables = [var1, var2, var3, var4]
3. Machine Learning Models Training and Prediction:

Initialize models: Kriging, MLP, SVR, BNN, RF
for each model in [Kriging, MLP, SVR, BNN, RF]:

Train model using selected_input_variables to predict DEL values:
- model.train(X_train[selected_input_variables], y_train[DEL])

Predict DEL values for test dataset:
- predicted_DEL = model.predict(X_test[selected_input_variables])

Calculate overall error (e.g., MSE) for the model:
- overall_error = calculate_error(predicted_DEL, y_test[DEL])

Store model and its overall error
4. Select Best Model:

Identify model with minimum overall error:
- best_model = model with minimum overall_error

5. Output Results:
Print or store predicted DEL values and evaluation metrics for best_model.

End Algorithm

2.5. Framework for Fatigue Load Modeling of Floating Wind Turbines

Figure 4 illustrates the framework proposed for fatigue load modeling of floating wind
turbines, comprising four main stages:



J. Mar. Sci. Eng. 2024, 12, 1275 10 of 26

(1) Establishment of joint probability distribution models for wind and wave factors:
Marginal distribution model parameters for each wind and wave factor are deter-
mined using maximum likelihood estimation. The goodness of fit is evaluated using
AIC, BIC, and RMSE criteria to establish marginal distributions of wind and wave fac-
tors. Subsequently, parameters of the two-dimensional copula function are estimated
within a Bayesian framework using a Gaussian likelihood function based on residuals,
with model selection based on AIC for optimal copula function determination. Finally,
the C-Vine copula theory is employed to establish a joint probability distribution
model for the four-dimensional random variables: wind speed, wave height, wave
period, and wind direction;

(2) Monte Carlo sampling for representative sample conditions: Following construc-
tion of the joint PDF of ocean environmental variables, Monte Carlo sampling is
employed to obtain representative sample conditions of wind speed (x1), wave height
(x2), wave period (x3), and wind direction (x4) as input conditions for subsequent
simulation modeling;

(3) FAST simulation under-sampled conditions: To establish a data-driven model for
fatigue load data at critical components such as blade roots and tower bases of floating
wind turbines, a substantial volume of effective data is required to build the database.
Post identification of representative load conditions, OpenFAST is utilized to model
fatigue loads for all sampled conditions;

(4) Machine learning-based damage equivalent load modeling: Machine learning tech-
niques are employed to construct fatigue load models. Model inputs include envi-
ronmental variables (wind speed, wave height, wave period, wind direction) and
operational state variables (rotor speed, yaw angle, blade pitch angle). Outputs consist
of damage equivalent loads for six key moments at blade roots (RootMxb1, RootMyb1,
and RootMzb1) and tower bases (TwrBsMxt, TwrBsMyt, and TwrBsMzt).
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3. Case Study
3.1. Study Object

Different marine environments lead to varying stress deformation and fatigue damage
in wind turbines. Investigating the performance of FOWT in different marine environments
requires numerical simulation methods or experimental approaches. This paper employs
the OpenFAST numerical simulation software developed by the U.S. National Renewable
Energy Laboratory (NREL) for simulation, focusing on their 5 MW semi-submersible
offshore wind turbine. The turbine structure is depicted in Figure 5, and key parameters
can be found in reference [51].

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 26 
 

 

Step 1 Joint Probability Distribution Model of 
Wind and Wave Elements

Step 2 Monte Carlo Sampling

Step 3 FAST Simulation Sampling Conditions

Step 4 Machine learning

Marginal 
Distribution

Bivariate Joint 
Probability 
Distribution

Multivariate 
Joint Probability 

Distribution

C-Vine Copula

Representative Load 
Conditions

• Wind Speed         
• Wave Height        
•  Wave Period        
• Wind Direction    

Inputs

Outputs 2

Mlife

Outputs 1
• Pitch angle       
• Yaw angle
• Rotor Speed 
• Bending 

Moment   
Sequence 
(Blade Root and 
Tower Base)  

Dataset

Training set

Kriging/SVR/MLP/BNN/RF 
model

Split

Grid search

RBF kernel

Optimal hyper-parameters

Optimal 
Kriging/SVR/MLP/BNN/RF 

model

Test set

Regression analysis

Tr
ai

ni
ng

 a
nd

 tu
ni

ng

Predict
Wind-Inflow
InflowWind

Aero-dynamics
AeroDyn

MoorDyn

HydroDyn

ServoDyn

ElastoDyn

 
Figure 4. Framework of load modeling method for floating wind turbines. 

3. Case Study 
3.1. Study Object 

Different marine environments lead to varying stress deformation and fatigue dam-
age in wind turbines. Investigating the performance of FOWT in different marine envi-
ronments requires numerical simulation methods or experimental approaches. This paper 
employs the OpenFAST numerical simulation software developed by the U.S. National 
Renewable Energy Laboratory (NREL) for simulation, focusing on their 5 MW semi-sub-
mersible offshore wind turbine. The turbine structure is depicted in Figure 5, and key 
parameters can be found in reference [51]. 

  
(a) (b) 

Figure 5. Structure of the NREL 5 MW OC4 Semi-Submersible Floating Wind Turbine. (a) The Struc-
ture of Semi-Submersible. Offshore Wind Turbine. (b) Arrangement of Mooring System Structure 
(①:Number 1 mooring line; ②:Number 2 mooring line; ③:Number 3 mooring line). 

  

Figure 5. Structure of the NREL 5 MW OC4 Semi-Submersible Floating Wind Turbine. (a) The
Structure of Semi-Submersible. Offshore Wind Turbine. (b) Arrangement of Mooring System Structure
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3.2. Analysis of Joint Probability Distribution Modeling Results of Wind and Wave Factors
3.2.1. Data Description

The study utilizes oceanographic and meteorological observation data from the
Lianyungang Marine Observation Station in the East China Sea for the years 2018–2022. The
data are provided by the National Marine Data and Information Service Center of China
(http://mds.nmdis.org.cn/). Selected wind and wave elements include average wind
speed at 10 m height, wave height, wave period, and wind direction. These parameters
are measured hourly, and the station’s coordinates are 34◦47′0′′ N 119◦26′0′′ E. It should
be noted that during data processing, a small portion of the observational data from the
marine station was found to be missing, meaning some elements were occasionally not
observed. To address this, missing sample data was excluded to retain as many remaining
data samples as possible, resulting in a total of 37,892 datasets.

Wind speed at 10 m height (U10), wind direction (Udir), wave period (Tp), and wave
height (Hs) are the focus of this study. The reference NREL 5 MW wind turbine hub height
is 90 m. Therefore, an exponential profile method [45] is used to convert the wind speed at
10 m height to 90 m height, with the calculation formula as follows:

U90 = U10 × (
H90m

H90m
)

α

(12)

where α is the wind profile exponent coefficient, set to 0.12.
Additionally, only marine meteorological data with wind speeds within the opera-

tional range (3–25 m/s) are considered conducive to fatigue damage. Consequently, the
final dataset comprises 29,777 samples.

http://mds.nmdis.org.cn/
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3.2.2. Results of Marginal Distribution Modeling

Figure 6a–d depicts frequency histograms and fitted curves of measured wind and
wave data from Lianyungang. It is observed that wind speed, wave height, and wave
period samples exhibit characteristics of unimodal distributions (Figure 6a–c), fitted using
common unimodal distribution models. Wind direction shows a multimodal distribution
(Figure 6d) fitted using a mixture model. Additionally, the probability histogram of wind
direction reveals three distinct peaks in its distribution. Therefore, a mixture model with
three unimodal distribution functions is employed to fit the data, resulting in a mixture
model with three dimensions.
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Figure 6. Frequency histograms of sample data. (a) Frequency histogram and fitting curve of wind
speed. (b) Frequency histogram and fitting curve of wind direction. (c) Frequency histogram and
fitting curve of wave height. (d) Frequency histogram and fitting curve of wave period.

Tables 7 and 8 present the different marginal probability distribution types and cor-
responding parameters for the four wind and wave factors: wind speed, wave height,
wave period, and wind direction. According to the goodness-of-fit evaluation results in
Tables 8 and 9, the optimal fitting distributions for wind speed, wave height, and wave
period are the Weibull distribution, the Generalized Extreme Value (GEV) distribution,
and the t-distribution with location and scale parameters, respectively. The optimal fitting
distribution for wind direction is the mixed Gaussian distribution. Figure 7 shows the
histograms of the samples for these four wind and wave factors and the fitting curves of
three marginal probability distributions. It can be seen that the selected optimal marginal
probability distribution curves fit the samples of the four wind and wave factors well.
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Table 7. Parameters and evaluation metrics of different marginal probability distribution models for
wind speed, significant wave height, and wave period.

Environmental
Variables

Distribution
Function AIC BIC Scale

Parameter
Shape

Parameter
Location

Parameter RMSE

Wind Speed
Weibull 153,586.8227 153,603.4257 8.5732 2.38073 0.0092

GEV 149,378.3867 149,403.2912 2.35334 5.90768 0.125476 0.0102
t 155,712.173 155,737.0775 2.85293 7.00871 2.85293 0.0130

Wave Height
Weibull −3994.0557 −3977.4954 0.428682 1.47096 0.2518

GEV −7216.5465 −7191.7061 0.150873 0.23653 0.33645 0.0915
t 3109.9488 3134.7892 0.171025 2.67072 0.310643 0.1517

Wave Period
Weibull 127,452.0984 127,468.7013 4.8659 2.33344 0.0408

GEV 110,747.5038 110,772.4083 1.53462 3.92278 −0.052992 0.0281
t 99,020.1907 99,045.0951 0.991097 4.15583 4.51504 0.0144

Gray represents the best fit distribution model for the environment variable.

Table 8. Parameters and evaluation metrics of different marginal probability distribution models for
wind direction.

Environmental
Variables

Distribution
Function Fitting Parameters RMSE

Wind
Direction

ω1 ω2 ω3 µ1 µ2 µ3 σ1 σ2 σ3Mixed
Gaussian 0.1605 0.25675 0.58275 31.5744 285.1857 122.6558 194.1401 1199.8808 1758.945

0.0021045

Mixed
Gamma

ω1 ω2 ω3 µ1 µ2 µ3 σ1 σ2 σ3 0.0021123
0.18112 0.26093 0.55794 33.6104 284.1113 124.6439 243.2999 1258.9205 1550.5218

Gray represents the best fit distribution model for the environment variable.
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3.2.3. Joint Distribution Modeling Results

The C-Vine copula, outlined in Section 2.1.2, is used to simulate the joint distribution
of wind and wave variables. Table 9 displays the empirical Kendall correlation coefficients
for all pairwise combinations of random variables. These coefficients guide the selection of
root nodes and the order of other nodes within each layer of the C-Vine structure. Figure 8
illustrates the optimal C-Vine copula structure for the wind and wave variables. Here, Hs
represents significant wave height, Tp represents wave period, Vw represents wind speed,
and θ represents wind direction.

Table 9. Empirical Kendall’s matrix and sum of Kendall’s tau.

Variables Wind Speed Wave Height Wave Period Wind Direction τsum

Wind Speed 1 0.416437 0.048968 0.124123 1.589528
Wave Height 0.416437 1 0.089914 0.331807 1.838159
Wave Period 0.048968 0.089914 1 0.075482 1.214364

Wind Direction 0.124123 0.331807 0.075482 1 1.531413
Gray represents the variable with the highest correlation coefficient.
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Then, Gaussian, Frank, Gumbel, Student’s t, Clayton, and BB8 copula functions were
considered as candidate models for modeling the dependence structure of paired variables.
In this case, the identified optimal bivariate copula is shown in Table 10.

Table 10. Optimal bivariate copula functions for environmental variables.

Copula Functions Parameter 1 Parameter 2

Tree1
c12 BB8 0.13638994 21.75006081
c13 t 0.58858094 6.73374776
c14 t −0.4549795 7.68651773

Tree2
c23|1 BB8 −0.17235243 21.37793364
c24|1 t 0.0970424 13.29766572

Tree3 c34|12 Gaussian −0.01858334

The two-dimensional frequency histograms and joint distribution probability density
plots in Figure 9 visually demonstrate the fitting effectiveness of the optimal bivariate
copula models selected in this study. For wind speed—wave height, wind speed—wind
direction, and wave height—wave period, the peaks and shapes of the two-dimensional
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joint probability density plots closely match those of the two-dimensional frequency his-
tograms. This indicates a reasonable simulation of correlations, effectively considering the
dependencies among wind and wave variables.
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Using the established C-Vine model, cumulative probability densities of the four-
dimensional random variables—wind speed, wave height, wave period, and wind
direction—were simulated. The comparison between generated samples and original
data is shown in Figure 10. From the figure, it can be observed that the probabilistic
dependency characteristics of the generated samples closely match those of the original
data. Furthermore, performing a K-S test between the generated samples and original
data yielded a K-S test statistic of 0.0025 and a K-S test p-value of 0.9917. This indicates
that not only are the distributions of the generated samples and original data very similar
(low K-S test statistic) but also the p-value exceeds 0.05, failing to reject the null hypothesis,
demonstrating no significant difference between the two distributions. Therefore, the
C-Vine copula model developed in this section effectively represents the joint distribution
of environmental variables in the studied marine region.
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3.3. Analysis of Fatigue Load Modeling Based on Machine Learning

Based on the joint probability distribution model constructed in Section 3.2, repre-
sentative wind and wave conditions were determined using the Monte Carlo method.
TurbSim [52] and the HydroDyn module in FAST were used to generate representative
wind and wave conditions as inputs for OpenFAST simulation. After determining simula-
tion parameters and conducting correlation analysis, input and output variables for the
machine learning model were identified. Five commonly used machine learning algorithms
were employed to construct the data-driven model.

3.3.1. Simulation Parameter Settings and Correlation Analysis

This study primarily considers the fatigue loads on the blade root and tower base
of a Floating Wind Turbine. Representative load conditions were determined using the
Monte Carlo sampling method, with results shown in Figure 11. Wind turbine design
standards recommend at least six 10-min simulations per random seed [53], whereas, for
beam-type FOWTs, simulations typically extend to 60 min in total length [54]. Therefore,
this research adopted a simulation length of 1200 s and used three random seeds. To
eliminate transient responses, an additional 300 s of simulation time was considered at
the start of each simulation, with fatigue analysis based solely on the subsequent 1200 s of
simulation results. Thus, OpenFAST conducted sub-simulations with a total simulation
time of 1500 s while recording yaw angle, pitch angle, generator speed, tower base bending
moments in three directions, and blade root bending moments in three directions.
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To establish a data-driven model for the DEL of floating wind turbines, suitable and
easily measurable variables need to be selected as inputs. In this study, Mlife [45] was used
to compute the DEL values for moments. Considering the studied object, a total of seven
variables were selected, including wind and wave environmental variables (wind speed,
wave height, wave period, wind direction) and wind turbine operational states (yaw angle,
rotor speed, blade pitch angle). To analyze the correlation between the selected inputs
and DEL, Pearson correlation coefficients (PCC) between wind and wave environmental
variables and DEL were calculated, as shown in Figure 12. It is evident that among the
environmental variables, wind speed and wave height exhibit higher correlations with
DEL at the root and tower base compared to wave period and wind direction. Pearson
correlation coefficients (PCC) between wind turbine operational state variables and DEL
are shown in Figure 13. It is observed that among the operational state variables, generator
speed variance and nacelle yaw angle variance show high correlations with DEL of the
root and tower base moments, with a Pearson correlation coefficient as high as 0.9227.
In contrast, the correlation with blade pitch angle is minimal, with a Pearson correlation
coefficient below 0.1. In summary, combining wind and wave variables with operational
state variables, this study selects wind speed, wave height, generator speed variance, and
nacelle yaw angle variance as the four variables for the data model inputs, and DEL of
RootMxb1, RootMyb1, RootMzb1, TwrBsMxt, TwrBsMyt, and TwrBsMzt as the outputs of
the data model.
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3.3.2. Modeling Results of Data-Driven Models

This study randomly selected 10,000 data points as the training set and the remaining
5000 data points as the test set. Mean squared error (MSE) was used to evaluate the model
accuracy. The configurations and optimization methods of five machine-learning models
are shown in Table 11.

Table 11. Configuration and optimization methods of five machine learning models.

Machine Learning Models Configuration Optimization

Kriging Set the kernel function type to RBF (Radial Basis Function) Genetic Algorithm
MLP Two hidden layers with 8 and 12 neurons, respectively Adam Algorithm
SVR Set the kernel function to the Gaussian kernel SMO Algorithm
BNN 4 neurons Bayesian Optimization

RF Used a total of 200 decision trees with a leaf node size of 1 K-fold Cross-Validation

Figure 14 illustrates the regression capability of the Kriging model for six outputs. In
Figure 14a, the Kriging model demonstrates excellent predictive performance for RootMxb1
DEL, achieving a high accuracy of 99.45%. In Figure 14b,d,f, the model achieves DEL pre-
diction accuracies greater than 97% for RootMyb1, TwrBsMxt, and TwrBsMzt, respectively,
which are slightly lower compared to RootMxb1. However, for RootMzb1 and TwrBsMyt,
the Kriging model shows slightly lower prediction accuracy at 93.81%, possibly due to its
performance degradation in high-dimensional spaces.
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Figure 14. Training results of the Kriging model.

Figure 15 illustrates the regression capabilities of the MLP model for the six outputs.
For the DEL prediction of RootMxb1, the MSE value is 0.2593, indicating a significant
prediction bias. Additionally, the prediction accuracy for the DEL values of the other five
moments did not reach an optimal level, with prediction accuracies falling below 90%. This
suggests that although the MLP model has certain advantages in capturing the nonlinear
characteristics of the data, its performance is still constrained by the complexity of the
fatigue load prediction task and the inherent noise within the data.
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Figure 16 demonstrates the regression capabilities of the SVR model for the six outputs.
It is evident that the prediction accuracy for all six outputs exceeds 94.43%, reaching up to
97.82%. This indicates that the SVR model exhibits strong generalization ability in handling
high-dimensional data and regression tasks. However, compared to the Kriging model and
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the subsequent RF model, the SVR model still shows some gaps in performance, revealing
its limitations in capturing extreme data features.
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Figure 17 illustrates the regression capabilities of the BNN model for the six outputs.
It is evident that, compared to the Kriging, MLP, SVR, and subsequent RF models, the BNN
model has prediction accuracies for all six outputs below 89.86%. Particularly in predicting
the damage equivalent load values in the lateral directions of the tower base, the BNN
model shows substantial errors, with a mean squared error value of 0.3939. This indicates
that while the BNN may have some advantages in capturing simple linear relationships,
its performance in handling complex nonlinear regression tasks is constrained by the
simplicity of its structure and the number of neurons.
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Figure 18 illustrates the regression capabilities of the RF model for the six outputs. It
can be concluded that the overall regression performance is quite satisfactory, with very
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low MSE values for fatigue load predictions from the blade to the tower base and the
maximum prediction error being just 3.9%. Notably, for the fatigue load at the blade root,
the DEL prediction for RootMxb1 is nearly accurate, with a prediction accuracy of 99.97%.
Compared to the previous four models, the RF model demonstrates the best performance
in predicting the DEL values for these six moments, showcasing its strong capability in
handling complex data and capturing nonlinear features.
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Figure 18. Training results of the RF model.

Table 12 presents the MSE, RMSE, and R2 values for the six output moment DEL
values from the five machine learning models and the traditional polynomial regression
model. It is evident that, overall, the RF, Kriging, and SVR models exhibit better predic-
tive performance, whereas the MLP and BNN models have relatively higher prediction
errors, with the polynomial regression model exhibiting the highest errors. Specifically,
the traditional polynomial regression model consistently shows MSE and RMSE values
greater than 1 and R2 values less than 0.2, compared to the five machine learning models,
indicating larger prediction errors. Among the five machine learning models, the RF model
achieves MSE values less than 0.05 and RMSE values less than 0.2 for all six-moment
DELs, with R2 values greater than 0.95. This demonstrates that the RF model performs
best in predicting fatigue loads for the blade root and tower base of floating wind turbines,
making it the optimal choice for developing prediction models for blade root and tower
base moment DELs.

Overall, using machine learning methods for modeling fatigue loads in floating wind
turbines is significantly advantageous. Machine learning can efficiently handle complex
multivariate data, thereby enhancing modeling accuracy and predictive performance. This
provides new solutions for wind energy engineering, demonstrating broad application
prospects in predicting fatigue loads of floating wind turbines and optimizing offshore
wind farm operations.
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Table 12. The MSE, RMSE, and R2 of five machine learning models and the polynomial regression
model.

Moment
Kriging MLP SVR

MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

RootMxb1 0.0055 0.0741 0.9939 0.2593 0.5092 0.7139 0.0388 0.1969 0.9571
RootMyb1 0.0177 0.1330 0.9804 0.1003 0.3167 0.8893 0.0311 0.1763 0.9656
RootMzb1 0.0619 0.2487 0.9317 0.1726 0.4154 0.8095 0.0334 0.1827 0.9631
TwrBsMxt 0.0166 0.1288 0.9816 0.1186 0.3443 0.8691 0.0440 0.2097 0.9514
TwrBsMyt 0.0619 0.2487 0.9317 0.1168 0.3417 0.8711 0.0557 0.2360 0.9385
TwrBsMzt 0.0293 0.1711 0.9676 0.2304 0.4800 0.7457 0.0218 0.1476 0.9759

BNN RF Polynomial Regression
MSE RMSE R2 MSE RMSE R2 MSE RMSE R2

0.1192 0.3452 0.8684 0.0021 0.0458 0.9997 1.1094 1.0532 0.2240
0.2377 0.4875 0.7377 0.0132 0.1148 0.9854 1.3507 1.1621 0.4902
0.1093 0.3306 0.8794 0.0232 0.1523 0.9744 5.7964 2.4075 0.0952
0.3939 0.6276 0.5654 0.0126 0.1122 0.9860 3.6024 1.8979 0.0746
0.1014 0.3184 0.8881 0.0390 0.1974 0.9569 1.0022 1.0010 0.1057
0.1259 0.3548 0.8610 0.0117 0.1081 0.9870 1.6781 1.2954 0.1014

Gray represents the best data-driven model.

4. Conclusions

This paper proposes a method for modeling fatigue loads of floating wind turbines
based on Vine copula theory and machine learning. The aim is to establish a fatigue load
model for floating wind turbines using marine meteorological data as a basis for optimizing
their operation. Against the backdrop of real wind and wave data from marine sites, a
C-Vine copula structure is utilized to establish joint probability density functions between
wind and wave elements at these sites. Subsequently, representative load conditions are
obtained through Monte Carlo sampling. Five machine learning models—Kriging, MLP,
BNN, SVR, and RF—are trained, and their performance is compared and analyzed, leading
to the following conclusions:

(1) Detailed analysis of measured data from the Lianyungang marine site in the East
China Sea reveals that wind speed, wave height, and wave period exhibit unimodal
distribution characteristics suitable for fitting with common unimodal distribution
models, whereas wind direction shows multimodal distribution characteristics requir-
ing a mixture model for fitting. Specifically, the optimal fitting distributions are the
Weibull distribution for wind speed, Generalized Extreme Value (GEV) distribution
for wave height, t-distribution with scale parameter for wave period, and mixed
Gaussian distribution for wind direction. The Root Mean Square Error for fitting these
four variables is all less than 0.01, indicating the good performance of the selected
optimal marginal probability distribution models in fitting;

(2) The established C-Vine copula model effectively characterizes the joint probability
distribution between the four-dimensional random variables of wind speed, wave
height, wave period, and wind direction. Specifically, comparing the probability
dependency characteristics of model-generated samples with original data reveals a
high degree of consistency between the two. Additionally, the Kolmogorov–Smirnov
(K-S) test statistic of 0.0025 indicates that the distribution of generated samples is
nearly identical to that of the original data. The K-S test p-value of 0.9917 further
confirms that there is no significant difference between generated samples and original
data. These results demonstrate the reliability and effectiveness of the model in
simulating environmental variables;

(3) For predicting fatigue loads of floating wind turbine root and tower base moments, the
RF model demonstrates superior prediction performance and generalization ability,
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achieving outstanding results with a minimum MSE of only 0.0021 for predicting six
DEL values. While the Kriging model approaches the accuracy of the RF model on
some variables, it exhibits slight degradation in high-dimensional spaces. In contrast,
MLP and BNN models show higher prediction errors, especially the BNN model with
an MSE exceeding 0.3 in some predictions, indicating limited prediction accuracy.
Therefore, it is recommended that the RF model be selected as the preferred method
for establishing DEL prediction models for root and tower base moments in practical
applications, ensuring the accuracy and reliability of prediction results.

Our research results provide practical guidance for enhancing the structural reliability
and operational efficiency of floating wind turbines. By employing advanced statistical
techniques and machine learning, our approach helps mitigate operational risks in offshore
wind farms and optimizes energy production. Furthermore, our study not only advances
the field of fatigue load modeling for floating wind turbines but also establishes a founda-
tion for integrating complex environmental data with advanced modeling techniques. This
comprehensive approach holds promise for driving innovation and resilience in offshore
wind energy systems, contributing to the future of sustainable energy.

Although further research is needed for modeling fatigue loads of floating wind
turbines at other marine observation sites, the proposed method and approach in this
paper provide valuable insights for such research. Future studies can validate and refine
this method in more diverse marine environments and conditions to further enhance the
accuracy and applicability of the model.
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Abbreviations

FOWT Floating Offshore Wind Turbine
C-Vine copula Canonical Vine copula
CDF Cumulative Distribution Function
PDF Probability Density Function
GEV Generalized Extreme Value distribution
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
RMSE Evaluate the goodness of fit of different probability distribution models
C(u,υ; θ, δ) The expression for the BB8 copula
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e Evaluate the goodness of fit of the selected copula functions
Kriging Geostatistical Kriging
MLP Multilayer Perceptron
SVR Support Vector Regression
BNN Bayesian Neural Network
RF Random Forest
DEL Damage Equivalent Load
var1, var2, var3, var4 Marine environmental variables 1, 2, 3, and 4, respectively
RootMxb1 Edgewise bending moment at the blade root
RootMyb1 Flapwise bending moment at the blade root
RootMzb1 The z-directional bending moment at the blade root
TwrBsMxt Side-side (or roll) bending moment at the tower base
TwrBsMyt Fore-aft (or pitch) bending moment at the tower base
TwrBsMzt The z-directional bending moment at the tower base
MSE/RMSE/R2 Evaluate machine learning model errors
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methods in the control and design of offshore wind power systems. J. Mar. Sci. Eng. 2024, 12, 424. [CrossRef]

25. Song, D.; Tan, X.; Huang, Q.; Wang, L.; Dong, M.; Yang, J.; Evgeny, S. Review of AI-based wind prediction within recent three
years: 2021–2023. Energies 2024, 17, 1270. [CrossRef]

26. Yang, H.S.; Alkhabbaz, A.; Tongphong, W.; Lee, Y.H. Cross-comparison analysis of environmental load components in extreme
conditions for pontoon-connected semi-submersible FOWT using CFD and potential-based tools. Ocean Eng. 2024, 304, 117248.
[CrossRef]

27. Yang, H.S.; Tongphong, W.; Ali, A.; Lee, Y.H. Comparison of different fidelity hydrodynamic-aerodynamic coupled simulation
code on the 10 MW semi-submersible type floating offshore wind turbine. Ocean Eng. 2023, 281, 114736. [CrossRef]

28. Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198.
[CrossRef]

29. Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: Hoboken, NJ, USA, 2004.
30. Bali, T.G. The generalized extreme value distribution. Econ. Lett. 2003, 79, 423–427. [CrossRef]
31. Tate, R.F. Unbiased estimation: Functions of location and scale parameters. Ann. Math. Stat. 1959, 30, 341–366. [CrossRef]
32. Thom, H.C.S. Approximate convolution of the gamma and mixed gamma distributions. Mon. Weather Rev. 1968, 96, 883–886.

[CrossRef]
33. Murray, J.S.; Dunson, D.B.; Carin, L.; Lucas, J.E. Bayesian Gaussian copula factor models for mixed data. J. Am. Stat. Assoc. 2013,

108, 656–665. [CrossRef] [PubMed]
34. Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006.
35. Ehsan, M.A.; Shahirinia, A.; Gill, J.; Zhang, N. Dependent wind speed models: Copula approach. In Proceedings of the 2020 IEEE

Electric Power and Energy Conference (EPEC), Edmonton, AB, Canada, 9–10 November 2020; pp. 1–6.
36. Bretthorst, G.L. An introduction to parameter estimation using bayesian probability theory. In Maximum Entropy and Bayesian

Methods; Springer: Dordrecht, The Netherlands, 1990; pp. 53–79.
37. Schoups, G.; Vrugt, J.A. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated,

heteroscedastic, and non-Gaussian errors. Water Resour. Res. 2010, 46, W10531. [CrossRef]
38. Kvittem, M.I.; Moan, T. Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine. Mar. Struct.

2015, 40, 38–59. [CrossRef]
39. Chian, C.Y.; Zhao, Y.Q.; Lin, T.Y.; Nelson, B.; Huang, H.H. Comparative study of time-domain fatigue assessments for an offshore

wind turbine jacket substructure by using conventional grid-based and monte carlo sampling methods. Energies 2018, 11, 3112.
[CrossRef]

40. Openfast v3.1.0. 2022. Available online: https://github.com/OpenFAST/openfast (accessed on 20 May 2022).
41. Golparvar, B.; Papadopoulos, P.; Ezzat, A.A.; Wang, R.Q. A surrogate-model-based approach for estimating the first and

second-order moments of offshore wind power. Appl. Energy 2021, 299, 117286. [CrossRef]
42. Hayman, G.J. MLife Theory Manual for Version 1.00; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
43. Yuan, Y.; Tang, J. Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renew. Energy 2017,

105, 483–494. [CrossRef]
44. Li, H.; Hu, Z.; Wang, J.; Meng, X. Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic

wind-wave loads. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 9–20. [CrossRef]
45. Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken,

NJ, USA, 2010.
46. Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [CrossRef]
47. Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [CrossRef]
48. Terrault, N.A.; Hassanein, T.I. Management of the patient with SVR. J. Hepatol. 2016, 65, S120–S129. [CrossRef]
49. Lampinen, J.; Vehtari, A. Bayesian approach for neural networks—Review and case studies. Neural Netw. 2001, 14, 257–274.

[CrossRef]
50. Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [CrossRef]
51. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference wind Turbine for Offshore System Development;

National Renewable Energy Laboratory: Golden, CO, USA, 2009.
52. Jonkman, B.J. TurbSim User’s Guide; National Renewable Energy Laboratory: Golden, CO, USA, 2006.

https://doi.org/10.1186/s41601-023-00319-5
https://doi.org/10.1016/j.egyr.2023.03.123
https://doi.org/10.3390/jmse12030424
https://doi.org/10.3390/en17061270
https://doi.org/10.1016/j.oceaneng.2024.117248
https://doi.org/10.1016/j.oceaneng.2023.114736
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1016/S0165-1765(03)00035-1
https://doi.org/10.1214/aoms/1177706256
https://doi.org/10.1175/1520-0493(1968)096%3C0883:ACOTGA%3E2.0.CO;2
https://doi.org/10.1080/01621459.2012.762328
https://www.ncbi.nlm.nih.gov/pubmed/23990691
https://doi.org/10.1029/2009WR008933
https://doi.org/10.1016/j.marstruc.2014.10.009
https://doi.org/10.3390/en11113112
https://github.com/OpenFAST/openfast
https://doi.org/10.1016/j.apenergy.2021.117286
https://doi.org/10.1016/j.renene.2016.12.068
https://doi.org/10.1016/j.ijnaoe.2017.05.003
https://doi.org/10.1007/BF00889887
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/j.jhep.2016.08.001
https://doi.org/10.1016/S0893-6080(00)00098-8
https://doi.org/10.17849/insm-47-01-31-39.1


J. Mar. Sci. Eng. 2024, 12, 1275 26 of 26

53. IEC International Standard: 61400-3-2; Wind Energy Generation Systems-Part 3-2: Design Requirements for Floating Offshore
Wind Turbines. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2019.

54. Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D. Simulation-Length Requirements in the Loads Analysis
of Offshore Floating Wind Turbines. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and
Arctic Engineering, Nantes, France, 9–14 June 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Methodologies 
	Joint Probability Distribution Model of Wind and Wave Elements 
	Marginal Distribution Modeling 
	Joint Distribution Modeling 

	Monte Carlo Sampling Method 
	FAST Simulation and Fatigue Load Estimation Method 
	OpenFAST Simulation Method 
	Fatigue Load Assessment Method 

	Machine Learning-Based Fatigue Load Modeling Method 
	Framework for Fatigue Load Modeling of Floating Wind Turbines 

	Case Study 
	Study Object 
	Analysis of Joint Probability Distribution Modeling Results of Wind and Wave Factors 
	Data Description 
	Results of Marginal Distribution Modeling 
	Joint Distribution Modeling Results 

	Analysis of Fatigue Load Modeling Based on Machine Learning 
	Simulation Parameter Settings and Correlation Analysis 
	Modeling Results of Data-Driven Models 


	Conclusions 
	References

