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Abstract: As engine monitoring data has become more complex with an increasing number of sensors,
fault prediction based on artificial intelligence (AI) has emerged. Existing fault prediction models
using AI significantly improve the accuracy of predictions by effectively handling such complex data,
but at the same time, the problem arises that the AI-based models cannot explain the rationale of
their predictions to users. To address this issue, we propose a time-series explanatory fault prediction
framework to provide an explainability even when using AI-based fault prediction models. It consists
of a data feature reduction process, a fault prediction model training process using long short-term
memory, and an interpretation process of the fault prediction model via an explainable AI method. In
particular, the proposed framework can explain a fault prediction based on time-series data. Therefore,
it indicates which part of the data was significant for the fault prediction not only in terms of sensor
type but also in terms of time. Through extensive experiments, we evaluate the proposed framework
using various fault data by comparing the prediction performance of fault prediction and by assessing
how well the main pre-symptoms of the fault are extracted when predicting a fault.

Keywords: explainable artificial intelligence; deep learning; fault prediction; long short-term memory;
marine main engine; predictive maintenance; time-series

1. Introduction
1.1. Background

Predictive maintenance and fault prediction of ship engines are essential to increase
the safety and economic efficiency of ship operations [1]. The 2021 Suez Canal obstruction,
where a single vessel caused significant disruptions, had a substantial impact on global
supply chains and the economy [2,3]. This is a crystal clear example that ship failures can
cause unexpected accidents, which can lead to enormous economic losses and environmen-
tal damage. Therefore, the development of an accurate fault prediction system is significant
in maximizing the efficiency of ship operation and increasing stability [4].

In particular, the importance of predictive maintenance is increasing in new gener-
ations of marine transportation such as smart ships and autonomous ships [5]. These
modern ships have complex systems and configurations, so preventing breakdowns as
quickly as possible is essential. Here, predictive maintenance refers to a technology that
predicts failure in advance by monitoring and analyzing equipment status data in real-time.
Applying the above technology can maximize equipment operation time and minimize
maintenance costs by reducing unnecessary inspection and maintenance compared to the
method of inspecting equipment according to a regular maintenance schedule.

In recent years, the advancement of artificial intelligence (AI) and the introduction of
explainable AI (XAI) have significantly propelled the field of predictive maintenance [6–8].
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AI-based predictive maintenance models can predict failures by analyzing large amounts
of data, making it possible to detect ship engine problems in advance. However, existing
deep learning-based AI models have the limitation that they are models that cannot explain
the cause of predicted results [9]. This absence of explanation makes it difficult for users
to trust the predicted results because they do not understand the underlying reasons for
the predictions. Simultaneously, the explainability of the ship and the equipment design is
also substantial because the ship design and the equipment design need to be the basis of
the ship and the equipment design modification and expansion. To address these issues,
XAI techniques have emerged, making the prediction processes and the basis behind AI
model outcomes easier to understand. Predictive maintenance models using XAI not only
predict failures but also explain why specific results are derived, thereby increasing the
reliability of the predictions [10]. This allows users to take more appropriate actions based
on the insights provided.

1.2. Literature Review

Predicting and detecting ship engine failure is vital to increase operational efficiency
and reduce economic losses due to failure. Recently, there has been great progress in
this field due to the improved performance of AI and XAI. In particular, AI technologies
have been actively utilized to enhance the performance of multi-channel sensor data
monitoring technology for diagnosing the condition of ship engines [11,12]. In addition
to advancements in diagnostic techniques through monitoring, research on data-driven
methods using multi-channel sensor data and AI models for diagnosing the condition
and enhancing the energy efficiency of ships is also actively being conducted [13–16].
In related research, Velasco-Gallego et al. [17] proposed the real-time anomaly detection
intelligent system framework, which combines AI technologies such as long short-term
memory (LSTM) and variational autoencoder (VAE) with multi-level Otsu’s thresholding,
achieving high anomaly detection accuracy. Marins et al. [18] proposed a system that
utilizes a random forest classifier for automatic fault detection and classification in oil
wells and production/service lines. Tan et al. [19] evaluate various AI-based multi-label
classification algorithms for diagnosing concurrent faults in marine machinery using single
fault data to enhance fault detection without the need for extensive simultaneous fault
datasets. Xu et al. [20] identified failure locations using characteristic curve methods and
fault diagnosis indices. Karatuğ et al. [21] propose an innovative approach to improving
ship energy efficiency by combining an engine optimization model with a data-driven
adaptive neuro-fuzzy inference system to predict and control ship performance based on
operational data.

Furthermore, AI technologies have been widely used not only for accurately detecting
the current fault condition of ships but also for developing fault prediction models to
forecast future failure.

Ji et al. [22] improved prediction accuracy by designing the convolutional neural net-
work (CNN)-bidirectional LSTM (BiLSTM)-attention hybrid model. In addition,
Han et al. [23] enhanced fault prediction accuracy by using recurrent neural network (RNN)
and LSTM models with time-series data. These models reflect the time-series characteristics
of the data, resulting in improved accuracy. Sun et al. [24] introduced a method to improve
fault prediction accuracy by combining time-series data with support vector machines.
Tong et al. [25] proposed using an optimized back propagation neural network for fault di-
agnosis of marine diesel engines, improving fitting and classification performance through
genetic algorithm optimization. Previous studies have focused on predicting failures using
multi-channel sensor data, typically employing models that consider the characteristics of
multivariate time-series data.

In the context of AI models, simple traditional machine learning (ML) models, in-
cluding decision trees and linear regressions, are called white-box models since they can
inherently explain their prediction process. However, as AI models have become more com-
plex for better performance, it gets more difficult to reveal the cause of the prediction. Such
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models are called black-box models, and support vector machines (SVMs), random forests,
and deep learning models are representative black-box models. Thus, XAI has emerged,
which refers to methods that make the decision-making processes of complex AI models
understandable to humans. Specifically, XAI explains the factors that lead an AI model
to make a specific decision. Some early works on XAI try to explain SVMs and random
forests by approximating them linearly as in the white-box models. From the perspective
of predictive maintenance, Lazakis et al. [26] proposed a method combining failure modes
and effects analysis (FMEA) and fault tree analysis (FTA) to identify the causes of machine
failures. FMEA systematically analyzes components, functions, failure modes, and system
failures, while FTA, which is a white-box model, examines how systems or components
may contribute to failures. Recently, however, deep learning models have been widely used
for fault prediction instead of traditional ML models whose representational capability is
insufficient to represent the complex non-linear behavior of machine failures. Therefore, to
explain such a deep learning-based fault prediction model, Park et al. [7] proposed an XAI
methodology that utilizes sensors for anomaly detection and root cause analysis in marine
engines. This study uses Shapley additive explanations (SHAP) techniques to analyze
data correlations and identify important factors, thereby improving the performance of
the model. However, there is a lack of XAI techniques for fault predictions focusing on
time-series characteristics.

If there is little or no failure data available, it can be detrimental to creating a fault
prediction model. Therefore, generating failure data is essential for training and evaluating
fault prediction models. Qi et al. [27] generate failure data based on event logs from log
data, which is then used to train fault prediction models.

Synthesizing prior research, most research has focused on predicting failures using
multi-channel sensor data, with relatively less attention given to explaining the prediction
results, especially in terms of time-series characteristics. This lack of focus on explanation
can hinder the reliability of AI prediction results and pose challenges to the practical
implementation of predictive maintenance systems. To resolve these issues, this study aims
to apply advanced explainable AI techniques to investigate the causes of AI predictions
and enhance system reliability.

1.3. Contribution of the Paper

In this paper, we propose a time-series explanatory fault prediction framework that
predicts a failure while simultaneously providing the rationale for the predictions. The
proposed framework consists of a dimensionality reduction method, a fault prediction
model, and a time-series interpretation module. In particular, it can address the key question
of this study considering the time-series characteristics via the interpretation module: “Why
did the fault prediction model predict a failure?”. The interpretation module investigates
the significant features that affect the failure prediction from a time-series point of view.
The contributions of this paper are as follows:

• We propose an improved dimensionality reduction method that uses both traditional
statistical and XAI techniques. The traditional dimensionality reduction techniques
extract features highly correlated with the target feature to be predicted, assuming
that data follows a specific parametric distribution. However, such approaches based
on the parametric distribution are often likely to be inaccurate when the data does
not follow the assumed distribution or contains outliers. Therefore, we combine a
non-parametric XAI-based technique with the traditional statistical techniques.

• We propose a novel fault prediction procedure that can provide a time-series explain-
ability to a fault prediction model. In the procedure, XAI techniques examine which
parts of input data led to fault predictions by the fault prediction model. In particular,
the proposed procedure considers both feature and time domains of data when inter-
preting the fault prediction model contrary to existing XAI application studies that
only consider the feature domain. For each fault prediction, the proposed procedure
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can analyze and visualize the region of the input data, from which the prediction is
significantly influenced, in terms of both feature and time domains.

• To show the time-series explainability of the proposed framework, we construct
various types of synthetic fault conditions and apply them to a real dataset for main
engine maintenance. Through experiments using the dataset, we demonstrate that the
proposed framework not only predicts a fault but also examines the rationale of fault
predictions. For each fault prediction by the fault prediction model, the interpretation
module accurately identifies and visualizes the artificial symptoms that indicate the
possibility of a fault in the future.

1.4. Paper Structure

This paper is organized as follows. Section 2 provides the definition of the problem
considered in this paper. In Section 3, we propose a time-series explanatory fault prediction
framework, and in Section 4, we provide an application scenario of the proposed framework.
We provide experimental results in Section 5 and finally conclude in Section 6.

2. Problem Definition

We study an explanatory fault prediction framework for marine main engine failure
considering the time-series characteristics of the data using XAI. Most previous fault
prediction studies have focused only on accurately predicting future fault states using
multi-channel sensor data or operational data. In contrast, the explanatory fault prediction
framework presented in this paper not only provides predictions of future fault states, as
in the previous studies but also visualizes the reasoning behind its predictions to enhance
explainability with respect to a time-series perspective. The process of providing predictions
and visualizing reasoning behind predictions is depicted in Figure 1. In figure, the collected
time-series data represents raw data measured from the vessel. This data undergoes feature
reduction and is then used for training and prediction in the fault prediction model. The
trained fault prediction model continuously predicts target values, and when a predicted
value falls within an abnormal range, as indicated by the exclamation mark in the figure,
the main cause of the predicted value is interpreted. To this end, this framework follows
three main steps: (1) effective feature reduction through data analysis, (2) training a fault
prediction model, and (3) extracting the main cause of fault predictions using XAI.

Figure 1. The overviewof a goal of the explanatory fault prediction framework.The check mark
indicates that a prediction value falls within a normal range, while the exclamation mark indicates
that a prediction value falls within an abnormal range.

Fault prediction is the process of predicting whether a system will fail after a certain
amount of time, based on the current system information. Recently, as described in the
literature review deep learning models have been widely used for fault prediction in a data-
driven way. In general, a sample consists of an input time-series data x = {x1, ..., xi, ..., xN}
and a target fault-related vector y = (y1, ..., ydY )

⊤, where the i-th input vector is defined
as xi = (xi,1, ..., xi,dX )

⊤, N is the entire time series length of the input data, and dX and
dY denote the dimensions of x and y, respectively. The input vector describes the current
system state information while the target fault-related vector describes the fault state after
a certain amount of time. The target fault-related vector can be not only categorical but also
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numerical. For example, the fault-related vector can be binary, where 0 indicates that the
system does not fail at the given time, and vice versa. In addition, the fault-related vector
can be numerical if the fault of the system is defined based on its value (e.g., pressure and
temperature). Then, a dataset for fault prediction given by the set of multiple samples as
D = {(xj, yj)|j = 1, 2, ..., DN}, where j denotes the index of samples and DN is the number
of samples.

For a practical application scenario of fault prediction, we consider a dataset collected
for monitoring the condition of a liquefied natural gas carrier (LNGC) vessel with a two-
stroke diesel engine, specifically the Doosan engine 5G70ME-C9.5-GI-TII model. The data
was measured during the vessel’s voyage from 1 January 2023 to 31 July 2023. Table 1
presents the principal specifications of the main engine considered in this paper, including
the model type, the maximum power output, the number of cylinders, and the normal
continuous rating (NCR) at 65.8 revolutions per minute (RPM).

Table 1. Main engine principal specifications.

Main Engine Model Type Max Power (kW) Number of Cylinders NCR

Doosan engine 5G70ME-C9.5-GI-TII 12,050 5 65.8 RPM

The measured data is collected over time (i.e., it is time-series data) from 76 different
sensors attached to the main engine. Since the data is collected to monitor the engine’s
condition, it includes information such as the RPM of the cylinders and the coolant temper-
ature in the main engine. In particular, we consider a failure condition of cylinders based
on exhaust gas temperature. This type of failure occurs when the exhaust gas temperature
within a cylinder of the main engine rises excessively. Therefore, the fault-related vector in
this case becomes numerical, which indicates the exhaust gas temperature after a certain
amount of time. We will describe the details of the application scenario in Section 4.

3. Proposed Methodology
3.1. Dimensionality Reduction of Correlation Analysis and XAI

Most existing studies on multi-channel signal data analysis have used statistical
analysis methods, such as Pearson correlation, to evaluate relationships between data
features [28]. These statistical analysis methods are efficient for analyzing correlations
between data features because they consider only a few factors, such as mean, standard
deviation, and covariance, requiring less computation time. However, these methods are
parametric, assuming that target data follows a specific data distribution. Therefore, the
analysis results based on the methods are likely to be inaccurate if the analyzed data do not
follow the specific distribution or the correlation between variables is non-linear, due to
their theoretical background [29].

Data analysis using XAI, on the other hand, employs non-parametric methodologies
that do not assume any specific data distribution during correlation analysis. Therefore,
XAI can provide more accurate correlation analyses regardless of the data distribution or
non-linear relationships between features. However, a limitation of XAI-based analysis
is the variability in analysis results depending on the extent of training of the AI model,
which leads to potential instability in the analysis results.

We here propose a complementary correlation analysis method that combines statisti-
cal correlation analysis with XAI-based analysis. This approach aims to complement the
limitations of each individual method by leveraging their respective strengths.

3.1.1. Pearson Correlation Analysis

We first employ the Pearson correlation analysis as an initial analysis method to
investigate the linear correlation among features in the dataset. Through the Pearson
correlation analysis, the Pearson correlation coefficients over the features are calculated,
which indicates the correlation between features. Specifically, each Pearson correlation
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coefficient is obtained by statistically measuring the linear relationship between features.
The equation for computing the coefficient between features xk and xl is given as follows.

Pxk ,xl =
∑N

i=1(xi,k − x̄k)(xi,l − x̄l)√
∑N

i=1(xi,k − x̄k)2
√

∑N
i=1(xi,l − x̄l)2

, (1)

where xi,j denotes the value of feature j in sample i and x̄j is the mean value of feature
xj over the samples (i.e., x̄j = N−1 ∑N

i=1 xi,j). The computed value of Pxk ,xl signifies the
correlation coefficient between features xk and xl , ranging from −1 to +1. A value closer to
+1 indicates a strong proportional relationship between features xk and xl , while a value
nearer to −1 indicates a strong inverse proportional relationship. Moreover, a value closer
to 0 suggests a weaker correlation between features xk and xl . In Figure 2, the computed
correlations among 38 features, half of 76 features in the dataset that will be used in the
practical application are presented.

Figure 2. The example of the Pearson correlation analysis of half of the entire feature results.

3.1.2. Shapley Additive Explanations Analysis

In the previous subsection, the Pearson correlation analysis method is used as the initial
analysis for data correlation analysis. The simplicity, intuitiveness, and low computational
cost of the method allow us to conveniently identify the overall correlation trends in the
data. However, in general, real-world data often exhibit non-linear relationships between
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features and are likely to contain outliers that hinder the correlation analysis. In such cases,
the Pearson correlation analysis, which investigates linear relationships between features,
may derive inaccurate correlation analysis results from the data [30].

Here, we aim to address the limitations of the Pearson correlation analysis by using
the SHAP technique, a method within the domain of XAI. Due to its non-parametric nature,
the SHAP technique is capable of analyzing datasets more accurately compared to the
Pearson correlation analysis, even when the data contains non-linear relationships and
outlier samples [31]. Suppose that the SHAP technique is used to analyze the correlation
between a target feature and the others. To this end, first, a prediction model is trained
that predicts the value of the target feature based on the given values of the others. The
trained model inherently approximates the relationship between the target feature and the
other input features. Then, by applying the SHAP technique to the model, we can quantify
the impact of each input feature on the prediction for the target feature based on Shapley
values from game theory. This approach assumes only that each input feature in the dataset
is independent. The influence of an input feature on the target feature can be calculated
using the following equation:

Shapley value of feature k = ∑
S⊆NX\{k}

|S|(dX − |S| − 1)!
dX !

(v(S ∪ {k})− v(S))), (2)

where NX = {1, 2, ..., dX} denotes the set of the features of the input vector, |X | denotes
the cardinality of a set X , S represents all subsets of NX not containing feature k, and v(S)
denotes the contribution to the prediction by the input features in set S . This equation allows
us to decompose the model’s prediction into the contribution of each input feature, making
it possible to analyze the influence of each input feature on the target feature’s prediction.

The Shapley value in (2) considers all features based on the predictions. Therefore,
even if the relationships between the features are non-linear, the SHAP technique can
evaluate the correlations between the target feature and the others by analyzing their
complex interactions through the prediction model. At the same time, however, this makes
the effectiveness of the SHAP technique for correlation analysis highly dependent on the
representational performance of the prediction model. If the prediction model represents the
complex non-linear relationships between features well, it can also evaluate the correlations
well. On the other hand, if the model is poorly trained, it may produce inaccurate analysis
results. To overcome this risk, we jointly use Pearson correlation-based data correlation
analysis, which can analyze the overall linear relationships in the data, thereby reducing
potential errors.

In summary, we propose a feature reduction method that aims to improve feature
reduction by combining the results of the SHAP technique and Pearson correlation analysis.
To identify only the features that are clearly related, it selects the features that demonstrate
consistently high proportional or inversely proportional relationships with similar magni-
tudes in both analyses. This approach leverages the complementary strengths of these two
techniques to evaluate non-linear correlations between features while minimizing error.

3.2. Fault Prediction Model Based on LSTM

A variety of deep learning-based prediction models can be used to perform fault
prediction. In particular, for data measured over time, RNN performs well in predicting by
reflecting the time-series characteristics of the data [32,33]. The goal of the fault prediction
framework in this paper is to predict a fault that could possibly occur in the future con-
sidering the time-series characteristics of the measured sensor data. Therefore, we use a
deep learning model based on LSTM, which is an enhanced version of traditional RNN
models [34].

The LSTM structure is depicted in Figure 3. The sequence of data (i.e., xi−1, xi, xi+1, ...)
is used as input. LSTM consists of three gates: the input gate, the output gate, and the forget
gate, each of which operates differently. As in traditional RNN, LSTM recursively uses
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its output as an input for the next data. However, it can address the vanishing gradient
problem by using these three gates, which is the major significant difference between
traditional RNN and the core functionality of LSTM.

Figure 3. The architecture of an LSTM cell.

First, the input gate determines how much of the current input information to retain
and integrates this information into the existing memory based on input gate activation and
candidate cell state. Second, the forget gate decides how much of the previous memory to
retain at the current time step through forget gate activation, which influences the amount
of information the LSTM remembers. Lastly, the output gate makes its memory of the short
time step by output gate activation. These processes of the LSTM can be expressed as the
following equations:

fi = σ(Wx f xi + Wh f hi−1 + b f ), (3)

pi = σ(Wxpxi + Whphi−1 + bp), (4)

gi = tanh(Wxgxi + Whghi−1 + bg), (5)

oi = σ(Wxoxi + Whohi−1 + bo), (6)

ci = fi ⊙ ci−1 + pi ⊙ gi, (7)

and hi = tanh(ci)⊙ oi. (8)

In these equations, the index of a sequence of data i can be interpreted as the time step
in time-series data. Accordingly, xi, pi, gi, fi, oi, ci, and hi represent the input, input gate
activation, candidate cell state, forget gate activation, output gate activation, memory cell,
and hidden state at time step i, respectively. Wxp, Wxg, Wx f , Wxo are the weights multiplied
by xi at each gate, and Whp, Whg, Wh f , Who are the weights multiplied by hi at each gate.
The symbol ⊙ indicates element-wise multiplication between two vectors, while σ(·) and
tanh(·) are the sigmoid and tangent hyperbolic activation functions, respectively.

The memory of LSTM is composed of the long-term state, ci, which remembers long-
term sequences, and the short-term state hi, which remembers short sequences. They are
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updated at each time step based on the input xi and the three gates, enabling the learning
of temporal sequences. Then, the computation processes of each gate will be explained
individually, followed by how these results are utilized to compute ci and hi. First, the
forget gate computes the forget gate activation, fi, using Equation (3). The forget gate
activation determines how much of the memory cell from the previous time step, ci−1,
should be retained at the current time step, based on the current input, xi, and the previous
hidden state, hi−1. Second, the input gate computes the input gate activation, pi, and the
candidate cell state, gi, using Equations (4) and (5), respectively. The input gate activation
integrates xi and hi−1 to determine the proportion of xi to be reflected in the memory cell,
ci, while the candidate cell state represents the current input information to be added to
ci. Lastly, the output gate computes the output gate activation, oi, using Equation (6). It
multiplies xi and hi−1 by the weights Wxo and Who, respectively, and applies the σ function
to determine how much of ci to reflect in hi.

In summary, the forget gate, input gate, and output gate compute their activation
values pi, fi, and oi, respectively, using the σ function. These activation values determine
how much information is reflected in the long-term state, ci, and the short-term state,
hi. Exceptionally, the input gate computes not only its activation value, pi, but also the
candidate cell state, gi, that contains the information from xi to be reflected in ci. Using the
results of Equations (3)–(7) adjusts the previous memory cell ci−1 by fi and combines it with
gi scaled by pi to compute the long-term state ci. Similarly, Equation (8) adjusts the memory
cell ci by passing it through the tanh activation function and scaling the activated value by
oi to compute the short-term state hi. Through these processes, the LSTM learns time-series
characteristics of data that can make accurate predictions in a time-series data environment.
The data xi represents sensor data with multiple features at each time step. The LSTM is
designed to predict the target fault-related values at future time steps by considering the
previous data and the order of each feature in the time series, as described above.

3.3. Perturbation-Based XAI Method Considering Temporal Dependencies

Recently, deep learning models have been widely used in various predictive main-
tenance domains. They enable the predictive models to achieve better performance, but
cannot explain why such predictions are made. Thus, they are often referred to as black-box
models. To overcome this limitation, we adapt XAI techniques to provide the rationale for
the predictions made by such black-box models. In particular, the XAI technique for the
fault prediction of the main engine should be able to consider the time-series characteristics
of the measured data since the data for the fault prediction is a time-series data collected in
a time-sequential order.

In the XAI literature, a method that interprets black-box models by utilizing the
changes in the output according to the input that is slightly perturbed is called perturbation-
based XAI. In this paper, we employ a perturbation-based XAI method, especially consider-
ing the time-series characteristics of the features. The flowchart of the method to interpret
the prediction of a target black-box model for a target input is shown in Figure 4. We briefly
explain the perturbation-based interpretation procedure step by step in the following: In
each iteration, first, the target input of the target black-box model is perturbed by using
a perturbation operator that reflects the importance of each data element described by a
mask. The black-box model predicts the output (i.e., OutputMask in the figure) based on
the perturbed input. Then, the mask is updated in a direction that reduces the difference
between the predicted outputs based on the original input (i.e., Output in the figure and
the perturbed input (i.e., OutputMask in the figure). In the next iteration, the perturbation
operator perturbs the input differently according to the updated mask. This procedure is
repeated to train the mask, and described in mathematical expressions as follows:

M∗
a = arg min

M∈[0,1]N×dX

λe · Le(M) + λa · La(M) + λc · Lc(M), (9)
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where M denotes a mask that describes the importance of input data elements, Le, La, and
Lc are the loss functions, and λe, λa, and λc are hyperparameters that determining the
weighting of each loss term.

Figure 4. The flowchart of perturbation-based interpretation.

Equation (9) represents an optimization problem for finding the optimal mask M∗
a

that minimizes the given objective function. The objective function is designed so that the
optimal mask describes the importance of input data elements within the range of 0 and 1
while satisfying the area constraint on the ratio of the area indicated as important. In the
objective function, Le measures the error of M during training, La restricts the size of the
highlighted area, and Lc limits the degree of smoothing of M. First, the area regularization
term La is defined as

La(M) = ∥vecsort(M)− ra∥2, (10)

where vecsort(·) is a function that transforms a matrix into a vector and then sorts it in
ascending order and ra is a vector composed of (1 − a) · dX · N zeros and a · dX · N ones.
In the equation, M is sorted in ascending order, and then, ra is subtracted to adjust the
area size. Therefore, if the size of the region highlighted by M deviates significantly from a,
the value of La(M) will increase. Since the objective function aims at minimizing La(M),
the training process adjusts M to ensure that the size of the highlighted area is close to a.
Consequently, this ensures that M highlights only up to the size specified by a.

The second loss term, the time smoothing term, is defined by

Lc(M) =
N−1

∑
i=1

dX

∑
k=1

∣∣mi+1,k − mi,k
∣∣, (11)

where mi,k denotes elements of M = (mi,k) ∈ [0, 1]N×dX . This term ensures that M is
smoothly connected over time. It measures the temporal variation of the same feature k
through the difference between mi+1,k and mi,k. During training, the model minimizes this
difference, leading to a mask that is smoothly connected along the time axis. In addition,
the importance of xi,k is learned through mi,k and mi,k interacts with mi+1,k in the temporal
dimension. This implies that this term makes the mask reflect the temporal dependencies
of data during interpretation.

The third loss term, the error loss term, is defined by

Le(M) =
N

∑
i=iy

dY

∑
k=1

([(V ◦ ΠM)(x)]i,k − [V(x)]i,k)
2, (12)

where V is a black-box regression model, ΠM is a perturbation operator, and the sym-
bol ◦ denotes the function composition operator. This term measures the difference be-
tween output of (V ◦ ΠM)(x) and output of V(x). Therefore, it represents a loss de-
fined to measure the difference between the output of ΠM(x) passed through the per-
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turbation operator specified by M and the output of x without passing through the
perturbation operator.

Through this loss term, the objective function trains M such that (V ◦ ΠM)(x) exhibits
minimal difference from the original output of x. The perturbation operator Π can be
defined in various ways. Here, we provide one of the representative operators based on the
time average as follows:

Π(x, mi,k; i, k) = mi,k · xi,k + (1 − mi,k) · µi,k, (13)

where µi,k is the average value of xi−W,k to xi+W,k (i.e., µi,k = 1
2W+1 ∑i+W

i′=i−W xi′ ,k) and
W is a hyperparameter that determines the distance of adjacent time points considered
by the perturbation operator during perturbation. In the operator, each element of x is
transformed considering its adjacent elements via µ. When Π transforms x, mi,k is closer
to 1, the more the original value xi,k is preserved, and mi,k is closer to 0, the more x is
perturbed by reflecting the adjacent average value µi,k instead of the original xi,k. This
process is the part that allows the XAI method to consider time-series characteristics and
temporal dependencies of data during interpretation.

In summary, Equation (9) generates the mask M that indicates the area significant for
the prediction by considering the three loss terms defined in Equations (10)–(12), which
obscure all areas without highlighting with minimal impact on the input-output difference
and ensure smooth connections along the time axis. In this paper, we build a fault prediction
model considering the time-series characteristics as described in Section 3.2. Therefore,
when interpreting this fault prediction model, XAI techniques that incorporate time-series
characteristics should be used to achieve more accurate interpretations.

3.4. Proposed Time-Series Explanatory Fault Prediction Framework

We now propose a time-series explanatory fault prediction framework based on the
above ingredients. It consists of two phases, a training phase and an exploitation phase.
In the training phase, a fault prediction model is trained using the preprocessed dataset.
In the exploitation phase, the prediction model trained in the training phase is used to
predict possible faults in the future. If a fault is predicted during the exploitation phase, the
temporal explanation of the predicted fault is provided via the interpretation module in
the framework. We will describe the details of the phases below.

The flowchart of the entire training phase is illustrated in the upper panel of Figure 5.
In the training phase, a fault prediction model is built based on LSTM as described in
Section 3.2, and trained using an offline dataset before using the model in practice. In
general, training the prediction model using the raw data may not only degrade the
accuracy of the model due to unnecessary data inclusion but also significantly increase
the training time due to the high dimensionality of the data. Therefore, the dataset should
be preprocessed before being used to train the prediction model. To this end, first, two
data analysis methods described in Section 3.1 are performed to extract the features that
are highly correlated with the target feature. Then, a feature selection filter is constructed
based on the correlation analyses. Using the filter, the dataset is processed into a feature-
reduced dataset which has a smaller dimensionality compared to the original one. Then,
the training samples that consist of time-series input features and a future fault occurrence
are generated from the feature-reduced dataset. To predict the future fault occurrence based
on the time-series input features, the prediction model is trained by using the generated
training samples.

The flowchart of the exploitation phase is illustrated in the lower panel of Figure 5.
Contrary to the training phase, the exploitation phase describes a fault prediction operation
in practice where real-time data is collected continuously for fault prediction. To this end,
the collected time-series data should be processed into feature-reduced data, since the fault
prediction models were trained by using the feature-reduced dataset. The feature selection
filter constructed during the training phase is used for this feature reduction. Then, the
feature-reduced version of the collected time-series data is fed into the model to predict
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future fault occurrence. In practice, the time-series data is collected continuously, and thus,
the prediction model receives the continuous data and continuously predicts the future
fault occurrence. Once the future fault occurrence is predicted in this continuous prediction
process, the interpretation module derives the rationale of the fault prediction through
the explanation analysis as described in Section 3.3. Specifically, the interpretation module
indicates the temporal regions of the data that were significant in the model’s prediction of
future failure.

Figure 5. The flowchart of the training phase and exploitation phase. In the result of the interpretation
module, the green region of the input features represents the parts that were significant in the
model’s prediction.

The main difference between the training phase and the exploitation phase is whether
the fault prediction model is trained or exploited. In the training phase, the model is trained
offline. On the other hand, in the exploitation phase, the trained model is implemented on
the ship and used online during the ship’s operation. It is worth noting that the training
phase can be performed periodically to reflect the data additionally collected during the
exploitation phase.

The proposed time-series explanatory fault prediction framework can be applied
to different application domains. Then, various data analysis techniques can be used to
generate a feature selection filter, depending on the data characteristics of the application
domain. In addition, the conditions of fault occurrence and prediction interpretation can
also be varied according to the application domain. For example, the condition to perform
fault prediction interpretation may be configured as more sensitive compared with the
condition of fault occurrence for more conservative and robust ship management.

4. Application of Explanatory Fault Prediction in Real-World Datasets
4.1. Scenario of Fault Prediction

We consider a failure condition of excessive cylinder exhaust gas temperature rises.
This type of failure occurs when the exhaust gas temperature within a cylinder of the main
engine rises above 600 ◦C. In general, the exhaust gas temperature ranges between 250 ◦C
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and 395 ◦C during normal operation. However, when problems occur within the engine,
such as problems with the fuel injection, air intake, or cooling systems, the temperature
rises, indicating a fault.

To monitor this failure condition, each cylinder within the main engine is equipped
with sensors labeled ‘ME(S) 1 CYL EXH GAS TEMP H’, ‘ME(S) 2 CYL EXH GAS TEMP H’,
‘ME(S) 3 CYL EXH GAS TEMP H’, ‘ME(S) 4 CYL EXH GAS TEMP H’, and ‘ME(S) 5 CYL
EXH GAS TEMP H’. For clear presentation, we aim to predict the failure condition in the
first cylinder by predicting the sensor values of ‘ME(S) 1 CYL EXH GAS TEMP H’. Specifi-
cally, a fault prediction model in this scenario predicts the exhaust gas temperature of the
first cylinder after a certain amount of time. It is worth noting that the proposed framework
in this paper can be applied not only to the failure of the cylinder gas temperature but also
to any type of failure.

4.2. Data Generation

The dataset used in this study was measured from sensor data for monitoring the con-
dition of the main engine during the voyage of an LNGC vessel with each sample consisting
of data collected at one-minute intervals over approximately seven months. As described
in Section 2, it consists of 76 sensor features for ship state monitoring. For the prediction of
the target condition, the target fault-related value is set as the value of the target feature,
‘ME(S) 1 CYL EXH GAS TEMP H’, at a certain amount of time. To show and evaluate the
time-series explanation of fault prediction, we artificially simulated failure conditions by
adding synthetic failure behaviors that consist of fault situations and pre-symptoms. A
pre-symptom is various phenomena that occur before a fault arises, thereby indicating the
possibility of the fault in the future. Therefore, the predictive interpretability for the fault
prediction can be evaluated by how well the corresponding pre-symptoms are identified.
These synthetic failure conditions allow us to evaluate the prediction performance and
the predictive interpretability more clearly, since the reasoning behind failures in practical
ships may not be clear.

Furthermore, in practice, it is difficult to collect ship operation data that includes
engine failures. This is because the management agents of a ship such as companies and
individuals, regularly inspect the ship’s engines to prevent their failures, which incur the
significant cost.

4.2.1. Data Preprocessing

Typically, the dataset collected from real-world environments should be processed
before being utilized for deep learning models. Here, a data preprocessing step is imple-
mented to transform the data into a format suitable for training predictive models. Firstly,
missing values within the collected data should be addressed. The data spans a relatively
long measurement period. Hence, in the data, some sensor measurements within the mea-
surement period may be missing due to sensor errors or communication errors between
the ship and the marine plant. In this study, we address such missing values by linear
interpolation. We provide the sample result of the missing values before and after linear
interpolation in Figure 6.

Figure 6. The sample result of before-after linear interpolation.
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In addition to the missing values, there are segments in the dataset where all sensor
values abruptly drop simultaneously. These segments were observed to coincide with
periods when the main engine’s RPM falls to zero, indicating a stop in operation (i.e., at
anchor). Since we are considering fault prediction during operation, we removed the data
during these periods as shown in Figure 7.

Figure 7. The sample result of the before-after removal of downtime periods.

4.2.2. Synthetic Fault Behavior for Experiments

As described earlier, we artificially added failure conditions and their pre-symptoms
to the data to generate training and test datasets for fault prediction, since the measured
data does not include any fault data. To simulate various types of failure conditions, we
generated pre-symptoms and fault appearances in diverse forms, as illustrated in Table 2.
The fault behavior includes the excessive exhaust gas temperature rise above 600 ◦C and
its pre-symptoms.

Table 2. Different failure behaviors.

Dataset Gaussian Noise Increasing Pattern Combination of
Pre-Symptoms Regularity

Data 1 × Vertical ×
√

Data 2
√

Vertical ×
√

Data 3 × Linear ×
√

Data 4
√

Linear ×
√

Data 5 × Exponential ×
√

Data 6
√

Exponential ×
√

Data 7 × Exponential ×
√

Data 8 × Exponential × ×
Data 9

√
Exponential × ×

Data 10 × Exponential
√

×
Data 11

√
Exponential

√
×

In Table 2, there are four factors that contribute to constructing different fault behaviors
with different pre-symptoms.The × symbol in the table indicates that the factor is not
reflected, whereas the

√
symbol indicates that the factor is reflected. First, to simulate

scenarios where more noise is added during data measurement, Gaussian noise is applied to
both target data and the entire input data. Second, when generating failure conditions and
their pre-symptoms, we consider three different types of increasing patterns that represent
how the temperature rises in the time domain. They describe different situations where the
temperature inside the cylinder increases rapidly or gradually. Third, to account for cases
where pre-symptoms appear at regular intervals and those where they do not, a condition
of the combination of pre-symptoms was considered. Lastly, the factor of regularity was
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included to consider scenarios where pre-symptoms occur but the fault condition does
not occur. Considering the factors described above, we generate fault condition data by
specifying a sequence where two pre-symptoms are followed by one fault condition for
‘ME(S) 1 CYL EXH GAS TEMP H’. The pre-symptoms fall outside the normal range of
250 ◦C to 395 ◦C but do not exceed the fault criterion of 600 ◦C. After the pre-symptoms
appear, the fault condition that exceeds 600 ◦C occurs. In particular, the pre-symptoms
for each feature are generated according to its correlation with the target feature: For
features with a positive correlation, the increasing pattern is added, while for features
with a negative correlation, the decreasing pattern is added. The intervals and magnitudes
of occurrence were randomly assigned. This data generation method can cover different
failure patterns that may occur together with the four factors.

As a result, we augment the normal dataset by using 11 types of fault behavior patterns,
generating multiple scenarios where each dataset represents a set of scenarios with and
without faults. Each dataset consists of half normal measurements and half abnormal
measurements with faults. The visualizations of Abnormal data 6 and Abnormal data 11
are shown in Figure 8.

Figure 8. The sample of normal scenarios and abnormal scenarios with faults in Abnormal data 6
(upper) and Abnormal data 11 (lower).

4.3. Training Phase
4.3.1. Feature Selection Filter for Dimensionality Reduction

For training the fault prediction model, we partitioned each dataset in Table 2 into three
subsets. We use 60% of measurements as a training dataset for the fault prediction model,
10% as a validation dataset to check for overfitting and to assess the model’s performance
during training, and 30% as a test dataset to evaluate the performance of the trained
model. It is worth noting that any techniques related to model training and hyperparameter
optimization can be used for training fault prediction models. These training datasets
correspond to the offline dataset of the training phase depicted in Figure 5. Consequently,
as described in Section 3.4, both Pearson correlation and SHAP analysis are utilized to
generate a feature selection filter. We consider the failure of excessive cylinder exhaust gas
temperature rises, which is identified based on the temperature measured by ‘ME(S) 1 CYL
EXH GAS TEMP H’. Therefore, the fault prediction model is built to predict the future
sensor values of ‘ME(S) 1 CYL EXH GAS TEMP H’. To analyze the correlation between
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‘ME(S) 1 CYL EXH GAS TEMP H’ and all other features, we apply the Pearson correlation
analysis to that feature as shown in Figure 9, instead of applying it to all features as in
Figure 2.

Figure 9. Pearson correlation analysis result of ‘ME(S) 1 CYL EXH GAS TEMP H’ (30 features with
the largest absolute magnitudes).

Unlike Pearson correlation analysis, SHAP analysis is an XAI technique, requiring two
steps: (1) training a predictive model for the target feature and (2) the interpretation of this
model using SHAP. To this end, we build a simple DNN to predict the current ‘ME(S) 1 CYL
EXH GAS TEMP H’ for the given current system state information. Then, the trained DNN
model is analyzed using SHAP. The parameters of the utilized DNN model are presented
in Table 3.

Table 3. DNN architrecture.

Layer Design Parameters

Input layer 76 nodes
1st hidden layer 64 nodes/ReLU
2nd hidden layer 32 nodes/ReLU
3rd hidden layer 16 nodes/ReLU
4th hidden layer 8 nodes/ReLU

Output layer 1 nodes

In Figure 10, the SHAP analysis results are visualized. The graph on the left displays
the top 20 features, ranked in descending order of influence on the prediction of the
DNN model. In this graph, samples with red, i.e., positive Shapley values, indicate a
proportional relationship between the feature value and the target value (i.e., ‘ME(S) 1 CYL
EXH GAS TEMP H’), meaning that as the feature value increases, the target value also
increases, with higher values indicating a stronger proportional relationship. Conversely,
samples represented in blue, i.e., negative Shapley values, indicate an inversely proportional
relationship with the target value. The larger absolute Shapley values indicate the stronger
(inverse) proportional relationship. The graph on the right represents the sum of the
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absolute Shapley values for each feature, providing insight into the overall importance
of each feature in predicting the target value, regardless of whether the relationship is
proportional or inversely proportional.

Figure 10. The SHAP analysis result of ‘ME(S) 1 CYL EXH GAS TEMP H’.

A feature selection filter can be generated based on the Pearson correlation analysis and
SHAP analysis illustrated in Figures 9 and 10, respectively. For example, the significance of
each feature is evaluated as a weighted sum of its absolute SHAP value and its Pearson
correlation coefficient. Then, the weighted sums for the features are sorted in descending
order to select the top n features. This method generates a feature selection filter that has
a significant relationship with the target feature (‘ME(S) 1 CYL EXH GAS TEMP H’ in
this application). In this application scenario, we aim to verify how the impact of each
feature extracted through XAI techniques could vary in prediction factor interpretation. To
ensure data diversity in the synthetic fault data, we selected the following five features
with the most significant relationship, but two with the negative correlation: ‘ME(S) EXH
GAS TC OUTLET TEMP H’, ‘ME(S) SCAV AIR RECEIVER TEMP H.1’, ‘ME(S) EXH GAS
TC INLET TEMP H’, ‘ME(S) JCFW COOLER OUTLET TEMP CONT VV(HF115) POS IND’,
and ‘ME(S) JCFW COOLER OUTLET TEMP CONT (HF115).2’. It is worth noting that
there is no gold standard for selecting features and any criterion can be used according to
the given situation. The statistical characteristics of these selected features and the target
feature ‘ME(S) 1 CYL EXH GAS TEMP H’ are shown in Table 4.

Table 4. Statistical characteristics of the target and extracted features.

Features Min (◦C) Max (◦C) Mean (◦C) Median (◦C) Std (◦C)

ME(S) 1 CYL EXH GAS TEMP H 45.48 331.42 274.41 294.25 60.05

ME(S) EXH GAS TC OUTLET TEMP H 31.30 255.87 202.45 210.47 42.30

ME(S) SCAV AIR RECEIVER TEMP H.1 22.20 166.89 131.19 144.73 34.63

ME(S) EXH GAS TC INLET TEMP H 44.42 373.19 317.82 336.84 69.32

ME(S) JCFW COOLER OUTLET
TEMP CONT VV(HF115) POS IND

0.59 100.07 80.17 79.00 6.01

ME(S) JCFW COOLER OUTLET
TEMP CONT (HF115).2

70.65 88.16 77.39 76.68 2.07

4.3.2. Training Fault Prediction Model with LSTM

For predicting sensor measurements, a variety of deep learning models can be used.
However, we focus on predicting future sensor measurements based on time-series system
state information as illustrated in Figure 11. Therefore, we use an LSTM model for its
simplicity in handling time-series data for future predictions. Specifically, in this application
scenario, a single future sensor measurement, ME(S) 1 CYL EXH GAS TEMP H, is predicted
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using the sequence of measurements from the past. To address this fault prediction, we
consider a many-to-one sensor value prediction model based on an LSTM model with the
structure in Table 5. In Figure 11, the current time step indicates the time at which the
prediction is made, the window size indicates the length of the input sequential data in
terms of time, and the time horizon indicates the interval between the time to be predicted
and the current time step.

Figure 11. The illustration of fault prediction.

Table 5. LSTM architecture.

Layer Design Parameters

Input layer 5 nodes
1st hidden layer(LSTM) 128 nodes (5 layer)/ReLU
2nd hidden layer(DNN) 640 nodes/ReLU
3rd hidden layer(DNN) 512 nodes/ReLU
4th hidden layer(DNN) 256 nodes/ReLU
5th hidden layer(DNN) 128 nodes/ReLU
6th hidden layer(DNN) 64 nodes/ReLU
7th hidden layer(DNN) 16 nodes/ReLU
8th hidden layer(DNN) 8 nodes/ReLU

Output layer(DNN) 1 nodes

In fault prediction, as the time span of the input data increases (i.e., the window size
increases), the amount of information available increases, thereby enhancing prediction
accuracy. On the other hand, as the time to be predicted gets further away from the current
time step (i.e., the time horizon increases), the correlation between the input data and the
prediction may decrease, leading to reduced prediction performance. Hence, we consider
the different window sizes and time horizons across the datasets as shown in Table 6. For
each dataset, the individual LSTM model is implemented according to its window size.

Table 6. Different window sizes and time horizons across datasets.

Dataset Window Size (Hours) Time Horizon (Hours)

Data 1 3.5 1
Data 2 12 1
Data 3 12 2
Data 4 12 2
Data 5 12 5
Data 6 12 5
Data 7 30 5
Data 8 30 5
Data 9 30 5

Data 10 30 5
Data 11 30 5
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4.4. Exploitation Phase

In the training phase, the feature selection filter is generated and the fault prediction
model is trained as illustrated in Figure 5. Then, in the exploitation phase, they are used
to transform real-time data into feature-reduced data and predict future fault conditions.
Although our proposed framework is fully applicable in an environment where online
data is being collected, it was not feasible to conduct experiments by directly operating a
ship due to environmental constraints. Therefore, we simulate such an exploitation phase
by using the test dataset. Specifically, the measurements at each time are provided to the
prediction model according to the window size in Figure 11 (i.e., the prediction model
cannot access future measurements). Then, the prediction model predicts the future target
measurement using the data within the window size.

For every prediction, the time-series explanatory analysis of the predicted value can
be performed. However, it does not have to be performed in every prediction, considering
its computational cost. Therefore, we can consider a condition to perform the analysis
(e.g., the model predicts the failure condition). In this application scenario, we establish
two conditions: (1) situations where the actual temperature of the ship’s engine sensor
exceeds the failure threshold of 600 ◦C, and (2) situations where the predicted temperature
increases rapidly. The time-series explanatory analysis is performed only if the predicted
value satisfies one of the conditions. It is worth noting that we can arbitrarily design the
conditions for robust fault prediction.

5. Experimental Results
5.1. Evaluation Metrics

In the experiments, we evaluate the performance of the proposed time-series explana-
tory fault prediction framework. First, to evaluate the performance of fault prediction,
we use a mean squared error (MSE) on the prediction of the exhaust gas temperature
as an evaluation metric. This shows how well the prediction model predicts the future
target measurements. Furthermore, we should evaluate the explanatory capability of the
proposed framework for the predictive model. However, it is challenging to quantify how
well a framework interprets the predictive model. Besides, the actual fault data does not
indicate the true factors and rationale for possible faults in the future, which implies that it
is unknown whether the interpretation is correct or not. To address this issue, we design a
new metric to evaluate the interpretation results of the predictions. The metric should indi-
cate how well the interpretation results answer the question “Which features of which time
period are important for prediction?” Fortunately, since we add pre-symptoms artificially
to the normal dataset, we can distinguish between the periods of the symptoms of a fault
and the normal periods throughout the entire dataset. If an explanatory method works
well, it will indicate such periods of the pre-symptoms as the significant rationale of the
fault prediction. Therefore, we can evaluate the interpretability performance by quantifying
how much overlap there is between the pre-symptom periods and the periods indicated as
significant by the proposed framework. We formally define the metric for feature i as

Interpretability performancei =
Thit

i
Ttot

i
, (14)

where Ttot
i denotes the total intervals on feature i that are indicated as significant by the

proposed framework and Thit
i denotes the indicated intervals on feature i where the pre-

symptom appears. As the evaluation metric in Equation (14) becomes closer to 1, the
proposed framework has indicated the larger fault pre-symptom periods for feature i.

5.2. Performance Evaluation of Fault Prediction

As described in Section 4.3.2, we train an LSTM model on the training dataset gener-
ated in Section 4.2.2. To evaluate whether the proposed LSTM model effectively predicts
faults, we train another DNN model that has an architecture in Table 7. When predicting
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the future target measurement, the LSTM model uses the input features within its window
considering their temporal sequence. On the other hand, the DNN architecture predicts the
future target measurement without considering the temporal order of the input features.
Thus, the DNN model does not consider the time-series characteristics of the data, while
the LSTM model does.

Table 7. DNN architecture for fault prediction.

Layer Info

Input layer 5 nodes
1st hidden layer 1280 nodes/ReLU
2nd hidden layer 512 nodes/ReLU
3rd hidden layer 256 nodes/ReLU
4th hidden layer 128 nodes/ReLU
5th hidden layer 64 nodes/ReLU
6th hidden layer 16 nodes/ReLU
7th hidden layer 8 nodes/ReLU

Output layer 1 nodes

We compare the performance metric for prediction (i.e., MSE) between the two models
on the test dataset in Table 8. In the table, across all 11 datasets, the LSTM model consistently
achieves lower MSE than the DNN model, indicating more accurate predictions.

This emphasizes the effectiveness of utilizing predictive models that consider time-
series characteristics of sequential data.

Table 8. Prediction error of future target measurement.

Data Name LSTM DNN

Data 1 0.0130 0.0245
Data 2 0.0159 0.0212
Data 3 0.0448 0.0455
Data 4 0.0409 0.0421
Data 5 0.0055 0.0060
Data 6 0.0039 0.0041
Data 7 0.1522 0.1589
Data 8 0.1405 0.1417
Data 9 0.1101 0.1108

Data 10 0.2190 0.2248
Data 11 0.1966 0.1970

5.3. Performance Evaluation of Time-Series Explanatory

As illustrated in Figure 5, the trained model provides predictions for future target mea-
surements. Then, these predictions are interpreted as described in Section 3.3. The proposed
time-series explanatory fault prediction framework differs from other XAI methods in
that it considers adjacent time-series characteristics across input features when calculating
the importance of input features. Therefore, it is particularly suitable for interpreting ship
sensor data measured in sequential order. The results of interpreting the predictive model
from Section 3.2 using our proposed framework are provided below.

In Figure 12, the fault prediction and its interpretation results are provided. The left
panel depicts a case in which the predicted value exceeds 600 ◦C (i.e., the failure condition),
which is a criterion for prediction interpretation. The ground truth data (blue line) illustrates
one of the fault scenarios that belong to Data 4. It is randomly chosen from the test data.
The predictive model is trained using the training dataset from Data 4 to predict ‘ME(S)
1 CYL EXH GAS TEMP H’. The predictions (orange line) are visualized along with the
ground truth data. The intervals highlighted in green represent the period used as input
features to the model (i.e., the window), and the red dot indicates the predicted future
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values of ‘ME(S) 1 CYL EXH GAS TEMP H’ based on the input features highlighted. The
right panel visualizes the interpretation results of five features by the proposed framework.
The intervals indicated as significant pre-symptoms for fault prediction by the proposed
framework are highlighted in green. In the right panel of the figure, the increase-then-
decrease periods or decrease-then-increase periods describe the pre-symptoms for faults
added in the data preparation. Then, from the results, we can see that the proposed
framework successfully identified the added pre-symptoms patterns.

0 4 8 12 16 20 24
Time(hour)

0.0

0.2

0.4

0.6

0.8

1.0

Te
m

pe
ra

tu
re

(N
or

m
al

ize
d)

Predict point
Actual
Predict

0.0
0.5
1.0 Feature1

0.0
0.5
1.0 Feature2

0.0
0.5
1.0 Feature3

0.0
0.5
1.0 Feature4

6 8 10 12 14 16
Time(hour)

0.0
0.5
1.0Te

m
pe

ra
tu

re
 (N

or
m

al
ize

d)

Feature5

Figure 12. The visualization of the fault prediction and its interpretation results.

To evaluate the interpretability performance in deriving the rationale of predictions,
we use the evaluation metric defined in Equation (14). It evaluates how well an algorithm
identifies which features of which time period are important. Note that the existing XAI
methods for predictive maintenance do not consider time-series explanation (i.e., they only
focus on the important features and do not identify the important time period). Therefore,
their time-series explanation cannot be evaluated. Here, we evaluate the proposed frame-
work only. For the evaluation, we randomly choose five measurement scenarios from the
test data for each data. The earliest fault prediction for each measurement scenario is chosen
to calculate the interpretability performance defined in Section 5.1. The interpretability
performance of the five predictions is averaged. The results are shown in Table 9. In Table 9,
upon examining the average interpretability performance of each dataset, it can be observed
that the performance is evenly distributed across all 11 datasets. The overall average of
the average interpretability performance across all datasets is 0.76, indicating that the XAI
effectively identifies the main causes of fault predictions.

Table 9. Interpretability performance of fault prediction.

Data Name Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 AVG

Data 1 0.89 0.80 0.84 0.55 0.62 0.83
Data 2 0.72 0.73 0.69 0.57 0.57 0.66
Data 3 0.76 0.76 0.78 0.37 0.55 0.65
Data 4 0.74 0.70 0.67 0.54 0.94 0.70
Data 5 1.00 0.60 0.78 1.00 0.73 0.80
Data 6 0.92 1.00 0.89 0.38 0.36 0.71
Data 7 0.88 0.94 0.96 0.78 1.00 0.91
Data 8 1.00 0.83 0.81 0.60 0.63 0.76
Data 9 0.74 0.92 0.90 0.83 0.80 0.84

Data 10 0.76 0.53 0.70 1.00 0.92 0.74
Data 11 0.88 0.80 0.76 0.68 0.74 0.78

The experimental results indicate that the form of the data learned by the fault predic-
tion model did not significantly influence the interpretability results of XAI. This suggests
that even if operational data differs in form from the data considered in this study, a cer-
tain level of performance can still be expected. This finding underscores the robustness
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of the model’s interpretability across different data formats, implying potential utility in
real-world operational scenarios.

5.4. Discussions

In the preceding experiments, we demonstrate that the proposed framework achieves
a high interpretability performance in detecting pre-symptoms during fault prediction.
This successful experimental result indicates that the interpretation results of the proposed
framework can be used to understand the fault prediction model. In particular, the pro-
posed framework can be utilized by both marine engineers and operators to maintain
ships reliably.

For marine engineers, the proposed framework can be used to develop and apply fault
prediction models based on multi-channel signal data from ships. In maritime conditions,
disturbances in engine cycles and the wear time and speed of components and systems
change in random and nonlinear ways. The multi-channel signal data collected under these
conditions are likely to contain nonlinearity and outliers, making traditional statistical
analysis methods like Pearson correlation inadequate. By using the proposed framework, it
is possible to generate a more stable feature reduction filter that has a smaller information
size but higher performance. In addition, when building a multi-channel signal-based
fault prediction model for ships, the interpretation module allows engineers to verify that
the model is trained as intended. Furthermore, for operators on ships, the interpretation
module provides visualization of the prediction causes, offering evidence that the fault
prediction model is making predictions in reasonable ways, thereby enhancing reliability.
In addition, operators can accurately identify the types of signals and the time intervals
that caused future faults, enabling precise preventive measures.

6. Conclusions

In this paper, we proposed a time-series explanatory fault prediction framework for
a marine engine. The framework constitutes feature reduction via statistical correlation
analysis and XAI, the fault prediction model, and the interpretation module to derive the
main cause of prediction. The proposed framework not only predicts faults that could
occur in the future but also provides the rationale for the predictions. Thus, it can be
used to enhance the reliability and robustness of fault prediction. Through extensive
experiments, we demonstrated that the proposed framework can effectively indicate the
pre-symptoms that occur before faults. This clearly shows that the proposed framework
can accurately highlight the significant regions of the input data in the feature-time domain,
while the existing XAI methods in the field of predictive maintenance mainly focus on
determining the impact of each feature without considering the time-domain characteristics.
Consequently, the proposed framework can provide time-series explanatory insights for
fault prediction, which helps in effective maintenance. As a future work, we plan to
evaluate the performance of the proposed framework using actual ship failure data instead
of synthetic fault behaviors. In addition, the proposed framework can be improved to
consider a variety of maritime conditions. For example, extreme maritime conditions, such
as strong ocean currents and stormy waters, can accentuate the random and nonlinear
nature of disturbances in engine cycles and the wear time and speed of components
and systems.
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Nomenclature

D Dataset
N Total number of samples (total length of the time-series data)
i Index of samples (also considered as the time order of the data)
k Feature of samples
dX Dimension of input data
dY Dimension of target data
x Input time-series data
xi,k Sample of x at the i-th index and k-th feature
y Target fault-related vector
P Pearson correlation coefficient
M Mask for learning key predictors
V Black-box model to be interpreted
mi,k Sample of M at the i-th index and k-th feature
λe, λa, λc Hyperparameters determining the weights of each loss term
Le Error loss term considered in M learning
La Area constraint loss term considered in M learning
Lc Mask smoothing term considered in M learning
a Area constraint hyperparameter
ra Term consisting of (1 − a) zeros and a ones for the area constraint
Π Perturbation operator

W
Hyperparameter determining the length of the surrounding time series considered
when the perturbation operator is applied

µi,k Mean value from xi−W,k to xi+W,k

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
CNN Convolutional neural network
DNN Deep neural network
FMEA Failure modes and effects analysis
FTA Fault tree analysis
LNGC Liquefied natural gas carrier
LSTM Long short-term memory
ML Machine learning
NCR Normal continuous rating
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RNN Recurrent neural network
RPM Revolutions per minute
SHAP Shapley additive explanations
VAE Variational autoencoder
XAI Explainable AI
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21. Karatuğ, Ç.; Tadros, M.; Ventura, M.; Soares, C.G. Strategy for ship energy efficiency based on optimization model and data-driven
approach. Ocean. Eng. 2023, 279, 114397. [CrossRef]

22. Ji, Z.; Gan, H.; Liu, B. A deep learning-based fault warning model for exhaust temperature prediction and fault warning of
marine diesel engine. J. Mar. Sci. Eng. 2023, 11, 1509. [CrossRef]

23. Han, P.; Ellefsen, A.L.; Li, G.; Æsøy, V.; Zhang, H. Fault prognostics using LSTM networks: Application to marine diesel engine.
IEEE Sens. J. 2021, 21, 25986–25994. [CrossRef]

24. Sun, T.; Chen, Y.; Zhou, Y. Fault prediction of marine diesel engine based on time series and support vector machine. In
Proceedings of the 2020 International Conference on Intelligent Design (ICID), Xi’an, China, 11–13 December 2020; pp. 75–81.

http://doi.org/10.1016/S1359-4311(00)00006-5
http://dx.doi.org/10.1016/j.ocecoaman.2023.106868
http://dx.doi.org/10.18613/deudfd.933816
http://dx.doi.org/10.3390/pr10112392
http://dx.doi.org/10.1109/TR.2019.2907402
http://dx.doi.org/10.1016/j.joes.2020.03.003
http://dx.doi.org/10.3934/era.2022188
http://dx.doi.org/10.1155/2023/4637678
http://dx.doi.org/10.1038/s41598-023-39989-4
http://www.ncbi.nlm.nih.gov/pubmed/37607951
http://dx.doi.org/10.1109/TIM.2020.2994012
http://dx.doi.org/10.1016/j.oceaneng.2023.115277
http://dx.doi.org/10.1016/j.eswa.2022.117634
http://dx.doi.org/10.1016/j.petrol.2020.107879
http://dx.doi.org/10.1016/j.oceaneng.2021.109723
http://dx.doi.org/10.3934/era.2023199
http://dx.doi.org/10.1016/j.oceaneng.2023.114397
http://dx.doi.org/10.3390/jmse11081509
http://dx.doi.org/10.1109/JSEN.2021.3119151


J. Mar. Sci. Eng. 2024, 12, 1296 25 of 25

25. Tong, Z.; Sun, Y.; She, J.; Zhu, Y.; Zhao, Z. Identification of typical fault states of marine diesel engines based on optimized BP
neural network. Highlights Sci. Eng. Technol. 2022, 7, 10–18. [CrossRef]

26. Lazakis, I.; Raptodimos, Y.; Varelas, T. Predicting ship machinery system condition through analytical reliability tools and artificial
neural networks. Ocean. Eng. 2018, 152, 404–415. [CrossRef]

27. Qi, Z.; Qi, Y.; Hu, G. Research on fault prediction for marine diesel engines. J. Comput. Commun. 2020, 8, 36–44. [CrossRef]
28. Hong, C.W.; Lee, C.; Lee, K.; Ko, M.S.; Kim, D.E.; Hur, K. Remaining useful life prognosis for turbofan engine using explainable

deep neural networks with dimensionality reduction. Sensors 2020, 20, 6626. [CrossRef] [PubMed]
29. Armstrong, R.A. Should Pearson’s correlation coefficient be avoided? Ophthalmic Physiol. Opt. 2019, 39, 316–327. [CrossRef]

[PubMed]
30. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
31. Marcílio, W.E.; Eler, D.M. From explanations to feature selection: Assessing SHAP values as feature selection mechanism. In

Proceedings of the 2020 33rd SIBGRAPI conference on Graphics, Patterns and Images (SIBGRAPI), Virtual, 7–10 November 2020;
pp. 340–347.

32. Yuan, Y.; Shao, C.; Cao, Z.; He, Z.; Zhu, C.; Wang, Y.; Jang, V. Bus dynamic travel time prediction: Using a deep feature extraction
framework based on RNN and DNN. Electronics 2020, 9, 1876. [CrossRef]

33. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.54097/hset.v7i.989
http://dx.doi.org/10.1016/j.oceaneng.2017.11.017
http://dx.doi.org/10.4236/jcc.2020.88004
http://dx.doi.org/10.3390/s20226626
http://www.ncbi.nlm.nih.gov/pubmed/33228051
http://dx.doi.org/10.1111/opo.12636
http://www.ncbi.nlm.nih.gov/pubmed/31423624
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.3390/electronics9111876
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Background
	Literature Review
	Contribution of the Paper
	Paper Structure

	Problem Definition
	Proposed Methodology
	Dimensionality Reduction of Correlation Analysis and XAI
	Pearson Correlation Analysis
	Shapley Additive Explanations Analysis

	Fault Prediction Model Based on LSTM
	Perturbation-Based XAI Method Considering Temporal Dependencies
	Proposed Time-Series Explanatory Fault Prediction Framework

	Application of Explanatory Fault Prediction in Real-World Datasets
	Scenario of Fault Prediction
	Data Generation
	Data Preprocessing
	Synthetic Fault Behavior for Experiments

	Training Phase
	Feature Selection Filter for Dimensionality Reduction
	Training Fault Prediction Model with LSTM

	Exploitation Phase

	Experimental Results
	Evaluation Metrics
	Performance Evaluation of Fault Prediction
	Performance Evaluation of Time-Series Explanatory
	Discussions

	Conclusions
	References

