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Abstract: The hydrodynamics of the flow around piers affects the motion of ships navigating near
these structures, while the motion of the ships, in turn, affects the distribution of the flow field
near the piers. This study investigates the forces exerted on a ship in various ship–pier transverse
distances using commercial computational fluid dynamics (CFD) software, Fluent 13.0, based on the
RNG k-ε model, complemented by experiments with a physical model. The interaction between the
ship’s motion and the flow field near the piers was considered. The results indicate that during the
encounter between the ship and the pier, the boundary of the approaching ship affects the flow field
near the pier, thereby affecting the generation and detachment of vortices behind the pier. The yaw
moment of the ship demonstrates a marked “positive peak–negative peak–positive peak” pattern.
Moreover, as the ship–pier transverse distance increases, the impact of the pier on the ship’s motion
decreases, and it becomes negligible when the distance reaches 0.9 times the diameter of the pier (D),
suggesting that the pier has a minimal impact on ship navigation if the ship–pier transverse distance
exceeds this threshold.

Keywords: flow around a cylindrical pier; yaw moment; numerical model; computational fluid dynamics

1. Introduction

The arrangement of piers changes the original flow conditions of rivers and forms a
special flow near bridges, which directly affects the motion pattern of passing ships. In
particular, a turbulent flow field around piers can easily cause ships to deviate from their
courses, endangering their safe navigation through areas near bridges. The turbulent flow
field around piers has been investigated, and a few methods for indirectly determining
the safe distance between piers and the waterway boundary have been proposed for ship
navigation safety [1–5]. However, in a flow field around a solid body, when another object
approaches (e.g., encounters with high-speed trains, encounters with ships, and ships
passing through piers), the basic properties of this flow field will change. The separation
of the shear layers on both sides of the pier as well as the generation and shedding of
vortices behind the pier can cause the flow around the pier to be highly turbulent, and these
properties are closely related to the relative position of two piers. When a ship approaches
or leaves a pier, these properties will be affected and become even more complex [6–8]. For
ships, the turbulent flow around a pier can change their hydrodynamic conditions.

Within the hydrodynamics of ships, the prediction of unsteady hydrodynamics around
a moving ship is crucial, especially the hydrodynamics of ships in the case of overtaking,
meeting, and approaching [9–11]. Tuck and Newman [12] proposed the thin body theory
in a two-dimensional flow and the slender body theory in deep and shallow water for
calculating ship–ship interactions, which laid a theoretical foundation for subsequent
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studies. Kijima [13] applied the slender body theory to numerically simulate the inter-ship
hydrodynamics when one ship overtakes another and the behaviors of the two ships near
circular and elliptical piers. With the development of computational fluid dynamics (CFD)
and the application of particle image velocimetry (PIV) technology to transient, non-contact
testing of the flow field in circulating water tanks, more comprehensive studies have
been conducted on the mechanism of the interactions between ships. Accurate velocity
field and pressure field distributions around a ship body can be obtained through both
experiments and numerical simulations [14,15]. The field of ship hydrodynamics has seen
rapid advancements. For example, based on the slender body theory, Xu et al. [16] took
a pier as a stationary ship, utilized a general model for the hydrodynamic interference
between ships to calculate the ship–pier interference hydrodynamics when the ship passed
the pier while going in the X direction, and employed the MMG (Mathematical Modeling
Group) model to calculate the ship’s maneuverability. By using Fluent 13.0 in CFD software,
Gan et al. [17] applied quasi-steady and unsteady numerical methods to simulate the
viscous flow field of a ship sailing straight near a pier and then calculated the changes
in the disturbance hydrodynamics of the pier for the ship with the ship–pier transverse
distance. With overlapping mesh technology, Li et al. [7] simulated the entire process of a
ship passing through a pier and monitored the changes in the transverse force, longitudinal
force, and yaw moment, as well as the rolling moment. In terms of research using physical
models, some scholars have analyzed the interaction between the flow structure around a
pier and a ship by measuring the surface pressure, transverse force, and yaw moment of
the ship [18–24].

Through testing on physical models, this study observes and analyzes the changing
pattern of the yaw moment as a ship passes a pier, utilizes the CFD method to numerically
simulate the viscous flow field with unsteady ship–pier hydrodynamic interactions, and
employs dynamic mesh technology and the user-defined function (UDF) in Fluent to obtain
the fluid–structure interactions between the flow around the pier and ship motion and data
on the forces exerted on the ship along its course and its navigation attitude.

2. The Test Based on a Physical Model
2.1. Equipment

In a generalized water tank with a length of 30 m, a width of 4.5 m, and a height of
1.2 m, a relative static water experiment is conducted to simulate a ship–pier encounter pro-
cess. The experimental ship model, pier, and sliding platform are shown in Figures 1 and 2.
Specifically, a torque sensor is installed on the barycenter of the ship model and connected
to a fixed bracket via a rigid rod. The pier model is fixed under the sliding platform vehicle
and passes under the ship model at a uniform speed. Along the course, the torque sensor
measures the change in the yaw moment (with rotational torque centered on the Z-axis).
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Figure 2. Plan view of ship–bridge intersection test flume.

2.2. Results and Analysis

At a ship–pier transverse distance of 0.9D, where D represents the pier diameter, the
pier moves relative to the ship model at a speed of 0.283 m/s to simulate the change in the
yaw moment as the ship passes the pier in the X direction, as shown in Figure 3. It can be
seen that the yaw moment demonstrates a “positive peak–negative peak–positive peak”
pattern. When the bow approaches the pier, the water between the ship and the pier is
squeezed, leading to an increase in the pressure on the side of the bow near the pier. When
the bow reaches the center of the pier, the yaw moment reaches the first positive peak;
after the flow passes around the pier, a Karman vortex street with periodically shedding
vortices is formed behind the pier. Then, as the bow enters the wake flow, it is subject to
the attraction or repulsion of the vortex. In this case, for this part of the ship, the flow on
the pier side is blocked by the pier and thus has a lower flow speed than that on the other
side, while the stern part receives a thrust away from the pier, and the thrust is larger than
the force of the wake flow on the ship. Therefore, the yaw moment at this stage is negative
and reaches a negative peak as the center of the ship passes the pier; when the stern leaves
the pier, the flow channel between the pier and stern increases, and flow rushes in, leading
to an increase in the flow speed on the pier side of the stern. With superimposition in the
same direction as the negative pressure of the tail vortex, the stern is attracted toward the
pier, and the yaw moment reaches its second positive peak. Due to the alternating changes
in the tail vortices, the yaw moment fluctuates.
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3. Numerical Modeling and Verification

With the continuous advancement of CFD, numerical simulation of ship hydrodynam-
ics using the viscous flow method is an efficient and widely used method. This method can
eliminate the impact of many disturbing factors, capture the flow field details well, and
accurately calculate the forces exerted on a ship. In this study, a numerical simulation of
the flow field in the case of a ship–pier encounter was conducted using Fluent, and the
simulation results were compared with the yaw moment generated by the corresponding
physical model to validate the proposed numerical model.

3.1. Model Size

The geometric scale of the numerical model is 1:50, and a common inland waterway
cylindrical pier and a 500 T class barge are selected for the numerical calculation. Herein,
the length, width, and draft of the ship are 0.9 m, 0.2 m, and 0.032 m, respectively, and
the pier diameter (D) is 0.1 m. As shown in Figure 4, the calculation boundary is set to
not disturb the turbulent flow around the pier, the inflow boundary is 55D away from the
pier axis, the outflow boundary is 45D away from the pier axis, and the two symmetric
boundaries on both sides are 18D and 15D away from the pier axis, respectively. The
generalized ship model encounters the pier in the X direction at a steady cruising speed v
and at a distance of 25D from the pier, and the distance between the ship’s side and the
pier wall is T = 16.5D.
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3.2. The Control Equation

In this study, the numerical calculation first needs to satisfy the two fundamental equa-
tions for incompressible viscous fluid, the Navier–Stokes equation and the continuity equation.

The continuity equation for incompressible fluid is as follows:

∂ui
∂xi

= 0 (1)

The Navier–Stokes equation is as follows:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p
∂xi

+ µ
∂

∂xj
(

∂ui
∂xj

) (2)

The corresponding Reynolds-Averaged Navier–Stokes (RANS) equation can be ex-
pressed as

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p
∂xi

+ µ
∂

∂xj
(

∂ui
∂xj

− ρui
′uj

′) (3)
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where the values of i and j range from 1 to 3, and ui, uj, and p are time-averaged quantities.
−ρui

′uj
′ is defined as the Reynolds stress term. The RNG k-ε model is essentially a turbu-

lence model based on the renormalization group (RNG). It is suitable for flows with high
strain rates and large streamline curvature and has been widely used for simulations of
surface ships. Moreover, the numerical calculation needs to satisfy the transport equations
for turbulent kinetic energy and the turbulent dissipation rate.

k :
∂

∂t
(ρk) +

∂

∂xj
(ρujk) = ρp − ρε +

∂

∂xj

[
(µ +

µt

σx
)

∂k
∂xj

]
(4)

ε :
∂

∂t
(ρε) +

∂

∂xj
(ρujε) = Cε1 f1

ρpε

k
− Cε2 f2

ρε2

k
+

∂

∂xj

[
(µ +

µt

σx
)

∂ε

∂xj

]
(5)

where ε =
µ

ρ

(
∂u′

i
∂xk

)( ∂u′
j

∂xk

)
, µt = ρCµ

k2

ε
(6)

where k denotes the turbulent kinetic energy; ε represents the turbulent dissipation rate;
u indicates the flow velocity; p denotes the pressure; ρ denotes the density; µ denotes the
dynamic viscosity; v is the dynamic viscosity coefficient; µt denotes the turbulent viscosity;
and f 1 and f 2 are damping functions. Additionally, Cµ = 0.085, Cε1 = 1.42, Cε2 = 1.68 and
σε = 0.7179.

3.3. The Numerical Method
3.3.1. Computational Domain Classification and Mesh Generation

In this study, the simplified two-dimensional planar motion of the ship in the bridge
area is treated as a three-degrees-of-freedom problem: the longitudinal movement along
the X-axis; the lateral drift caused by the transverse forces induced by the disturbed flow
around the pier; and the rotation of the ship due to the moment generated by the uneven
hydrodynamic distribution. The displacement of the moving ship is significantly larger than
the mesh size, which can result in excessive mesh distortion and lead to non-convergence in
the calculations. Therefore, the spring smoothing method and the local remeshing method
are used to update the mesh. The local remeshing method is only applicable to tetrahedral
and triangular meshes, which are unstructured meshes. In the same computational domain,
unstructured meshes generate more mesh elements than structured meshes while still
satisfying the flow field calculation conditions. To reduce the mesh updating time and save
computational resources, a multi-region computational model is employed, as depicted in
Figure 5. The interface is used for connection and data transfer between the computational
domains. Specifically, Domain 1 contains the ship. It is the dynamic mesh area and uses
triangular unstructured meshes. In this domain, quadrilateral meshes are divided around
the ship as boundary-layer meshes, which move with the ship, while the other meshes are
updated as the ship moves. Domain 2 contains the pier and the other stationary mesh areas.
These meshes are not updated as the ship moves, and quadrilateral structured meshes are
used. The mesh size has 98,883 cells, and the size of the pier’s radial first-layer grid is 0.01D,
also taking a time step size of 0.005 s to calculate. In the preliminary simulation verification,
the selected grid density showed consistency with the experimental data and expected
results, indicating that the current grid density adequately reflects the actual situation.
Therefore, we believe that this grid density is a reasonable choice without increasing the
computational burden. Moreover, in critical areas (such as around the ship), more refined
boundary-layer meshes (quadrilateral meshes) are used to ensure that the flow details in
these areas are fully resolved. This treatment further enhances the overall reliability and
accuracy of the simulation.
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3.3.2. Setting of the Boundary Conditions

Boundary conditions are directly related to the stability and accuracy of numerical
calculations. In the model, the inlet boundary is set as a velocity inlet, the outlet boundary
is set as a pressure outlet, the two sides are set as symmetrical boundaries, the top is set as
an air pressure outlet, the bottom is set as a wall boundary condition, and the pier and ship
surfaces are set as walls. The volume of fluid (VOF) function is adopted to construct and
track the free fluid surface of the model.

3.3.3. Utilization of the UDF [25]

To simulate the forces exerted on the ship and the motion of the ship under the
influence of turbulence around the pier, dynamic meshes are employed to convert forces
into velocity and displacement. In this study, the linear speed and the angular speed of the
ship at each time step are defined using the dynamic mesh macro “DEFINE_CG_MOTION”
in the UDF to specify the ship motion, and the forces exerted on the ship at each time step
are obtained using “Compute_Force_And_Moment” to calculate the barycentric speed,
angular speed, and barycentric position of the ship at the next time step. In this way,
coupling between the flow and ship motion can be obtained.

3.4. Model Verification
3.4.1. Hydrodynamics of the Flow around the Pier

The drag coefficient Cd of the cylindrical pier and the Strouhal number, which indicates
the shedding frequency of the tail vortices, are calculated by using the mathematic model
of the flows around the 2D cylinder without the ship’s interference. using Formulas (7)
and (8) to compute the drag coefficient and the Strouhal number, the results are compared
with experimental values with similar Reynolds numbers. The average drag coefficient
calculated for the flow around a single pier is Cd = 1.182, and the Strouhal number is
st = 0.201, which are close to the experimental values found for the single-pier model by
Yokuda and Ramaprian [26] (Cd = 1.20, st = 0.21).

Cd =
2F

ρU2D
(7)

St =
f D
U

(8)
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where F is the resistance, U is the incoming flow velocity, D is the pier diameter, and ρ
denotes the density. f is the vortex separation frequency.

3.4.2. The Flow Field of the Flow around the Pier

PIV enables transient, non-contact testing of the flow field. To obtain a fine-grained
analysis of the flow field behind the pier, this study uses PIV in a 16 m × 0.4 m × 0.5 m
glass water tank to observe the flow field behind the pier. Through the experiment using
the PIV physical model, the numerical simulation results at a flow velocity of 2.0 m/s and
the surface flow field around the pier are shown in Figure 6a and Figure 6b, respectively. It
can be seen that the streamline directions, vortex directions, and vortex-shedding patterns
of the tail wake behind the pier in the numerical model are consistent with the observations
from the physical model.
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3.4.3. Verification of the Force Exerted on the Ship

The numerical model corresponding to the physical model was calculated in the
following conditions: T = 0.9D and the ship passing the pier in the X direction at a speed of
0.283 m/s. As illustrated in Figure 7, the yaw moment generated by the physical model
and the numerical calculation demonstrates consistent patterns (positive peak–negative
peak–positive peak).
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Although the high-frequency oscillations and wake diffusion present in the experi-
ment were not simulated, the flow field calculation results in the simulation model are
consistent with the flow field structure of the flow around the pier. Specifically, the hy-
draulic characteristics are comparable, the change patterns for the ship’s yaw moment are
consistent, and reasonable numerical solutions are acquired. Therefore, the meshes and
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the numerical method in this numerical model can meet the requirements for numerical
calculations and are suitable for simulating the ship–pier encounter process.

4. Numerical Calculation Results and Analysis
4.1. Determination of the Calculation Conditions

Considering the common flow velocity during the flood season in the Xiangjiang River,
the flow velocity in front of the bridge is set to 0.283 m/s (perpendicular to the bridge
axis). This study aims to investigate the pattern of the forces exerted on ships caused by the
flow around piers without considering the effects of steerage and ship waves. Therefore,
a relatively low speed against the bank is chosen for the study. Herein, the ship speed
against the bank is set to 0.566 m/s. Based on these parameter settings and considering
different ship–pier transverse distances (0.6D, 0.9D, 1.2D, and 1.5D), the coupling between
the ship and the turbulence around the pier when the ship passes the pier in the X direction
are analyzed.

4.2. Effects of the Ship–Pier Transverse Distance on the Force Exerted on the Ship and the Motion
of the Ship
4.2.1. Force Analysis

When the ship passes piers at different ship–pier transverse distances, the duration curves
of the lateral force exerted on the ship (causing the ship to move laterally along the Y axis) and
the yaw moment of the ship are demonstrated in Figure 8a and Figure 8b, respectively.
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Since the lateral force is the root cause of the yaw moment, they are consistent. It can
be seen that at different transverse distances, the evolution patterns of the lateral force
and the yaw moment are almost the same (see Section 2.2), and transverse distance has
little effect on the timing of the positive lateral force and the positive yaw moments of the
ship. For the positive lateral forces exerted on the ship at different transverse distances (see
Table 1), the maximum negative peak is about 0.287 N when T = 0.6D, which can generate a
transient acceleration of 0.087 m/s2 for a 500 T class barge model, pushing the ship laterally
to approach the pier. As the ship–bridge distance increases, both the positive and negative
peaks of the lateral force exerted on the ship and the yaw moment of the ship decrease, and
the rate of this decrease diminishes, indicating that the disturbance effect of the pier and
the tail vortices behind the pier on the ship weakens as the ship–bridge distance increases.

Table 1. The peak lateral force, acceleration, and peak yaw moment of the ship at different values
of T.

T Fymax (N) a (m/s2) M+
max (N·m) M−max (N·m)

0.6D −0.287 0.0718 0.0509 −0.0472
0.9D 0.167 0.0417 0.0402 −0.0358
1.2D −0.156 0.0583 0.0319 −0.0289
1.5D −0.140 0.0503 0.0263 −0.0229

To better explain the evolution of the yaw moment (T = 0.6D), a comprehensive
analysis is conducted. This analysis combines the lateral velocity distribution around the
pier with local streamlines and the pressure distribution around the ship at typical positions
as it passes the pier, as shown in Figure 9.

As shown in Figure 9b, when the ship approaches the pier, the flow at the right front
end of the ship moves diagonally towards the pier. At the same time, the proximity of
the ship’s boundary somewhat suppresses the development of streamlines around the
stagnation point in front of the pier. The water between the ship and the pier is continuously
compressed, and together with the pushing flow in front of the pier, this causes the pressure
at the right bow of the ship to be greater than that at the left bow. As a result, the bow is
repelled away from the pier, changing the ship’s heading. When the bow is about to reach
the pier, the channel between the ship and the pier is at its narrowest, the repulsive force is
at its maximum, and the yaw moment reaches a positive peak. When the bow enters the
wake region of the pier and the stern is still upstream of the pier, as shown in Figure 9c, the
upstream boundary of the ship continues to compress the water between the ship and the
pier. The right side of the ship’s bow experiences positive pressure, pushing it away from
the pier. The flow carried by the bow accelerates out of the channel between the ship and
the pier, causing it to spread out behind the pier, enhancing the development of the wake
vortex. This increases the negative pressure area behind the pier compared to when no
ship is present. The right side of the ship’s stern, located downstream of the pier, is subject
to negative pressure, drawing the bow towards the pier. Since the right side of the ship’s
bow is attracted while the stern is repelled, a clockwise moment is created, resulting in a
negative yaw moment. At this point, if the bow is sucked into the wake region, the ship can
easily lose control and collide with the pier. As the stern moves away from the pier, parts
of the wake vortex either strike the ship or attach to it, or they mix more intensely with the
surrounding vortices. Additionally, the flow carried by the stern accelerates the water in
the channel between the stern and the pier, making the negative pressure region behind
the pier more pronounced. As shown in Figure 9d, the right side of the stern is within
the negative pressure area, indicating that the second positive peak of the yaw moment is
mainly due to the negative pressure of the vortex. Because the stern is attracted, there is a
risk of the stern swinging into the pier at this point.
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4.2.2. The Barycentric Displacement of the Ship

Figure 10 illustrates the change curve for the Y barycentric coordinate of the ship
when it passes the pier when T = 0.6D, 0.9D, 1.2D, and 1.5D. It is observed that the ship’s
barycenter slightly approaches the pier before moving away at distances of 0.6D, 0.9D,
1.2D, and 1.5D. When T = 0.6D and 0.9D, the ship approaches and moves away from the
pier at larger magnitudes; when T = 1.2D and 1.5D, the Y barycentric coordinate of the ship
remains almost unchanged.
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When T = 0.6D, the ship travels in the X direction at a certain speed (without steering
control). When the bow approaches the pier, the positive yaw moment gradually increases.
This is reflected in the fact that the bow is deflected away from the pier side, and the stern
is deflected towards the pier side, i.e., it is deflected counterclockwise, and the barycenter
approaches the pier. As the ship continues to travel in the X direction, the yaw moment
becomes negative, the bow is attracted by the negative pressure on the pier side and the tail
of the pier, and the stern is repelled, deflecting clockwise overall. After the ship passes the
pier, the barycenter still tends to approach the pier side due to inertia and the push of the
incoming flow, leading to a peak in the lateral offset of the ship’s barycentric; as the ship
continues to travel in this direction, the yaw moment becomes positive again and reaches its
maximum when the stern is at the pier position, the trend in the ship’s barycentric position
approaching the pier gradually flattens, and the ship tends to move laterally away from the
pier. When T = 0.9D, 1.2D, and 1.5D, the pattern of the change in the yaw moment of the
ship along the course is essentially the same as that at 0.6D, and as the ship–pier transverse
distance increases, the positive lateral force and the positive yaw moment along the course
decrease, and thus the peak of the barycentric lateral offset also decreases. After the stern
passes the pier, the yaw moment becomes positive, deflecting the ship counterclockwise,
and the barycenter quickly moves away from the pier. Therefore, when T = 0.6D, after the
ship is affected by the hydrodynamic disturbance of the pier, the barycentric lateral offset
becomes large, and when the stern passes the pier, there is a high risk that the ship rear
collides with the bridge and the stern hits the pier. When the transverse distance is greater
than 0.9D, after the stern passes the pier, the transverse distance between the barycentric
position and the pier significantly increases, indicating a small chance of the stern hitting
the pier, i.e., the adverse effect of the pier on the navigation of the ship is small.

5. Conclusions

This study analyzes the change patterns for the lateral force, yaw moment, and
barycentric displacement of a ship at different ship–pier transverse distances in a ship–pier
encounter process. The proposed numerical simulation method can reasonably predict the
forces exerted on the ship and the motion of the ship passing a pier under the impact of the
turbulent flow. The lateral force and the yaw moment exerted on the ship passing through
the pier at different ship–pier transverse distances are affected by the pier and tail vortices
behind the pier, and their duration curves show repetitive fluctuations with distinct peaks
(i.e., a positive peak, a negative peak, and a positive peak). When the bow reaches the center
of the pier, the ship is subject to repulsion, which causes the yaw moment to reach a positive
peak (counterclockwise); meanwhile, the barycenter of the ship first moves laterally closer
and then away from the pier, while the stern turns towards the pier; after the center of the
ship passes the pier, the ship passes the pier with the bow inward (closer to the pier side)
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and the stern outward (away from the pier side), and the lateral force reaches a negative
peak, which generates lateral acceleration that brings the ship closer to the pier; when the
stern is about to leave the pier, the yaw moment reaches a positive peak, and the stern turns
towards the pier again. Through a sensitivity analysis of the influence of the ship–pier
transverse distance on the unsteady hydrodynamics of the ship passing the pier, it is found
that as the ship–pier transverse distance increases, the maximum positive and negative
peaks of the lateral force and the yaw moment decrease. At ship-pier distances of 0.9D,
1.2D, and 1.5D, both the lateral force and the yaw moment are minimal. Additionally, the
trajectories of the ship’s barycenter as it passes the pier are similar, exhibiting only minor
variations with the change of distances. After the stern passes the pier, the ship quickly
moves laterally away from the pier, and the pier has little impact on the ship’s navigation in
this process. Therefore, 0.9D can be considered a safe reference distance between ships and
piers near a bridge. This study uses a two-dimensional numerical model, only considering
the motion at three degrees of freedom of the ship. In future work, three-dimensional
numerical calculations could be considered to fully account for the ship’s six degrees of
freedom. Additionally, rudder forces could be included in the UDF to make the numerical
model more realistic.
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