YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight Convolutional Networks
Abstract
:1. Introduction
- [1]
- Adoption of a more efficient lightweight network for extracting crucial ship spot features;
- [2]
- Introduction of a deep feature enhancement method that integrates multi-scale receptive fields to enhance the generalization capability of the feature network;
- [3]
- Incorporation of convolution methods with higher parameter efficiency into a bidirectional feature fusion network, enabling effective learning of spatial and channel features from input data and facilitating the fusion of ship features at both micro and global levels;
- [4]
- Improvement of prediction box formation through advanced non-maximum suppression (NMS) and localization loss estimation, leading to improved ship localization accuracy in dense scenarios;
- [5]
- Design of a more robust ship identification method by utilizing a lightweight convolutional neural architecture to address the computational limitations of embedded devices in radar systems.
2. A Proposed Method
2.1. Feature Extraction Network
2.2. Receptive Field Expansion Module
2.3. Feature Fusion Network
2.4. Non-Maximum Suppression
2.5. Position Loss Function
3. A Case Study
3.1. Dataset
3.2. Experimental Environment and Training Results
3.3. Comparisons and Discussion
- A.
- Experimental analysis of different algorithms
- B.
- Ablation Experiments
- C.
- Comparisons in radar images
- D.
- Comparisons under noise interference
- E.
- Comparisons of small-scale ship identification
- F.
- Comparative experiments on other datasets
- G.
- Comparative Experiments with CFAR Methods
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.W.; Yuan, W.; Chen, X.; Lu, Y. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system. Ocean Eng. 2021, 235, 109435. [Google Scholar] [CrossRef]
- Chen, P.; Li, X.; Zheng, G. Rapid detection to long ship wake in synthetic aperture radar satellite imagery. J. Oceanol. Limnol. 2018, 37, 1523–1532. [Google Scholar] [CrossRef]
- Han, J.; Kim, J.; Son, N. Coastal navigation with marine radar for USV operation in GPS-restricted Situations. J. Inst. Control Robot. Syst. 2018, 24, 736–741. [Google Scholar] [CrossRef]
- Wen, B.; Wei, Y.; Lu, Z. Sea clutter suppression and target detection algorithm of marine radar image sequence based on spatio-temporal domain joint filtering. Entropy 2022, 24, 250. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Q.; Ma, F.; Wang, S. A novel positioning approach for an intelligent vessel based on an improved simultaneous localization and mapping algorithm and marine radar. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2018, 233, 779–792. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Hu, R.; Su, H.; Liu, Y.; Liu, X.; Suo, J.; Snoussi, H. Multiple kernelized correlation filters (MKCF) for extended object tracking using x-band marine radar data. IEEE Trans. Signal Process. 2019, 67, 3676–3688. [Google Scholar] [CrossRef]
- Qiao, S.; Fan, Y.; Wang, G.; Mu, D.; He, Z. Radar target tracking for unmanned surface vehicle based on square root sage–husa adaptive robust kalman filter. Sensors 2022, 22, 2924. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Chen, Y.; Yan, X.; Chu, X.; Wang, J. Target recognition for coastal surveillance based on radar images and generalised bayesian inference. IET Intell. Transp. Syst. 2017, 12, 103–112. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13024–13033. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 21 September 2023).
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1483–1498. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2778–2788. [Google Scholar]
- Chen, S.; Zhan, R.; Wang, W.; Zhang, J. Domain adaptation for semi-supervised ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Miao, T.; Zeng, H.; Yang, W.; Chu, B.; Zou, F.; Ren, W.; Chen, J. An improved lightweight retinanet for ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4667–4679. [Google Scholar] [CrossRef]
- Mou, X.; Chen, X.; Guan, J.; Zhou, W.; Liu, N.; Yang, D. Clutter suppression and marine target detection for radar images based on INet. J. Radars 2020, 9, 640–653. [Google Scholar] [CrossRef]
- Chen, X.; Mu, X.; Guan, J.; Liu, N.; Zhou, W. Marine target detection based on marine-faster r-cnn for navigation radar plane position indicator images. Front. Inf. Technol. Electron. Eng. 2022, 23, 630–643. [Google Scholar] [CrossRef]
- Chen, X.; Su, N.; Huang, Y.; Guan, J. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs. IEEE Sens. J. 2021, 21, 9099–9111. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020; pp. 12993–13000. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Solovyev, R.; Wang, W.; Gabruseva, T. Weighted boxes fusion: Ensembling boxes from different object detection models. Image Vis. Comput. 2021, 107, 104117. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, D.; Liu, X.; Sun, Y. Real-time robust detector for underwater live crabs based on deep learning. Comput. Electron. Agric. 2020, 172, 105339. [Google Scholar] [CrossRef]
- Ma, F.; Wu, Q.; Yan, X.; Chu, X.; Zhang, D. Classification of automatic radar plotting aid targets based on improved fuzzy c-means. Transp. Res. Part C Emerg. Technol. 2015, 51, 180–195. [Google Scholar] [CrossRef]
- Ma, F.; Chen, Y.; Yan, X.; Chu, X.; Wang, J. A novel marine radar targets extraction approach based on sequential images and bayesian network. Ocean Eng. 2016, 120, 64–77. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Jocher, G. YOLO by Ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 21 February 2024).
- Lv, J.; Chen, J.; Huang, Z.; Wan, H.; Zhou, C.; Wang, D.; Wu, B.; Sun, L. An anchor-free detection algorithm for SAR ship targets with deep saliency representation. Remote Sens. 2022, 15, 103. [Google Scholar] [CrossRef]
- Wan, H.; Chen, J.; Huang, Z.; Xia, R.; Wu, B.; Sun, L.; Yao, B.; Liu, X.; Xing, M. AFSar: An anchor-free SAR target detection algorithm based on multiscale enhancement representation learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5219514. [Google Scholar] [CrossRef]
- Xu, C.; Su, H.; Li, J.; Liu, Y.; Yao, L.; Gao, L.; Yan, W.; Wang, T. RSDD-SAR: Rotated ship detection dataset in SAR images. J. Radars 2022, 11, 581–599. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; Zhang, Z. A PointNet-based CFAR detection method for radar target detection in sea clutter. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3502305. [Google Scholar] [CrossRef]
Different Types | Algorithms | Recall | Ac | Pr | PARAMs/(M) | FLOPs/(G) |
---|---|---|---|---|---|---|
Conventional methods | CV + GHFilter | 0.8910 | 0.8815 | 0.8744 | N/A | N/A |
Standard algorithms | YOLOv3 | 0.9217 | 0.9195 | 0.9233 | 62.57 | 65.88 |
YOLOv4 | 0.9209 | 0.9286 | 0.9225 | 63.94 | 59.87 | |
YOLOv5(S) | 0.8944 | 0.9089 | 0.9236 | 7.2 | 16.5 | |
YOLOv5(L) | 0.9177 | 0.912 | 0.9216 | 46.5 | 109.14 | |
YOLOv7 | 0.9195 | 0.9177 | 0.9281 | 37.21 | 104.7 | |
YOLOv8(S) | 0.911 | 0.9057 | 0.921 | 11.2 | 28.6 | |
YOLOv8(L) | 0.9149 | 0.9107 | 0.93 | 43.28 | 165.67 | |
Lightweight algorithms | YOLOv3-MobileNetV3(Large) | 0.9019 | 0.9001 | 0.9127 | 25.74 | 20.77 |
YOLOv3-MobileNetV3(Small) | 0.8565 | 0.8462 | 0.8504 | 7.72 | 4.73 | |
YOLOv3-Ghostnet | 0.8973 | 0.8916 | 0.9003 | 25.44 | 20.23 | |
Other algorithms | SRDet | 0.8962 | 0.9025 | 0.9098 | 35.1 | / |
AFSar | 0.8936 | 0.8813 | 0.8612 | 6.52 | 9.86 | |
YOSMR | YOSMR(PANet) | 0.9244 | 0.9135 | 0.9095 | 42.11 | 31.69 |
YOSMR | 0.9308 | 0.9204 | 0.9215 | 12.40 | 8.63 |
Methods | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
YOLOv3 + MobileNetV3(Large) | ★ | |||||
+SPP | ★ | |||||
+Cluster-NMS | ★ | |||||
+α-DIoU | ★ | |||||
+FPN | ★ | |||||
+LightPANet | ★ | |||||
Recall | 0.9019 | 0.9098 | 0.9138 | 0.9224 | 0.9229 | 0.9308 |
Ac | 0.9001 | 0.8936 | 0.9040 | 0.9142 | 0.9126 | 0.9204 |
Pr | 0.9127 | 0.9053 | 0.9182 | 0.9160 | 0.9097 | 0.9215 |
Noise Type | Noise Implementation | Noise Configuration |
---|---|---|
Salt-and-Pepper Noise | Direct addition of noise to the original image | Adheres to a random distribution |
Speckle Noise | Multiplication of the original image and noise, then superimposed | Follows a standard normal distribution |
Gaussian Noise | Direct addition of noise to the original image | Conforms to a Gaussian distribution |
Algorithms | Detected Ships | True Ships | False Alarms | Recall | Pr |
---|---|---|---|---|---|
YOLOv5(L) | 1419 | 1303 | 116 | 0.9086 | 0.9183 |
YOLOv8(L) | 1427 | 1307 | 120 | 0.9114 | 0.9159 |
YOSMR | 1440 | 1325 | 115 | 0.9240 | 0.9201 |
CA-CFAR | OS-CFAR | |
---|---|---|
PFA(0.1) | 0.663 | 0.837 |
PFA(0.05) | 0.637 | 0.825 |
PFA(0.01) | 0.557 | 0.762 |
Detected PD | Detected PFA | |
---|---|---|
PFA(0.1) | 0.847 | 0.044 |
PFA(0.05) | 0.823 | 0.023 |
PFA(0.01) | 0.753 | 0.0087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Z.; Ma, F.; Chen, C.; Sun, J. YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight Convolutional Networks. J. Mar. Sci. Eng. 2024, 12, 1316. https://doi.org/10.3390/jmse12081316
Kang Z, Ma F, Chen C, Sun J. YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight Convolutional Networks. Journal of Marine Science and Engineering. 2024; 12(8):1316. https://doi.org/10.3390/jmse12081316
Chicago/Turabian StyleKang, Zhe, Feng Ma, Chen Chen, and Jie Sun. 2024. "YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight Convolutional Networks" Journal of Marine Science and Engineering 12, no. 8: 1316. https://doi.org/10.3390/jmse12081316
APA StyleKang, Z., Ma, F., Chen, C., & Sun, J. (2024). YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight Convolutional Networks. Journal of Marine Science and Engineering, 12(8), 1316. https://doi.org/10.3390/jmse12081316